KAYALARIN DELİNEBİLİRLİĞİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KAYALARIN DELİNEBİLİRLİĞİ"

Transkript

1 KAYALARIN DELİNEBİLİRLİĞİ Sondajcılık Uygulamalarına Giriş Adil ÖZDEMİR Jeoloji Yüksek Mühendisi Ankara 2012 i

2 ii Giriş JENERİK SAYFASI OLUŞTURULACAK ii

3 ÖNSÖZ Delinebilirlik; bir matkabın kayaç içinde belirli bir zamanda kayacı delerek ilerlemesidir. Bir diğer ifade ile kaya kütlesinde delik delme kolaylığıdır. Delme hızı ise kayaç içerisinde, m/dk, cm/dk veya mm/dk olarak ölçülür. Delinebilirlik ile delme hızı aynı kavram olarak tanımlanabilir. Delinebilirlik kolay ya da zor olarak delme hızı ise hızlı ya da yavaş olarak ifade edilir. Delinebilirliğe etki eden birçok parametre vardır. Bunlar makine ve ekipmana bağlı parametreler (sondaj makinasının tipi, dönme hızı, baskı kuvveti, matkap tipi vb.), delme işlemine bağlı parametreler (delme yöntemi, makinanın çalışma performansı ve bakımı, sondörün deneyimi vb.) ile jeolojik parametreler (kaya tipi, kayaların mekanik özellikleri, süreksizlikler, mineral bileşimi) dir. Makine, ekipman ve delme işlemine bağlı parametreler kontrol edilebilir parametreler olup, jeolojik ve mühendislik özelliklerine bağlı parametreler ise kontrol edilemeyen parametrelerdir. Kaya delinebilirliğinde kontrol edilemeyen parametrelerin belirlenmesi (jeolojik ve mühendislik özelliklerinin), sondaj çalışmasında kullanılacak delme yöntemi, matkap türü, matkap dönme hızı, matkap üzerine uygulanacak yük miktarı, delme dizisi niteliği, pompa türü, dolaşım sıvısı/hava hızı ve hacmi, personel vb. gibi kontrol edilebilen parametrelerin en iyi şekilde seçilebilmesine (tasarım aşamasında) imkan vermektedir. Ayrıca, elde edilen veriler maliyet tahmininde ve sondaj çalışma sürelerinin planlanmasında kullanılabilecektir. Bu kitapta, Sondaj, Kayaların, Delinebilirlik, Mühendislik Özellikleri anahtar terimleri esas alınarak konu incelenmiş ve Kayaların Delinebilirliği ne sondajcılık uygulamaları açısından bir giriş yapmak amaç edinilmiştir. iii

4 Yazarın Yüksek Lisans Tezi nin çalışmasının bir ürünü olan bu çalışmanın sonuçlanmasında en önemli paya sahip olan, müracaat ettiğim her konuda beni içtenlikle karşılayan ve bilgi birikimini benimle paylaşan tez hocam sayın Doç.Dr.Nihat Sinan IŞIK a (Gazi Üniversitesi Teknoloji Fakültesi İnşaat Mühendisliği Bölümü), mesleki yaşamımda yine kıymetli tecrübelerinden faydalandığım çok değerli hocam Prof.Dr. M.Yener ÖZKAN a (ODTÜ İnşaat Mühendisliği Bölümü) Prof. Dr. Celal KARPUZ (ODTÜ Maden Müh. Bölümü) ve manevi destekleriyle beni hiçbir zaman yalnız bırakmayan ve onlardan çaldığım vakitler için beni affetmelerini beklediğim çok değerli eşime ve çocuklarıma teşekkürü bir borç bilirim. Adil ÖZDEMİR Jeoloji Yüksek Mühendisi Aralık 2011, Ankara iv

5 İÇİNDEKİLER Sayfa No ÖNSÖZ... iii TEŞEKKÜR... iv İÇİNDEKİLER... v ÇİZELGELER LİSTESİ.....vii ŞEKİLLER LİSTESİ... viii RESİMLERİN LİSTESİ... ix 1. GİRİŞ SONDAJ YÖNTEMLERİ Döner Sondaj Yöntemleri Kırıntılı döner sondaj yöntemi Karotlu döner sondaj yöntemleri Döner-Darbeli Sondaj Yöntemleri SONDAJ MATKAPLARI VE KAYA DELME MEKANİZMALARI Sondaj Matkapları Kırıntı örnek almaya uygun matkaplar Karot örnek almaya uygun matkaplar Kaya Delme Mekanizmaları Üç konili matkapların kaya delme mekanizmaları Elmaslı matkapların kaya delme mekanizmaları PDC matkapların kaya delme mekanizmaları SONDAJI ETKİLEYEN FAKTÖRLER Kayaların Jeolojik ve Mühendislik Özellikleri Dokusal özellikler Fiziksel ve mühendislik özellikleri Sondaj Parametreleri (Çalışma Koşulları) Üç konili matkapların çalışma koşullarını etkileyen faktörler Elmaslı matkapların çalışma koşullarını etkileyen faktörler v

6 Sayfa No 5. DELİNEBİLİRLİĞİN DEĞERLENDİRİLMESİ Kaya Delinebilirliğinde Sertliğin ve Aşındırıcılığın Etkisi Kaya Dokusunun Delinebilirliğe Etkisi Dayanım Özelliklerinin Kaya Delinebilirliğine Etkisi Bir Kaya Delinebilirliği Kriteri Olarak Krater Oluşumu Bir Kaya Delinebilirliği Kriteri Olarak Spesifik Enerji Delinebilirlik Analizinde Kullanılan Sayısal ve Deneysel Yöntemler Laboratuar deneyleri ile delme hızı tahmini YARARLANILAN KAYNAKLAR vi

7 ÇİZELGELERİN LİSTESİ Sayfa No Çizelge 4.1. Kayaçların Dokularına Göre Sınıflandırılması Çizelge 4.2. Doku ve Tane Boyu ile Delinme Hızı Arasındaki İlişki Çizelge 4.3. Kaya Formasyonu ile Delinme Arasındaki İlişki Çizelge 4.4. Kırılma Şekline Göre Delinme Durumu Çizelge 4.5. Tek Eksenli Basınç Dayanımlarına Göre Kayaçların Sınıflandırılması Çizelge 4.6. Mohs Sertlik Değerleri Çizelge 4.7. Mohs Sertlik Değerlerine Göre Kayaçların Sınıflaması Çizelge 4.8. Mohs Sertlik Skalasını Kullanan Yönteme Göre Kayaçların Aşındırıcılık Ortalama Sertlikleri Çizelge 4.9.Rosiwall Sertlik Skalası Çizelge 4.10.Rosiwall Sertlik Skalasını Kullanan Yönteme Göre Kayaçların Aşındırıcılık-Ortalama Sertlikleri Çizelge Bazı Yaygın Kayaç Tiplerinin Kuvars ve Silika İçerikleri Çizelge 4.12.Cerchar Aşınma İndeksi Kayaç Sınıflaması Çizelge Formasyona Uygun Matkap Seçimi Çizelge Kesintilerinin Kuyu Dışına Atılması İçin Gereken Hız Çizelge Kayaların Genel Özelliklerine Uygun Elmaslı Matkap Aralıkları Çizelge Tek Eksenli Basınç Dayanımı ile Yüzeyden Taneli Elmaslı Matkap Değerleri Arasındaki İlişki Çizelge 5.1. Kaya Koparma İşlemi İçin Spesifik Enerji Değerleri Çizelge 5.2. DRI Sınıflandırması vii

8 ŞEKİLLERİN LİSTESİ Sayfa No Şekil 1.1. Kaya Delinebilirliğini Etkileyen Parametreler... 3 Şekil 1.2. Kaya Delinebilirliğine Etki Eden Jeolojik Özellikler... 4 Şekil 2.1. Başlıca Sondaj Yöntemleri... 6 Şekil 2.2. Düz Dolaşımlı Döner Sondaj Yöntemi... 8 Şekil 2.3. Ters Dolaşımlı Döner Sondaj Yöntemi... 8 Şekil 2.4. Konvensiyonel Karotlu Sondajın Genel Modeli Şekil 2.5.Wire-Line Karotlu Sondajın Genel Modeli Şekil 2.6. Diğer Sondaj Yöntemleri Şekil 3.1. Konili Matkap Yapısı Şekil 3.2. Konili Matkap Terminolojisi Şekil 3.3. Çelik Dişli Üç Konili Matkap Şekil 3.4. Tungsten Karbid Dişli Üç Konili Matkap Şekil 3.5. Parmak, Balık Kuyruğu Ve Kanatlı Matkaplar Şekil 3.6. Kırıntı Örnek Almaya Uygun PDC Matkaplar Şekil 3.7. Karot Örnek Almaya Uygun PDC Matkaplar Şekil 3.8. Yüzeyden Taneli Elmaslı Matkap Şekil 3.9. Emprenye Elmaslı Matkap Şekil Kırıntı Örnek Almaya Uygun Elmaslı Matkaplar Şekil Vidyeli Matkabın Yapısı Şekil Kazma Etkisi İle Formasyonda Krater Oluşturma Evreleri Şekil Ezerek Parçalama İşlemi Şekil Delme İşleminde Kuvvetler Dengesi Şekil Elmaslı Matkapların Delme Mekanizmaları Şekil PDC Matkapların Delme Mekanizması Şekil PDC Kesici Elemanlarının Kayayı Sıkıştırma veya Baskı Kuvvetlerinden Ziyade Makaslama Mekanizması İle Parçalaması Şekil Makaslama ve Baskı Düzleminin PDC Kesici Elemanı İle İlişkisi viii

9 Sayfa No Şekil 4.1. Gerilme-Deformasyon Eğrisine Bağlı Spesifik Tahrip Enerjisi Grafiği Şekil 4.2. Cerchar Deneyi Aşındırıcılık Değerleri İle Mohs Sertlik Skalası Arasındaki İlişki Şekil 4.3. Değişik Koşullarda Matkap Yükü İle Kaya Parçalanması Arasındaki İlişki Şekil 4.4. Delme Hızı Üzerinde Matkap Baskısının Etkisi Şekil 4.5. Delme Hızı İle Matkap Dönüş Hızı Arasındaki İlişki Şekil 4.6. Yoğunluk ve Viskozitenin Delme Hızı Üzerindeki Etkisi Şekil 4.7. Tij İle Kuyu Duvarı Arasındaki Anülüs Alanı Şekil 4.8. En Uygun Sondaj Sıvısı Dolaşım Hızı ve Miktarı Değerleri Şekil 5.1. İndisler Arasındaki İlişkiler Şekil 5.2. Darbeli Sondajda Delme Hızı İle Doku Katsayısı Arasındaki İlişki Şekil 5.3. Dayanım Özellikleri İle Doku Katsayısı Arasındaki İlişki Şekil 5.4. Delinebilirlik İçin Teorik Ve Deneysel Eğriler Arasındaki İlişki Şekil 5.5. Sahada Sondaj Sırasında İlerleme Hızı - Enerji Tüketimi Matkap Ağırlığının Şekil 5.6. Eğriler Yardımı İle Delinebilirlik İndeksinin Bulunması Şekil 5.7. Talaş Oluşumu Şekil 5.8. Kırılganlık Deneyinin Şematik Görünümü Şekil 5.9. Minyatür Delme (Sievers) Aletinin Şematik Görünüşü Şekil Delme Hızı Oranı (DRI) Tayininde Kullanılan Diyagram RESİMLERİN LİSTESİ Sayfa No Resim 4.1. Shore Skeleroskop Aleti Resim 4.2. Cerchar Deney Aleti Resim 5.1. Mikromatkap Deney Düzeneği Resim 5.2. Diş batırma Deney Düzeneği ix

10

11 1. GİRİŞ Mühendislik ve araştırma-geliştirme çalışmalarında ulaşılmak istenen başlıca hedef gerek tasarlanan sistemin, gerekse geliştirilmek istenen ürünün maksimum performansa sahip olmasıdır. En iyi sonuçların elde edileceği şartları ortaya koyabilmek için öncelikle performansı belirleyen özellik belirlenir ve bu özelliği etkileyen faktörler incelenir. Ardından bu faktörlerin performansı belirleyen özellik üzerindeki etkilerinin tespit edilmesi ve en uygun kombinasyonun bulunması için (kontrol edilemeyen faktörler de gözetilerek) deneyler yapılır. Yapılan deneyler sonucunda elde edilen performans göstergesi değerlendirilerek optimum şartlar tespit edilir. Bu yaklaşım çerçevesinde yapılan deneyler sisteme sorulan soru, deney sonuçları da sistemin verdiği cevap olarak algılanabilir. Kritik olan nokta ise doğru cevabı alabilmek için doğru sorunun sorulmasının gerekliliğidir [Savaşkan ve diğ., 2004]. Günümüzde, insanoğlunun artan nüfusu nedeni ile gereksinimlerini karşılamak için yeraltı zenginliklerinin önemi daha da artmıştır. Yeraltı zenginliklerini insanoğluna ulaştırmak yani insanoğlunun kullanımına sunmak için ilk önce bu zenginliklere ulaşılması gereklidir. Bunun için yeraltı zenginliklerini kaplayan örtü tabakasının aşılması gereklidir. Yine aynı şekilde yerüstü ulaşımının yetersiz kaldığı durumlarda yeraltından ulaşımın gerekliliği ortaya çıkmıştır. Yerüstünden yeraltına bir yol yani bir geçidin açılması ve bu geçidin açılması içinde örtü tabakasının delinmesi gerekliliktir. Sadece yeraltındaki zenginliklere erişmek veya yeraltında yapılar oluşturmak için değil, yeryüzünde kayaca bağlı yapılar oluşturmak içinde kayaların delinmesi gereklidir. Kısacası, kayaların delinmesini gerektiren her durumda delinebilirlik kavramı ortaya çıkmaktadır. Delinebilirlik; bir matkabın kayaç içinde belirli bir zamanda kayacı delerek ilerlemesidir. Bir diğer ifade ile kaya kütlesinde delik delme kolaylığıdır. Delme hızı ise kayaç içerisinde, m/dk, cm/dk veya mm/dk olarak ölçülür. Delinebilirlik ile delme hızı aynı kavram olarak tanımlanabilir. Delinebilirlik kolay ya da zor olarak delme hızı ise hızlı ya da yavaş olarak ifade edilir. Delinebilirliğe etki eden birçok parametre vardır. Bunlar makine ve ekipmana bağlı parametreler (sondaj makinasının tipi, dönme hızı, baskı kuvveti, matkap tipi v.b.), delme işlemine bağlı parametreler (delme yöntemi, makinanın çalışma performansı ve bakımı, sondörün deneyimi v.b.) ile jeolojik parametreler dir (kaya tipi, kayaların mekanik özellikleri, süreksizlikler, mineral bileşimi). Makine, ekipman ve delme işlemine bağlı parametreler kontrol edilebilir parametreler olup, jeolojik ve mühendislik özelliklerine bağlı parametreler ise kontrol edilemeyen parametrelerdir [Özdemir, 2007]. 1

12 2 Sondaj Yöntemleri Delinebilirlik tayinlerinde, bu faktörlerden sadece bir tanesi değiştirilerek o faktörün delme hızı üzerindeki etkisi gözlenir. Delinebilirlik tayininde, farklı formasyonlar için ölçülen değerler karşılaştırılabilir olmalı, aynı ekipman ve eşit şartlar altında delme hızı ölçümü yapılmalıdır. Sondaj işlemi, birçok faktörden etkilenen karmaşık bir olaydır (Şekil 1.1). Matkap türü ve çapı, dönme hızı, baskı kuvveti, tork ve dolaşım sıvısı kontrol edilebilen parametrelerdir. Diğer yandan kayanın fizikomekanik özellikleri ve jeolojik koşullar (süreksizlikler, tabakalanma durumları, tane boyutu, matriks yapısı, gözeneklilik, çimentolanma derecesi ve aşındırıcı mineral oranı gibi kontrol edilemeyen faktörler) kaya delinebilirliğinde etkili olmaktadır (Şekil 1.2). Kayaların delinebilirliği ilerleme hızı, matkap aşınma miktarı, matkap ömrü ve diş batma gibi miktarı çeşitli kavramlarla tanımlanabilmektedirler. Kaya delinebilirliğinde kontrol edilemeyen parametrelerin belirlenmesi (jeolojik ve mühendislik özelliklerinin), sondaj çalışmasında kullanılacak delme yöntemi, matkap türü, matkap dönme hızı, matkap üzerine uygulanacak yük miktarı, delme dizisi niteliği, pompa türü, dolaşım sıvısı/hava hızı ve hacmi, personel vb. gibi kontrol edilebilen parametrelerin en iyi şekilde seçilebilmesine (proje aşamasında) imkan vermektedir. Ayrıca elde edilen veriler maliyet tahminlerinde ve sondaj çalışma sürelerinin planlanmasında kullanılabilecektir [Özdemir, 2007]. Delinebilirliğe etki eden kaya yapısına bağlı faktörler, kayanın oluşum sürecinden formasyonundan, Mohs sertliğine, tek eksenli basınç dayanımından kayacın birim hacim ağırlığına, kaya kütlesinin yapısal özelliklerinden (kırıkların durumu, çatlaklar v.b.), kayacın dokusal özelliklerine kadar birçok değişkene bağlıdır. Sondaj yöntemi sınıflaması birkaç kritere göre yapılabilir. En mantıklı sınıflama, kaya parçalanması için gerekli enerji türüne göre yapılabilir. Kayalarda birçok amaç için sondaj yapılır ve bu amaçla geliştirilen birçok yöntem, kayalarda başarıyla delme işlemleri gerçekleştirmiştir.

13 Sondaj Yöntemleri 3 Şekil 1.1. Kaya delinebilirliğini etkileyen parametreler [Thuro, 1997 den değiştirilerek] Kaya delmede birçok yeni yöntem deneyimlerle elde edilmiştir. Bunlardan en başarılı olan pratik uygulama mekanik parçalama işlemidir. Daha çok yumuşak kayaçların kesilmesinde uygulansa da bu yöntem yüksek basınçlı su püskürtmek suretiyle yapılmaktadır. Kayaca mekanik etki uygulama darbe veya dönme hareketi olmak üzere temelde 2 yöntemle yapılır. Bu iki etki birleştirilerek karma bir yöntem olan döner-darbeli sondaj yöntemi geliştirilmiştir. Sondaj, matkapla kayacın etkileşim yüzeyinin farklı kesme kuvvetlerinin etkisiyle parçalanmasıdır. Sondajın etkinliği, diğer bir deyişle sondaj matkabının delme hızı, matkap-kayaç ara yüzeyine uygulanan enerji türüne bağlıdır [Karanam ve Misra, 1998].

14 4 Sondaj Yöntemleri Şekil 1.2. Kaya delinebilirliğine etki eden jeolojik özellikler [Karaman, 2008] Herhangi bir sondaj yönteminin 3 ana fonksiyonel bileşeni vardır: 1. Sondaj Enerjisi (Kaynak) 2. Takım-Sondaj Dizisi (İletici) 3. Matkap (Uygulayıcı) Bunlara dördüncü bir bileşen olarak sondaj sıvısı eklenebilir. Sondaj sıvısı, kuyuyu temizleme, kırıntıları atma, matkabı soğutma ve aynı zamanda kuyu duvarlarını sağlam tutma görevindedir. Bu üç ana bileşen enerjinin kullanımıyla ilişkilidir. Bu kullanım şu şekilde olur; 1. Delgi, ilk hareketi verir. Enerjiyi orijinal şeklinden (hidrolik sıvı, havalı, elektrik veya yanmalı motor) mekanik hale çevirir. 2. Sondaj dizisi (tij vb.), enerjiyi matkaba aktarır.

15 Sondaj Yöntemleri 5 3. Matkap, sistemdeki enerji uygulayıcısıdır. Mekanik olarak kayaca etki eder ve delmeyi sağlar. Sondajda, matkabın kaya kütlesine girmesi iki ayrı işlem içerir. Bunlar; 1. Matkap-kayaç etkileşim yüzeyinde kaya kütlesini parçalamak 2. Sondaj boyunca kırılan formasyon parçalarını kaldırmak Bu iki işlem sondajın performansını etkiler. Sondaj aletinin uyguladığı gerilim, kayacın dayanımını aştığı anda, matkabın deliciliği başarıya ulaşmış olur. Kayacın delinmeye karşı gösterdiği bu direnç; delinme dayanımıdır. Fakat bu, bilinen dayanım parametrelerine eşdeğer bir dayanım türü değildir. Dahası, yaratılan gerilim alanı, istenen şekil ve boyutta bir delik oluşturabilmek için, delme işlemi yapılan yere doğrudan bir gerilimle uygulanmalıdır. Bu gerilimler doğada dinamik haldedir (zamana bağımlıdır). Fakat, delme sürecinde statik koşullara çok yakın ihmal edilebilir değerler alınır [Karanam ve Misra, 1998].

16 2. SONDAJ YÖNTEMLERİ Günümüz sondaj yöntemleri dönme ve darbe işlemine göre ikiye ayrılabilir (Şekil 2.1). Bunlar ; 1. Döner Sondaj Yöntemleri 2. Döner-Darbeli Sondaj Yöntemleri Şekil 2.1. Başlıca sondaj yöntemleri 6

17 Sondajı Etkileyen Faktörler Döner Sondaj Yöntemleri Döner sondaj yöntemleri, kırıntılı ve karotlu sondaj yöntemleri olarak ikiye ayrılabilir Kırıntılı döner sondaj yöntemleri Baskı (yük) altında dönen bir matkabın kesici dişleri aracılığıyla formasyonu parçalaması sonucu oluşan formasyon parçalarının bir dolaşım sıvısı (çamur veya su) ile dışarı atılması işlemidir. Bu yöntemde dönme ile koparma işlemi egemen olup, ilerleme baskı ve tork aracılığı ile sağlanmaktadır. Bu yönteme çamurlu sondaj yöntemi de denilmektedir. Kırıntılı döner sondaj yöntemi, sondaj sıvısının dolaşım şekline göre bünyesinde iki alt yöntemi barındırmaktadır. Bunlar; 1. Düz dolaşımlı döner sondaj yöntemi 2. Ters dolaşımlı döner sondaj yöntemi Düz dolaşımlı döner sondaj yöntemi Bu yöntemde, sondaj sıvısı olarak genellikle çamur kullanılmaktadır. Pompa ile havuzdan alınan sıvı takım içerisinden geçerek kuyu duvarı ile takım arasındaki boşluktan yükselir ve kuyu dışarısına çıktıktan sonra kanallar aracılığıyla tekrar havuza gönderilir (Şekil 2.2). Ters dolaşımlı döner sondaj yöntemi Bu yöntemde, sondaj sıvısı olarak genellikle çamur kullanılmaktadır. Havuzdaki çamur, yerçekimi ve kanallar vasıtasıyla kuyu ağzına gelir. Takım ile kuyu duvarı arasından kuyu tabanına kadar iner ve kuyuyu doldurduktan sonra matkap deliklerinden takım içerisine girer. Takım içerisine giren bu çamur bir pompa aracılığı ile emilerek tekrar havuzu boşaltılır (Şekil 2.3).

18 8 Sondajı Etkileyen Faktörler Şekil 2.2. Düz dolaşımlı döner sondaj yöntemi Şekil 2.3. Ters dolaşımlı döner sondaj yöntemi

19 Sondajı Etkileyen Faktörler Karotlu döner sondaj yöntemleri Karotlu sondajlar, kaya ve zeminlerin mühendislik özelliklerinin belirlenmesi (çatlak, dolgu, eklem sistemleri vb.) ve laboratuarda bir takım deneylerin yapılabilmesi veya bir maden sahasının aranması, değerlendirilmesi ve işletilebilirliğinin araştırılması amacıyla özel ekipmanlar kullanılarak yapılan sondajlardır. Karotlu sondaj yöntemleri, konvensiyonel (Şekil 2.4) ve wire-line (Şekil 2.5) sondaj yöntemleri olarak ikiye ayrılır. Karotlu sondaj çalışmalarında, karot alınabilmesi için kuyu içi ve dışarısında kullanılmak üzere değişik özellikte ekipmanlara gereksinim duyulmaktadır. Basit olarak takımın en alt ucunda bulunan matkap, sondaj makinasının morseti tarafından ve takım aracılığı ile döndürülmektedir. İlerleme için gerekli olan baskı, sondaj makinasının morseti tarafından takım üzerine uygulanmaktadır. Matkabın formasyon içerisine girmesi ile delme işlemi başlar. Matkabın içi boş olduğu için delinen formasyonun bir bölümü, silindir şeklinde kesilerek önce matkabın daha sonrada matkabın üst kısmında bulunan karotiyer içerisine girer. Bu silindir şeklindeki formasyon örneğine, karot adı verilmektedir. Belli bir uzunluğu olan karotiyer dolduğu zaman, tüm takım çekilerek kuyu dışarısına alınmaktadır. Matkap veya karotiyerin iç kısmında bulunan segman, karotu sıkı bir şekilde kavrayarak tutar ve manevralar sırasında karotun karotiyer içerisinden çıkmasını engeller. Matkabın formasyonu kesmesi sırasında, takım içerisinden pompa aracılığıyla su veya sondaj sıvısı basılmaktadır. Sondaj sıvısı, matkabın soğumasını ve kuyu tabanında yer alan kırıntıların kuyu dışarısına atılmasını sağlar. Konvensiyonel takımların tamamı, karot çapından bağımsız olarak aynı temel uygulama özelliklerini taşır ve karotun karotiyerden çıkartılması için karotiyer her dolduğunda takımın kuyudan tamamen çekilmesi gereklidir.

20 10 Sondajı Etkileyen Faktörler Şekil 2.4. Konvensiyonel karotlu sondajın genel modeli [Özdemir, 2009] Wire-line karotlu sondaj tekniğinin esasını, delme işlemi sonucunda elde edilen karotun kuyu dışarısına alınması için, tijlerin kuyu dışarısına çıkarılmasına gerek olmaması oluşturmaktadır. Wire-line karotlu sondajlarda kullanılan tijler, dış tüp ile aynı ölçüdedir ve iç tüp tijlerin içerisinde kolayca hareket edebilmektedir. Wire-line sondaj tekniğinde, iç tüp karot ile dolduktan sonra, ince bir çelik halata bağlı olan ve over shot (olta) adı verilen ekipman kuyuya indirilir. Over shot, iç tüp başlığının üst kısmında bulunan ve çam ağacı adı verilen parçayı kavrar. Halat kuyu dışarısına çekildiğinde, iç tüpün dış tüp içerisinde sabit bir şekilde durmasını ve geriye kaçmamasını sağlayan sustalar kapanır ve iç tüp serbest kalır. Daha sonra halat çekilmeye devam edilerek karotla dolu ve over shot ile tutulmuş olan iç tüp, tijlerin içerisinden kuyu dışarısına alınır. İç tüp boşaltılarak bakım ve kontrolü yapıldıktan sonra, tijler içerisinden halatla kuyu tabanına gönderilir. Kuyuda su varsa, iç tüp doğrudan doğruya tijlerin içerisinden atılır. Su kaçağı var veya kuyu kuru ise, over shot çelik halat ile indirilir. İç tüp dış tüp içerisine oturduğunda, iç tüp başlığında bulunan sus-

21 Sondajı Etkileyen Faktörler 11 talar kendiliğinden açılarak iç tüpün sabitlenmesini ve geriye doğru gitmesini önler. Bu işlem sonrasında, karotlu sondaj çalışmasına devam edilir. Şekil 2.5. Wire-line karotlu sondajın genel modeli [Özdemir, 2009]

22 12 Sondajı Etkileyen Faktörler 2.2. Döner-Darbeli Sondaj Yöntemleri Döner-darbeli sondaj yöntemi, darbenin matkaba iletilme şekline göre kuyudibi ve yerüstü çekiçli yöntem olarak ikiye ayrılabilir. Ayrıca, değişik formasyonlarda yaşanan sondaj güçlüklerini önlemek, her tür formasyonu güvenli bir şekilde delebilmek ve örnek alınabilmesini sağlamak amacıyla koruma borusu eşliğinde sondaj, burgulu sondaj, ters dolaşımlı kuyudibi tabancası ile sondaj vb. gibi özel sondaj yöntemleri de geliştirilmiştir (Şekil 2.6). Şekil 2.6. Diğer sondaj yöntemleri [Özdemir, 2009]

23 3. SONDAJ MATKAPLARI VE KAYA DELME MEKANİZMALARI 3.1. Sondaj Matkapları Sondaj matkapları, formasyonlardan örnek alma şekline göre iki grupta incelenebilir. 1. Kırıntı örnek almaya uygun matkaplar 2. Karot örnek almaya uygun matkaplar Kırıntı örnek almaya uygun matkaplar Bu matkaplar, üzerlerine uygulanan baskı (yük) ve dönme hareketi yardımıyla temasta oldukları formasyonu delerler. Bu delme işlemi, bir kesme ve öğütme işlemidir. Kesme ve öğütme işlemleri sonucunda oluşan kırıntılar, su ve sondaj çamuru veya diğer taşıyıcılar (hava vb.) ile kuyu dışına (yerüstüne) taşınırlar. Bu tür matkaplara, karotsuz ilerleme matkapları da denilmektedir. Üç konili matkaplar Üç konili matkaplar gövde, koniler ve koni yataklarından oluşmaktadır (Şekil 3.1 ve Şekil 3.2). Üç konili matkaplar, çelik ve tungsten karbid dişli olmak üzere ikiye ayrılır (Şekil 3.3 ve Şekil 3.4). Konili matkaplar aşınmaya dayanıklılığı artırılmış çelik alaşımlardan imal edilmektedir. Çamurlu ve havalı sondaj çalışmalarda kullanılabilecek özelliktedirler. Her tür formasyona uygun tipleri bulunmaktadır. Döner sondaj yönteminde en çok kullanılan matkap tipidir. 13

24 14 Sondajı Etkileyen Faktörler Şekil 3.1. Konili matkap yapısı Şekil 3.2. Konili matkap terminolojisi

25 Sondajı Etkileyen Faktörler 15 Şekil 3.3. Çelik dişli üç konili matkap Şekil 3.4. Tungsten karbid dişli üç konili matkap Parmak, balık kuyruğu ve kanatlı matkaplar Bu tip matkaplar, genellikle yumuşak ve taneli formasyonların delinmesinde kullanılmaktadır. Tek parça, birkaç veya daha fazla parçanın birleştirilmesiyle imal edilen matkaplardır (Şekil 3.5).

26 16 Sondajı Etkileyen Faktörler Parmak Balık kuyruğu Üç kanatlı Şekil 3.5. Parmak, balık kuyruğu ve kanatlı matkaplar PDC matkaplar PDC matkaplar petrol, jeotermal ve patlatma deliği sondajlarında başarıyla kullanılmaktadır. PDC matkaplar, pahalı olmalarına rağmen dikkatli kullanılmaları durumunda ömürleri oldukça uzun olmakta ve sondaj maliyetini önemli derecede düşürmektedirler [Özdemir, 2009]. PDC matkapların hem kırıntı hem de karot örnek almaya uygun türleri bulunmaktadır (Şekil 3.7 ve Şekil 3.8). Şekil 3.6. Kırıntı örnek almaya uygun PDC matkaplar

27 Sondajı Etkileyen Faktörler 17 Şekil 3.7. Karot örnek almaya uygun PDC matkaplar Karot örnek almaya uygun matkaplar Sondaj işlemi sırasında, bir taraftan delme işlemi devam ederken diğer taraftan da formasyondan kesilen malzemenin silindir boru şeklindeki örnek alıcı (karotiyer) içerisine girmesi sağlanır. Karot örnek alıcı (karotiyer) kullanılan sondaj çalışmalarında kullanılan matkaplara, karot örnek almaya uygun matkap denilmektedir. Elmaslı matkaplar Karotiyerlerin (karot örnek alıcı) ucunda yeralan, kesme işlemini yapan, yapısında doğal veya yapay elmasların bulunduğu matkaplara elmaslı matkap denilir. Bir elmaslı matkap üç ana birimden oluşmaktadır. Bunlar; 1. Elmas taneleri 2. Gövde 3. Matris Elmaslı matkapların hem kırıntı hem de karot örnek almaya uygun türleri bulunmaktadır (Şekil 3.8, Şekil 3.9, Şekil 3.10). Karot örnek almaya uygun elmaslı matkaplar, elmas tanelerinin matrise işlenme şekline göre ikiye ayrılmaktadır. Bunlar;

28 18 Sondajı Etkileyen Faktörler 1. Yüzeyden taneli elmaslı matkaplar 2. Emprenye elmaslı matkaplar Vidyeli matkaplar Tungsten karbid e sondajcılık dilinde vidye denilmektedir. Kesici yüzeyine vidye taneleri yerleştirilerek imal edilen, yumuşak formasyonların delinmesi için kullanılan matkaplara vidyeli matkap (vidye kron) denilmektedir ve bu matkaplar karotlu sondaj çalışmalarında kullanılmaktadır (Şekil 3.11). Şekil 3.8. Yüzeyden taneli elmaslı matkap Şekil 3.9. Emprenye elmaslı matkap

29 Sondajı Etkileyen Faktörler 19 Şekil Kırıntı örnek almaya uygun elmaslı matkaplar Şekil Vidyeli matkabın yapısı 3.2. Kaya Delme Mekanizmaları Üç konili matkapların kaya delme mekanizmaları Konili matkaplar, formasyonu matkap üzerine verilen baskı ve tork ile parçalar. Parçalanma olayı, iki türlü olmaktadır [Göktekin, 1991]; 1. Kazarak parçalama 2. Ezerek parçalama Kazarak parçalama, kolay delinebilen formasyon matkaplarının formasyonu parçalama şeklidir. Bu parçalama türünde, matkabın dişleri kayaca gömülür ve dönmenin etkisiyle dişler kayacı iterek talaş kaldırır gibi ince yapraklar halinde formasyondan parçalar koparır (Şekil 3.12). Özellikle kil türü formasyonlarda bu tür parçalanma söz konusudur [Göktekin, 1991].

30 20 Sondajı Etkileyen Faktörler Şekil Kazıma etkisi ile formasyonda krater oluşturma evreleri [Özdemir, 2009] a. Diş ile formasyon temasında formasyonun elastik şekil değiştirmesi b. Dişin temas ettiği yüksek gerilme bölgelerinde kesme çatlakları oluşumu c. Kesme çatlaklarının yüzey boyunca ilerlemesi ile parçalanma Ezerek parçalama, kolay delinemeyen formasyonlardaki parçalama şeklidir. Matkap dişleri, formasyon üzerine formasyonun tek eksenli basınç dayanımından daha fazla bir kuvvetle basar. Dişin bastığı yerdeki formasyon ezilerek ince toz haline gelir ve buraya gömülen dişin yükünü çevreye iletir. Oluşan kayma gerilmesi, formasyonun kayma dayanımını yenerek formasyonun parçalanmasını sağlar [Göktekin, 1991]. Böylece dişin altında bir krater oluşur (Şekil 3.13) Şekil Ezerek parçalama işlemi [Özdemir, 2009] 1. Dişin formasyona batması 2. Formasyonun tek eksenli basınç dayanımının yenilmesi 3. Tek eksenli basınç dayanımının yenilmesi ile kayma gerilmesi oluşması 4. Kayada krater oluşumu ve delme işleminin gerçekleşmesi

31 Sondajı Etkileyen Faktörler 21 Formasyonun parçalanması için gerekli olan enerji dişe gelen yüke, dişin formasyona çarpma hızına ve formasyon üzerinde kalma süresine bağlı olduğu için dişlerarası açıklığı fazla olan matkaplarda delme işi daha hızlı olur. Çünkü, dişler yüzeye daha hızlı çarparlar ve çarptıkları yüzeyde kalma süreleri daha fazladır [Özdemir, 2009] Elmaslı matkapların kaya delme mekanizmaları Elmaslı matkapların delme işlemini gerçekleştirebilmesi için, üzerlerine bir yük (baskı) uygulanması ve matkabın ekseni etrafında döndürülmesi gerekmektedir. Delme işlemi, matkabın baskı altında döndürülmesi sonucunda oluşan makaslama kuvvetinin kayacı plastik deformasyona uğratması ile gerçekleşmektedir. Bu makaslama kuvveti, matkap üzerine uygulanan baskı ve dönme işlevlerinin bileşkesidir [Heinz, 1985]. Şekil 3.14 de görüldüğü gibi, elmaslı matkabın verimli bir delme operasyonu yapabilmesi için bu baskı ve döndürme kuvvetleri arasındaki ilişkinin iyi bir şekilde ayarlanması gereklidir. Delme olayının anlaşılabilmesi için, matkabın kesme yüzeyinin iyi bir şekilde incelenmesi gereklidir. Matkabın kayayı delme yeteneği, kayanın sertliği ve dayanımına bağlıdır [Özdemir, 2009]. Şekil Delme işleminde kuvvetler dengesi [Sunay, 1966] Elmaslı matkapların başlıca 3 ana kaya delme mekanizması bulunmaktadır. Bunlar [Heinz, 1985];

32 22 Sondajı Etkileyen Faktörler 1. Yontma 2. Basınçla gevşetme 3. Kazıma ve aşındırma Yontma Yumuşak kayalarda elmas tanesi (taş), kaya ile temas ettiğinde kaya üzerinde yeterli derinlikte ve yerel bir makaslama gerilmesi oluşturur. Elmas tanesi, baskı altında döndürüldüğünde tarla sürmede kullanılan pulluğun oluk açması gibi kayada bir oluk oluşturur. Bu aşamada, normal yük kesme yükünden daha fazladır. Elmas taneleri matrise, birinin açtığı oluğu arkadan gelen tanenin derinleştirmesini sağlayacak şekilde yerleştirildikleri için bu işlemler sonucunda kayanın delinmesi sağlanır (Şekil 3.15A). Basınçla gevşetme Delinen kayanın basınç dayanımının yüksek olduğu ve her elmas tanesine delmeyi sağlayacak yeterli miktarda baskının verilmediği durumlarda, elmas tanesinin kayayı kesmesi kayada basınçla gevşeme şeklinde olur. Kesme sırasında bir elmas tanesi, kaya üzerinde bir noktadan geçerken tanenin izi basınç gevşemesi sebebiyle kayada çatlama oluşur. Ardarda ve yan yana gelen tanelerin oluşturacakları izlerin artması ve derinleşmesiyle delme işlemi gerçekleşir. Yüksek kapasiteli sondaj makinalarında, yumuşak kaya matkapları kullanıldığında basınç gevşemesi nedeniyle yerel yenilmeler oluşturularak delme işlemi gerçekleştirilir. Kaya yüzeyinde, yaklaşık mikron derinliğinde çatlaklar oluşur. Dönme işleminin etkisiyle elmas tanesi kaya yüzeyini tahrip etmeden geçmemektedir (Şekil 3.15B). Kazıma ve aşındırma Kazıma ve aşındırma şeklindeki delme işlemi genellikle çok sert kayalarda ve çok yüksek dönme hızlarıyla birlikte çalışıldığında oluşmaktadır. Kazıma ve aşındırma mekanizması, kayanın basınçla gevşetilmesine benzemektedir.

33 Sondajı Etkileyen Faktörler 23 Elmas tanesi fazla miktarda parçalanmış bir bölgeyi çapraz olarak geçtiğinde, kesme derinliğinin çatlak derinliğine oranla çok küçük olduğu gözlenmektedir. Üç delme işleminde de bahsedildiği gibi, delme işleminde kayanın yenilmesi karmaşık bir işlemdir. Yontma tipi kesme ve basınçla gevşetme mekanizması yumuşak kayalar dışındaki bütün kayaçlarda etkili olup, birbirine benzemektedir. İlk olarak basınç gevşemesi nedeniyle çatlak oluşmakta ve çatlak büyüdüğünde kırıntılar kopmaktadır. Bununla birlikte, her seferde elmas tanesi belirli bir bölge üzerinden geçerken kayacı ezmekte ve bu ezilme işlemi kayanın alt yüzeyine de yansımaktadır (Şekil 3.15C). Delme işleminde hangi mekanizmanın gerçekleştiği, elmas tanesi cinsine, kayanın tane boyutu, sertliğine ve tek eksenli basınç dayanımına bağlıdır. Çatlak yayılma şekli, muhtemelen kayanın tane boyutunun bir işlevidir. Şekil Elmaslı matkapların delme mekanizmaları [Heinz, 1985]

34 24 Sondajı Etkileyen Faktörler PDC matkapların kaya delme mekanizmaları PDC matkaplarda, dişlerin kayayı kesmesi esnasında değişik safhalar vardır (Şekil 3.16). İlk aşamada, matkap dişleri ile kaya üzerinde bir makaslama kuvveti oluşturulur (Şekil 3.17). Bu makaslama kuvveti, kayacın dayanımı yenilinceye kadar artmaya devam eder ve bu esnada kırılma olmaz. Kayanın dayanımından fazla bir makaslama kuvveti uygulandığında kay a- dan parçalar kopar ve kuvvette bir düşüş olur. Böylece bir döngü tamamlanmış olur. Bundan sonra dişler serbest yüzeyde batmaya başlar. Şekil 3.18 de makaslama ve baskı (yük) düzleminin PDC kesici elemanı ile ilişkisi görülmektedir. PDC matkaplar birincil olarak makaslama hareketleriyle kayayı kesmekte olup, diğer matkaplar (örneğin taşlı, elmas ve emprenye elmas) kayayı kırma ve ezme olayları ile delmektedir (Şekil 3.19). Şekil PDC matkapların delme mekanizması [Ersoy, 2008] Şekil PDC kesici elemanlarının kayayı sıkıştırma veya baskı kuvvetlerinden ziyade makaslama mekanizması ile parçalaması [Ersoy, 2008]

35 Sondajı Etkileyen Faktörler 25 Şekil Makaslama ve baskı (yük) düzleminin PDC kesici elemanı ile ilişkisi [Ersoy, 2008] PDC matkapları kayayı makaslama hareketi ile keserek parçalamaktadır. Diğer matkaplar, örneğin elmas ve konili matkaplar kayayı kırarak, sıkıştırarak ve öğüterek parçalamaktadır. Makaslama hareketi ile kesme işlemi, sıkıştırma, kırma ve ezme işleminden daha az enerji tüketmektedir. Böylece sondajda, PDC matkaplarında daha az matkap baskısı uygulanmaktadır.

36 4. SONDAJI ETKİLEYEN FAKTÖRLER Sondaj işlemi, birçok faktörden etkilenen karmaşık bir olaydır. Matkap türü ve çapı, dönme hızı, baskı kuvveti, tork ve dolaşım sıvısı kontrol edilebilen parametrelerdir. Diğer yandan kayanın fizikomekanik özellikleri ve jeolojik koşullar (süreksizlikler, tabakalanma durumları, tane boyutu, matriks yapısı, gözeneklilik, çimentolanma derecesi ve aşındırıcı mineral oranı gibi) kontrol edilemeyen faktörler kaya delinebilirliğinde etkili olmaktadır. Sondaj birçok faktörce etkilenen karmaşık bir işlemdir. Bunlardan en önemlileri [Karanam ve Misra, 1998]; a. Matkap tipi ve geometrisi b. Uygulanan baskı ve dönme hızı c. Hava veya çamur püskürtmesi yapılan ortam ve püskürtme hızı d. Kaya özellikleri Bunlardan (a) ve (c) kontrol edilebilir sondaj parametreleriyken, (d) kontrol edilebilir bir parametre değildir. Sondaj yöntemlerinin performansı genelde kayaçların delinebilirliği ile ifade edilir. Bu, belirlenen bir kayaçta delmenin tahmini veya gerçek hızı olarak tanımlanır. Döner veya döner-darbeli sondaj yöntemlerinde, delinebilirlik indeksi, bu özelliğin bağıl kanıtı olarak göz önüne alınır. Delme indeksi, kullanışlı bir parametredir ve uygun sondaj tekniğini belirlemeye yardımcı olur. Yani, ortalama bir sondaj sonucu elde etmek için, döner sondaj veya döner-darbeli sondaj yöntemi kullanmak gibi. Aynı zamanda, delme işleminin standartlarını oluşturmada ve yapılan işin maliyetini ölçmede kullanılmaktadır. Ayrıca, tijlerin ve matkabın ortalama ömrünü belirlemeye de yardımcı olur. Kayacın delinebilirliğinin bilinmesi, sondaj matkap ve makinelerin üretiminin yapılması ve diğer mekanizmalar için büyük önem taşır. Kaya delinebilirliğinde kontrol edilemeyen parametrelerin belirlenmesi (kaya özelliklerinin), sondaj çalışmasında kullanılacak delme yöntemi, matkap türü, matkap dönme hızı, matkap üzerine uygulanacak yük miktarı, delme dizisi niteliği, pompa türü, dolaşım sıvısı /hava hızı ve hacmi, personel vb. gibi kontrol edilebilen parametrelerin en iyi şekilde seçilebilmesine (tasarım aşamasında) imkan vermektedir. Ayrıca elde edilen veriler maliyet tahminlerinde ve sondaj çalışma sürelerinin planlanmasında kullanılabilecektir. 26

37 Delinebilirliğin Değerlendirilmesi Kayaların Jeolojik ve Mühendislik Özellikleri Kaya delinebilirliği üzerinde etkili olan jeolojik ve mühendislik özellikleri, dokusal özellikler, fiziksel ve mühendislik özellikleri olmak üzere iki grup altında toplanabilir [Özdemir, 2007] Dokusal özellikler Kayalar genel olarak, volkanik, sedimanter ve metamorfik olmak üzere 3 e ayrılırlar. Kaya malzemelerinin davranışları, yapılarını oluşturan minerallerin ve mineral taneleri arasındaki matriks malzemesinin özelliğine bağlı olarak farklılık arz etmektedir. Kayaların dokusal özellikleri de, kaya malzemesini oluşturan mineral taneleri ve matrikse bağlı olarak farklılıklar gösterir. Çizelge 4.1 de kayaların dokularına göre sınıflandırılması Goodman (1989) tarafından gerçekleştirilen çalışmadan alınarak verilmiştir. Kaya dokusu, Williams ve diğ. (1982) tarafından, kristalleşme derecesi, tane büyüklüğü veya taneleşme ve kayayı oluşturan bileşenler arasındaki yapı veya geometrik ilişkiler olarak tanımlanmıştır. Bunun yanında, Howarth ve Rowlands (1987) ise, taneler arası ilişkiler ve tanelerin geometrik özellikleri olarak tanımlamışlardır. Bu tanımlamalardan hareket ederek, kaya dokusunun, kaya malzemesini oluşturan tanelerin birbirilerine bağlanmalarının sağlanabildiği ortamlar olarak tanımlamak mümkündür.

38 28 Delinebilirliğin Değerlendirilmesi Çizelge 4.1 Kayaların dokularına göre sınıflandırılması [Goodman, 1989]

39 Delinebilirliğin Değerlendirilmesi 29 Kayaların dokusal özelliklerinin tespitinde, kaya dokusunu oluşturan tanelerin geometrik özelliklerinin, ince kesitlerden alınan mikroskop görüntüleri ile tanımlanması gerekmektedir. Bu geometrik özellikler ise şu şekilde özetlenebilir; tane şekli, açısı, tanelerin birbirine bağlanma derecesi, tanenin özelliklerinin birbiriyle olan ilişkisi ve matriksin büyüklüğü. Kayaların dokusal özelliklerini belirleme konusunda Howarth ve Rowlands (1987) tarafından gerçekleştirilen çalışma son derece önemlidir. Bu çalışmada araştırmacılar, dokuyu oluşturan tanelerin şekilsel özelliklerinden faydalanarak doku katsayısı (TC) kavramını öne sürmüşlerdir. Bu durum kayaların dokusal özelliklerinin sayısallaştırılmasını sağlamış ve bu sayede kayaların mekanik özellikleri, fiziksel özellikleri ile dokusal özellikleri arasında bir ilişkinin var olup olmadığı konusunda araştırmalar yapmak mümkün olmuştur. Bunun yanında kayaların minerolojik, dayanım ve benzeri özellikleri ve TC arasındaki ilişkiler farklı araştırmacılar tarafından araştırılmış ve sonuçlar değerlendirilmiştir. Howarth ve Rowlands (1987) gerçekleştirmiş oldukları çalışma ile TC kavramını öne sürmenin yanında, kayaların tek eksenli basınç dayanımları, çekme dayanımları, elastik modülleri ve sondaj ilerleme hızları ile dokusal özellikler arasındaki ilişkileri araştırmışlardır. Yapılan çalışmalar sonucunda, özellikle sondaj ilerleme hızı ile TC arasında son derece yüksek bir korelasyon bulunmuştur. Bunun yanında, tek eksenli basınç dayanımı ve çekme dayanımı ile TC arasında da önemli korelasyona sahip ilişkiler bulunmuştur. Özellikle sert kaya grubuna ait kayalar üzerinde yapılan araştırmalar, TC ile çekme ve basınç dayanımları arasında son derece önemli ilişkilerin olduğunu göstermektedir. Kaya dokusu ve tane boyu, delinebilirliği etkileyen faktörlerden biridir. Tane boyları ince ve doku kompakt (yoğun) olduğu zaman delinebilirlik düşmektedir. İri tane boyuna ve daha gözenekli dokuya sahip kaya türlerinde ise delinebilirlik yüksektir. Tane şekli, delme hızı üzerinde etkili bir özelliktir. Köşeli taneli kayalarda yapılan ilerleme miktarı, yuvarlak taneli kayalarda yapılan ilerleme miktarından daha azdır. Ayrıca, köşeli tane içeren kayalarda, matkap aşınma miktarı da fazladır. Çizelge 4.2 de doku ve tane boyutuna göre delinme hızları verilmiştir.

40 30 Delinebilirliğin Değerlendirilmesi Çizelge 4.2. Doku ve tane boyu ile delinme hızı arasındaki ilişki [Wilbur, 1982] Fiziksel ve mühendislik özellikleri Kayaçların fiziksel özellikleri olarak anılan özellikleri, bir kayayı diğer kayalardan farklı kılan ve kayanın yapısına bağlı olarak değişen özelliklerin toplamı olarak tanımlanabilir. Bu özellikler kayanın oluşumuna ve doku ve bileşen kompozisyonuna bağlı olarak farklılık arz etmekte olup, kaya malzemesinin tanımlanmasında önemli roller üstlenmektedir. Mekanik özellikler ise, kaya malzemesinin dinamik ve statik yükler altındaki davranış modellerini temsil eden özellikler olarak sınıflandırılabilir. Mekanik özelliklerin tayini gerek laboratuar gerekse arazide gerçekleştirilen deneyler ile elde edilir. Delinebilirlik özellikleri ise, kaya yapılarında açılacak sondaj, tünel, galeri, kuyu ve benzeri yapıların açılması esnasında kaya malzemelerin delme işlemlerine ne derece direnç göstereceğinin anlaşılabilmesini tespit eden özelliklerdir. Bunun yanında kaya malzemelerin delinebilirliği, delme işlemini gerçekleştirecek olan makinelerin performansları üzerinde de etkili olmaktadır. Bu sebepten dolayı, makine performanslarını temsil eden parametrelerde kayaların delinebilirlik özellikleri ile birlikte değerlendirilebilir. Bir kayacın delinebilirliğinde incelenen önemli fiziksel ve mühendislik özellikleri; yoğunluk, birim hacim ağırlık, gözeneklilik (porozite), su emme, doluluk ve boşluk oranı, dayanım, sertlik, aşındırıcılık vb. dir.

41 Delinebilirliğin Değerlendirilmesi 31 Yoğunluk ve birim hacim ağırlık Yoğunluk (p) ve birim hacim ağırlığı (y) kayaların birim hacimlerinin ağırlığını vermesi açısından son derece önemlidir. Birim hacim ağırlık deneylerinin yanında delinebilirliğe etkisinden dolayı gözeneklilik (porozite) ve buna bağlı boşluk hacmi ve boşluk oranlarının hesaplanmasında fayda vardır. Kayadaki gözeneklilik artışı, kaya dayanımının azalmasına neden olmaktadır. Yüksek gözenekli kayaların delinebilirliği yüksektir. Süreksizliklerin durumu, kırıklar ve çatlaklar Kaya kütlesinin genel yapısı delme işleminin etkinliğinde önemli rol oynar. Kaya kütlesinin yapısı ile kaya delinebilirliği arasında önemli bir ilişki vardır. Eklemli kaya yapılarında sondaj yapmak, sağlam kaya yapılarına oranla çok daha zordur. Aşırı eklemli, süreksizlik araları açık bölgelerde sondaj yapmak beraberinde birçok sorun getirmektedir. Bu formasyonlarda, sondaj işlemi sırasında matkabın sıkışması delinebilirliğin düşmesi açısından en büyük etkendir. Eklem sistemlerindeki en önemli karakteristik özellik, süreksizlikler arasındaki mesafedir. Kayanın delinebilirliği, bu mesafeye bağlıdır. Süreksizlikler arası mesafe, kaya kütlelerinin kalitelerinin sınıflandırılmasında kullanılan önemli bir parametredir. Bu mesafe azaldıkça, delme ortamının sürekliliği de azalacak, bunun sonucunda, delinebilirlikte azalacaktır. Yapılan araştırmalarda elde edilen sonuçlara göre, 1 metre ve üzerindeki süreksizlikler arasındaki mesafelerde, delme işlemi daha etkili olmaktadır. 50 cm ve altındaki mesafelerde ise, delinebilirlik çok düşüktür [Hoseinie, 2008]. Delinebilirliğe etki eden süreksizlikler ile ilgili bir diğer önemli özellikte, süreksizliklerin açıklıkları ve bu açıklıkları dolduran dolgu malzemesinin varlığıdır. Arası kapalı çatlarlar veya eklemlerin olduğu durumların, delinebilirlik üzerine çokta olumsuz bir etkisi yoktur. Açık eklemlerin bulunması, matkabın eksenden sapmasına, temizlik elemanlarının (basınçlı hava, su vb.) buralardan kaçmasına ve matkabın kilitlenmesine neden olmaktadır. Süreksizlikleri dolduran dolgu malzemesi ana kayadan daha yumuşaksa, matkap bu süreksizlikler boyunca ilerlemek isteyeceğinden, delinebilirlik azalacaktır. Tam tersi durumlarda ise, delinebilirlik etkilenmeyecektir. Kısacası, süreksizlik dolgu malzemesinin delme işlemi yapılan kayadan daha sert veya aynı sertlikte olması delinebilirliğe olumsuz bir etki yapmayacaktır. Yapılan araştırmalarda, daha küçük yapılı dolgu malzemelerinin olduğu süreksizliklerde delinebilirliğin olumsuz yönde etkilendiği görülmüştür. Bu gibi durumlarda, delik dibindeki ufalanmış kayanın dışarı çıkması zorlaşmaktadır ve sonuçta yine delinebilirlik olumsuz yönde etkilenmektedir [Wilbur, 1982].

42 32 Delinebilirliğin Değerlendirilmesi Eklemlerin eğimi de delinebilirliği etkileyen faktörlerdendir. Eklemler sondajın sapmasına ve bunun sonucunda delme yükü ile delinme performansı olumsuz yönde etkilenmektedir. Dolgu malzemesi ile dolmuş eklem takımlarında eğime bağlı olarak delme işlemi sırasında ve sonrasında, kuyu içerisine dolabilir bu durumda matkabın sıkışmasına neden olabilir. Sondaj yönü ile eklem yüzeyi arasındaki açı artar ise, delinebilirlik kolaylaşabilir [Wilbur, 1982]. Çizelge 4.3 de kaya formasyonu ile delinme durumu arasındaki ilişki verilmiştir. Süreksizliklerin içerisinde daha küçük boyutlu kırık ve çatlaklarıda (mikroçatlak) sayabiliriz. Delinebilirlik tanımında kırıklar, bir çekiç darbesi ile kayacın nasıl kırılacağını ifade eder. Masif kırıksız kayalar daha yavaş delinirken, dayanımı düşük kayalar daha hızlı delinmektedir [Wilbur, 1982]. Çizelge 4.4 de kırılma şekline göre delinme durumu verilmiştir. Çizelge 4.3. Kaya formasyonu ile delinme durumu arasındaki ilişki [Wilbur, 1982]

43 Delinebilirliğin Değerlendirilmesi 33 Çizelge 4.4. Kırılma şekline göre delinme durumu [Wilbur, 1982] Tek eksenli basınç dayanımı Kayaların dayanım özellikleri, yaygın olarak dünyanın her tarafında standart olarak elde edilebilir olduklarından uzun zaman delinebilirlik ölçütü olarak kullanılmışlardır. Fakat tek eksenli basınç dayanımı kayacın aşındırıcılık, kırılganlık ve süreksizlik gibi özellikleri hakkında bir fikir vermemektedir. Dayanım, delinebilirliği etkileyen en önemli unsurlardan birisidir. Bu nedenle matkap çalışma koşulları, kaya dayanımlarına göre saptanmalıdır. Aksi takdirde, matkap çok kısa sürede ömrünü tamamlayacaktır. Kayanın tek eksenli basınç dayanımı arttıkça kaya delinebilirliği azalmaktadır. Kaya delinebilirliği çalışmalarında, kayaların dayanım özellikleri tek eksenli basınç, tek eksenli çekme (Brazilian) ve nokta yük deneyleri yapılmak suretiyle belirlenmektedir. Nokta yük dayanım testi, kayaların dayanımlarına göre sınıflandırılmasında ve anizotropilerinin belirlenmesinde yaygın olarak kullanılan bir indeks deneydir. Tek eksenli basınç dayanımı, kayaçların en önemli mühendislik özelliğidir. Tek eksenli basınç dayanımı birçok kayaç sınıflama sisteminde kullanılan en önemli parametredir. Çünkü kayacı oluşturan malzemenin sağlamlığı, genel kaya kütlesinin dayanımını arttırmaktadır. Tek eksenli basınç dayanımını etkilen önemli faktörlerin başında; kayacı oluşturan mineraller ve dağılımları, mikro çatlaklar, porozite, yoğunluk, elastisite v.b. gelmektedir. Düşük poroziteli kayaçlar genelde yüksek yoğunluk değerlerinde olmakla birlikte, yüksek basınç dayanımları, düşük yoğunluk değerli kayaçlar düşük basınç dayanımı vermektedir. Çizelge 4.5 de tek eksenli basınç dayanımlarına göre kayaların sınıflandırılması verilmiştir.

44 34 Delinebilirliğin Değerlendirilmesi Çizelge 4.5. Tek eksenli basınç dayanımlarına göre kayaların sınıflandırılması [ISRM, 1978] Kaya numunelerinde basınç dayanımı, üzerine uygulanan basınç kuvvetine karşı, kayaların kırılmadan önceki dayanma yeteneği olarak tanımlanır. Kısacası, kayaçların kırılmaya karşı gösterdikleri dirençtir. Düzgün geometrik şekilli numunelerin basınç dayanımlarının bulunmasında kullanılan en yaygın yöntemdir. Tek eksenli basınç dayanımı deneyleri ile birlikte deformasyon deneyi de yapılabilir. Deformasyon, delinebilirlik çalışmalarında kayacın davranışını kavrayabilmek açısından önemlidir. Deformasyon deneyi ile bulunabilecek bir diğer kavram ise spesifik tahrip enerjisi (Destruction Specific Energy, SEDES) kavramıdır. Delinebilirlik kavramına referans olabilecek bir kavram olan spesifik tahrip enerjisi (SE DES), deformasyon deneyi sonunda elde edilen a - e grafiğinin altında kalan alan olarak hesaplanır. Daha açık ifadeler ile tanımlamak gerekirse, kaya içinde yeni yüzeyler veya yeni çatlaklar için gereken enerji miktarıdır. Birimi genellikle kj/m 3 olarak ifade edilir [Ersoy, 2003]. Şekil 4.1 de gerilme-deformasyon eğrisine bağlı spesifik tahrip enerjisi grafiği verilmiştir. Şekil 4.1. Gerilme-deformasyon eğrisine bağlı spesifik tahrip enerjisi grafiği [Ersoy, 2003]

45 Delinebilirliğin Değerlendirilmesi 35 Sertlik Bir kayacın sertliği, kayanın minerallerini bir arada tutan bağ kuvveti dolayısıyla çizilmeye karşı gösterdiği dirençtir. Sertlik belirlemede, Mohs sertliği, Shore Scoleroscope indeksi, Schmidt çekici sertliği indeksi ve NBC koni delici sertliği, darbe dayanım indeksleri kullanılmaktadır. Mohs Sertlik Skalası (Çizelge 4.6 ve Çizelge 4.7) Avustralyalı mineralog Friedrich Mohs ( ) tarafından 1824 yılında önerilmiştir. Çizelge 4.6. Mohs sertlik değerleri [NAST, 1955] Mineral Sertlik Elmas 10 Korindon 9 Topaz 8 Kuvars 7 Feldspat 6 Apatit 5 Fluorit 4 Kalsit 3 Jips 2 Talk 1 Çizelge 4.7. Mohs sertlik değerlerine göre kayaların sınıflaması [Hoseinie, 2008]

46 36 Delinebilirliğin Değerlendirilmesi Shore Skeleroskopu ile yüzey sertliğinin ölçülmesi Bu yöntemde, belirli bir ağırlığa (~ 2,40 gr) sahip elmas veya sertleştirilmiş metal uçlu bir çekice, sabit bir (~ 25 cm) yükseklikten yatay durumda konumlandırılmış bir numune üzerinde serbest düşme yaptırılır. Bu çekiç, örneğin yapısına göre enerjisinin bir kısmını yüzeyde deformasyon oluşturacak şekilde numuneye aktarır kalan enerjisi ile de numune üzerinden zıplamaktadır. Çekicin zıplama yüksekliği, skeleroskobun kadranından okunmaktadır (Şekil 4.2). Numunelerin pratikte her noktada homojen bir yapı göstermeyeceği düşünülerek numunelerden en az 20 okuma yapılmaktadır. Bunun için numune yüzeyleri 5 mm aralıklara bölünerek numune yüzeyinin farklı noktalarından ölçümler yapılmaktadır. Ölçüm yapılacak numunelerin, en az 10 cm 2 yüzey alanına ve 1 cm kalınlığa sahip olması gerekmektedir [Karpuz ve Hindistanlı, 2006]. Shore sertlik değeri, yapılan ölçümlerin ortalaması olarak kabul edilmektedir. Resim 4.1. Shore skeleroskop aleti Delinebilirlik için uygun sertlik ölçümü, Shore Skeleroscope sertliğidir. Çünkü; Shore sertliği tane boyutu ve şeklini, tanelerin birbiriyle bağlanma oranı ve türü gibi kaya niteliklerini örneklemekte yani ölçümlerinde bu özellikleri yansıtmaktadır [Ersoy, 1998].

47 Delinebilirliğin Değerlendirilmesi 37 Aşındırıcılık Kayaların aşındırıcılığı, delme faaliyetlerinde önemli bir rol oynamaktadır. Kayanın aşındırıcılık özelliklerinin artması genel olarak, delme hızını düşürmekte ve buna bağlı olarak maliyetleri de olumsuz yönde etkilemektedir. Bu nedenle, son yıllarda kayaların aşındırıcılıklarının önceden belirlenmesine yönelik çalışmalar hız kazanmıştır. Bu çalışmaların genellikle kuvars miktarı, kuvars tane çapı, çimentolanma maddesinin sağlamlığı, aşındırıcı minerallerin geometrisi ve kayanın mekanik dayanımı üzerinde yoğunlaştırmış oldukları dikkati çekmektedir. Kayaların aşındırıcılığının ölçümü için ileri sürülen yöntemler Petrolojik Yöntemler ve Mekanik Yöntemler olmak üzere ikiye ayrılır [West, 1981]. Petrolojik yöntemler Petrolojik yöntemler, kayanın mineralojik bileşiminin sayısal tahminine ve kayanın içerdiği minerallerin sertliklerinin bilinen değerleri ile bunun kombine edilmesine bağlıdır. Kaya sertliğini belirlemede Mohs Sertlik Skalası ve Rosiwall Sertlik Skalası olmak üzere 2 tür yöntem kullanılmaktadır. Her iki yöntemde de mineralojik bileşim, kayanın bir örneğinin ince kesitlerinin petrolojik incelenmesiyle veya kaya 0.1 mm den daha küçük taneler içerirse X- ışınları difraksiyonu analizi ile belirlenmektedir. Her mineralin kaya içerisindeki oranı ile o mineralin sertliği çarpılmakta ve tüm kaya için sayısal bir değer vermek için bulunan değerler toplanmaktadır. Ortalama Sertlik olarak tanımlanan bu değer, kayanın aşındırıcılığının bir ölçüsü olarak kullanılmaktadır. Mohs sertlik skalasını kullanan yöntem Bu yöntemde, kayaların ortalama sertliğini belirleyebilmek için öncelikle kaya içerisindeki minerallerin hacimce yüzdeleri bulunmaktadır. Daha sonra kaya içerisindeki her mineralin Mohs sertlik skalasına göre sahip oldukları sertlik değeri ile hacimce oranları çarpıldıktan sonra bulunan değerler toplanmakta ve elde edilen sonuç kayanın ortalama sertliğini vermektedir. Mohs skalasını kullanan petrolojik yöntemin bazı örnekleri Çizelge 4.8 de verilmiştir. Çizelgede görülen kayaların aşındırıcılıklarına göre azalan bir sıra ile kumtaşı, granit, çamurtaşı ve kireçtaşı şeklinde sıralanmaktadırlar. Mohs sertlik skalasını kullanan yöntemin bir dezavantajı, sertlik numaralarını bildiğimiz şekilde sıralamanın yerine, miktarsal ölçümler şeklinde ele almasıdır. Mohs sertlik skalası; daha sert mineralin daha yumuşak olanı çizme yeteneğine dayalı bir sertlik skalasıdır. Bu skalanın kayalara değil sadece minerallere uygulanabilmesi önemli bir dezavantajdır [West, 1981].

KAYALARIN DELİNEBİLİRLİĞİNİ ETKİLEYEN JEOLOJİK ÖZELLİKLER. Adil ÖZDEMİR (adilozdemir2000@yahoo.com)

KAYALARIN DELİNEBİLİRLİĞİNİ ETKİLEYEN JEOLOJİK ÖZELLİKLER. Adil ÖZDEMİR (adilozdemir2000@yahoo.com) (Sondaj Dünyası Dergisi, Sayı 5) www.sondajcilarbirligi.org.tr KAYALARIN DELİNEBİLİRLİĞİNİ ETKİLEYEN JEOLOJİK ÖZELLİKLER Adil ÖZDEMİR (adilozdemir2000@yahoo.com) 1.GİRİŞ Delinebilirlik, matkabın formasyondaki

Detaylı

TERS DOLAŞIMLI SONDAJ UYGULAMALARI

TERS DOLAŞIMLI SONDAJ UYGULAMALARI (Sondaj Dünyası Dergisi, Sayı 4) www.sondajcilarbirligi.org.tr MADEN ARAMA ÇALIŞMALARINDA TERS DOLAŞIMLI SONDAJ UYGULAMALARI Adil ÖZDEMİR (adilozdemir2000@yahoo.com) Maden aramaya yönelik sondajlar, genellikle

Detaylı

ĠÇĠNDEKĠLER JEOTEKNĠK ETÜTLER ve SONDAJ ÇALIġMALARI, 1 1.1. BÜRO ÇALIġMALARI, 1 1.1.1. Literatür AraĢtırması, 2 1.1.2. Jeoloji/Mühendislik Jeolojisi Haritalarının ve Jeofiziksel Ölçümlerin Ġncelenmesi,

Detaylı

JEOTERMAL SONDAJLARDA FORMASYON ÖZELLİKLERİNE UYGUN MATKAP SEÇİMİ İÇİN YENİ BİR YAKLAŞIM

JEOTERMAL SONDAJLARDA FORMASYON ÖZELLİKLERİNE UYGUN MATKAP SEÇİMİ İÇİN YENİ BİR YAKLAŞIM JEOTERMAL SONDAJLARDA FORMASYON ÖZELLİKLERİNE UYGUN MATKAP SEÇİMİ İÇİN YENİ BİR YAKLAŞIM Adil ÖZDEMİR ADİL ÖZDEMİR SONDAJ MÜHENDİSLİK VE LTD. ŞTİ. /ANKARA TEL: 0 312 327 19 52 GSM: 0 533 305 06 62 adilozdemir2000@yahoo.com

Detaylı

Administrator tarafından yazıldı. Çarşamba, 22 Haziran 2011 18:58 - Son Güncelleme Cuma, 24 Haziran 2011 15:48

Administrator tarafından yazıldı. Çarşamba, 22 Haziran 2011 18:58 - Son Güncelleme Cuma, 24 Haziran 2011 15:48 SONDAJ TEKNİĞİ Sondajın Tanımı ve Açıklaması:Bir delici uç yardımı ile yeryüzünden itibaren içeriye doğru belirli çap ve derinlikte dönen borular ile veya darbeli tel, halat ve delici uç ile kuyular açılmasına

Detaylı

MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN VE TÜNEL KAZILARINDA MEKANİZASYON LABORATUVAR DENEY FÖYÜ

MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN VE TÜNEL KAZILARINDA MEKANİZASYON LABORATUVAR DENEY FÖYÜ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN VE TÜNEL KAZILARINDA MEKANİZASYON LABORATUVAR DENEY FÖYÜ Deney 1. Sievers Minyatür Delme Deneyi Deney 2. Kırılganlık(S20) Deneyi Deney 3. Cerchar Aşındırıcılık İndeksi (CAI)

Detaylı

SONDAJ TEKNİĞİ GENEL TARAMA SORULARI

SONDAJ TEKNİĞİ GENEL TARAMA SORULARI SONDAJ TEKNİĞİ GENEL TARAMA SORULARI 1) Aşağıdakilerden hangisi sondajı tanımlayan özelliklerden biri değildir. (a) Özel bir takım araç gereçlerin kullanılması (b) Her türlü katı ortamda açılabilir olması

Detaylı

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5. MALZEME BİLİMİ (DERS NOTLARı) Bölüm 5. Mekanik Özellikler ve Davranışlar Doç. Dr. Özkan ÖZDEMİR ÇEKME TESTİ: Gerilim-Gerinim/Deformasyon Diyagramı Çekme deneyi malzemelerin mukavemeti hakkında esas dizayn

Detaylı

Havalı Matkaplar, Kılavuz Çekmeler, Hava Motorları KILAVUZ

Havalı Matkaplar, Kılavuz Çekmeler, Hava Motorları KILAVUZ 2016 Havalı Matkaplar, Kılavuz Çekmeler, Hava Motorları 1. Çalışma Prensibi Matkaplar, kılavuz çekmeler ve paletli tip hava motorları aynı çalışma prensibine sahiptir. Rotorlu (vane) motor ve dişli kutusu

Detaylı

Maden aramaya yönelik olarak

Maden aramaya yönelik olarak Maden Arama Çalışmalarında Ters Dolaşımlı Sondaj Uygulamaları (Bölüm 1) Adil ÖZDEMİR Adil Özdemir Mühendislik ve Sondaj Jeoloji Mühendisi adilozdemir2000@yahoo.com O. Çağım TUĞ Madencilik Türkiye Dergisi

Detaylı

DBC SONDAJ MATKAPLARI. www.dbcmakina.com

DBC SONDAJ MATKAPLARI. www.dbcmakina.com DBC SONDAJ MATKAPLARI www.dbcmakina.com EMPRENYE ELMAS İMATKAPLAR Emprenye elmas matkaplarda kullanılan sentetik elmas taneleri bir matris içine gömülmüş durumdadır. Matrisin özelliği elmasın aşınma oranına

Detaylı

Kapak Konusu www.madencilik-turkiye.com Barkom, Ürün Portföyü İle Göz Dolduruyor...

Kapak Konusu www.madencilik-turkiye.com Barkom, Ürün Portföyü İle Göz Dolduruyor... Kapak Konusu www.madencilik-turkiye.com Barkom, Ürün Portföyü İle Göz Dolduruyor... Madencilik, sahada karşılaşılan sorunlar ve bilinmeyenleri ile oldukça zorlu bir sektördür. Madencilikte kaybedilen zamanın

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

JEO 302 KAYA MEKANİĞİ

JEO 302 KAYA MEKANİĞİ JEO 302 KAYA MEKANİĞİ LABORATUVAR 1. HAFTA Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü JEO302 KAYA MEKANİĞİ dersi kapsamında Doç. Dr. Hakan Ahmet Nefeslioğlu ve Araş. Gör. Fatih Uçar tarafından

Detaylı

INS13204 GENEL JEOFİZİK VE JEOLOJİ

INS13204 GENEL JEOFİZİK VE JEOLOJİ 5/29/2017 1 INS13204 GENEL JEOFİZİK VE JEOLOJİ Yrd.Doç.Dr. Orhan ARKOÇ e-posta : orhan.arkoc@klu.edu.tr Web : http://personel.klu.edu.tr/orhan.arkoc 5/29/2017 2 BÖLÜM 10 KAYAÇLARIN ve SÜREKSİZLİKLERİNİN

Detaylı

YAPI TEKNOLOJİSİ DERS-2

YAPI TEKNOLOJİSİ DERS-2 YAPI TEKNOLOJİSİ DERS-2 ÖZET Yer yüzündeki her cismin bir konumu vardır. Zemine her cisim bir konumda oturur. Cismin dengede kalabilmesi için konumunu koruması gerekir. Yapının konumu temelleri üzerinedir.

Detaylı

Çizelge 5.1. Çeşitli yapı elemanları için uygun çökme değerleri (TS 802)

Çizelge 5.1. Çeşitli yapı elemanları için uygun çökme değerleri (TS 802) 1 5.5 Beton Karışım Hesapları 1 m 3 yerine yerleşmiş betonun içine girecek çimento, su, agrega ve çoğu zaman da ilave mineral ve/veya kimyasal katkı miktarlarının hesaplanması problemi pek çok kişi tarafından

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

YAPI MALZEMELERİ DERS NOTLARI

YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ Herhangi bir yapının projelendirmesi ve inşaatı aşamasında amaç aşağıda belirtilen üç koşulu bir arada gerçekleştirmektir: a) Yapı istenilen işlevi yapabilmelidir,

Detaylı

10/11/15 FORMASYON ZEMİN TANIMLAMA. - Her sondaj işinde öncelikle kesilen formasyon tanımlanmalı,

10/11/15 FORMASYON ZEMİN TANIMLAMA. - Her sondaj işinde öncelikle kesilen formasyon tanımlanmalı, 10/11/15 FORMASYON ZEMİN TANIMLAMA Önemi: Çoğu kez bir sondajda amaç derinliğe doğru geçilen jeolojik ortamın tanımlanması iken, bazen bu amaç ikincil bir konuma düşebilir. ANCAK Her sondajda delinen zeminin

Detaylı

2011 BİRİM FİYAT CETVELİ

2011 BİRİM FİYAT CETVELİ T.C. ÇEVRE VE ORMAN BAKANLIĞI DEVLET SU İŞLERİ GENEL MÜDÜRLÜĞÜ Jeoteknik Hizmetler ve Yeraltısuları Dairesi Başkanlığı Su Sondajları, Temel Sondajları, Enjeksiyon İşleri, Kaya-Zemin Mekaniği Deneyleri

Detaylı

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 8 DR. FATİH AY www.fatihay.net fatihay@fatihay.net BÖLÜM IV METALLERİN MEKANİK ÖZELLİKLERİ GERİLME VE BİRİM ŞEKİL DEĞİŞİMİ ANELASTİKLİK MALZEMELERİN ELASTİK ÖZELLİKLERİ ÇEKME ÖZELLİKLERİ

Detaylı

YENİLME KRİTERİ TEORİK GÖRGÜL (AMPİRİK)

YENİLME KRİTERİ TEORİK GÖRGÜL (AMPİRİK) YENİLME KRİTERİ Yenilmenin olabilmesi için kayanın etkisinde kaldığı gerilmenin kayanın dayanımını aşması gerekir. Yenilmede en önemli iki parametre gerilme ve deformasyondur. Tasarım aşamasında bunlarda

Detaylı

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması 1. Deney Adı: ÇEKME TESTİ 2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması Mühendislik tasarımlarının en önemli özelliklerinin başında öngörülebilir olmaları gelmektedir. Öngörülebilirliğin

Detaylı

TEMEL İNŞAATI ZEMİN İNCELEMESİ

TEMEL İNŞAATI ZEMİN İNCELEMESİ TEMEL İNŞAATI ZEMİN İNCELEMESİ Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 Zemin incelemesi neden gereklidir? Zemin incelemeleri proje maliyetinin ne kadarıdır? 2 Zemin incelemesi

Detaylı

HEYELAN ETÜT VE ARAZİ GÖZLEM FORMU

HEYELAN ETÜT VE ARAZİ GÖZLEM FORMU HEYELAN ETÜT VE ARAZİ GÖZLEM FORMU İL HEYELAN AKTİVİTE DURUMU Olmuş Muhtemel Her ikisi FORMU DÜZENLEYENİN İLÇE AFETİN TARİHİ ADI SOYADI BELDE ETÜT TARİHİ TARİH KÖY GENEL HANE/NÜFUS İMZA MAH./MEZRA/MEVKİİ

Detaylı

NOKTA YÜKLEME DAYANIM İNDEKSİ TAYİNİ. Bu deney, kayaların nokta yükleme dayanım indekslerinin tayinine ilişkin bir deneydir.

NOKTA YÜKLEME DAYANIM İNDEKSİ TAYİNİ. Bu deney, kayaların nokta yükleme dayanım indekslerinin tayinine ilişkin bir deneydir. NOKTA YÜKLEME DAYANIM İNDEKSİ TAYİNİ KONU Bu deney, kayaların nokta yükleme dayanım indekslerinin tayinine ilişkin bir deneydir. KAPSAM Nokta yük deneyi, kayaçların dayanımlarına göre sınıflandırılmasında

Detaylı

TALAŞLI İMALAT. Koşul, takım ile iş şekillendirilmek istenen parça arasında belirgin bir sertlik farkının olmasıdır.

TALAŞLI İMALAT. Koşul, takım ile iş şekillendirilmek istenen parça arasında belirgin bir sertlik farkının olmasıdır. TALAŞLI İMALAT Şekillendirilecek parça üzerinden sert takımlar yardımıyla küçük parçacıklar halinde malzeme koparılarak yapılan malzeme üretimi talaşlı imalat olarak adlandırılır. Koşul, takım ile iş şekillendirilmek

Detaylı

ATIK BARAJLARINDA UYGULANAN JEOTEKNİK ÇALIŞMALAR; GÜMÜŞTAŞ (GÜMÜŞHANE) ÖRNEĞİ SELÇUK ALEMDAĞ ERDAL GÜLDOĞAN UĞUR ÖLGEN

ATIK BARAJLARINDA UYGULANAN JEOTEKNİK ÇALIŞMALAR; GÜMÜŞTAŞ (GÜMÜŞHANE) ÖRNEĞİ SELÇUK ALEMDAĞ ERDAL GÜLDOĞAN UĞUR ÖLGEN ATIK BARAJLARINDA UYGULANAN JEOTEKNİK ÇALIŞMALAR; GÜMÜŞTAŞ (GÜMÜŞHANE) ÖRNEĞİ SELÇUK ALEMDAĞ ERDAL GÜLDOĞAN UĞUR ÖLGEN Bu çalışmada; Gümüşhane ili, Organize Sanayi Bölgesinde GÜMÜŞTAŞ MADENCİLİK tarafından

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Talaş oluşumu. Akış çizgileri plastik deformasyonun görsel kanıtıdır. İş parçası. İş parçası. İş parçası. Takım. Takım.

Talaş oluşumu. Akış çizgileri plastik deformasyonun görsel kanıtıdır. İş parçası. İş parçası. İş parçası. Takım. Takım. Talaş oluşumu 6 5 4 3 2 1 Takım Akış çizgileri plastik deformasyonun görsel kanıtıdır. İş parçası 6 5 1 4 3 2 Takım İş parçası 1 2 3 4 6 5 Takım İş parçası Talaş oluşumu Dikey kesme İş parçası Takım Kesme

Detaylı

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği Başlık KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği Tanım İki veya daha fazla malzemenin, iyi özelliklerini bir araya toplamak ya da ortaya yeni bir özellik çıkarmak için, mikro veya makro seviyede

Detaylı

DÜZCE İLİNDE 1999 YILINDAKİ DEPREMLERDE YIKILAN BETONARME BİNALARDA KULLANILAN BETONUN FİZİKSEL ÖZELLİKLERİNİN BELİRLENMESİ

DÜZCE İLİNDE 1999 YILINDAKİ DEPREMLERDE YIKILAN BETONARME BİNALARDA KULLANILAN BETONUN FİZİKSEL ÖZELLİKLERİNİN BELİRLENMESİ DÜZCE İLİNDE 1999 YILINDAKİ DEPREMLERDE YIKILAN BETONARME BİNALARDA KULLANILAN BETONUN FİZİKSEL ÖZELLİKLERİNİN BELİRLENMESİ Ercan ÖZGAN 1, Metin Mevlüt UZUNOĞLU 1, Tuncay KAP 1 tuncaykap@hotmail.com, metinuzunoglu@hotmail.com

Detaylı

BETON KARIŞIM HESABI (TS 802)

BETON KARIŞIM HESABI (TS 802) BETON KARIŞIM HESABI (TS 802) Beton karışım hesabı Önceden belirlenen özellik ve dayanımda beton üretebilmek için; istenilen kıvam ve işlenebilme özelliğine sahip; yeterli dayanım ve dayanıklılıkta olan,

Detaylı

1 GERİLME-BİRİM DEFORMASYON

1 GERİLME-BİRİM DEFORMASYON Kaya Mekaniği - ilkeleri, uygulamaları İçindekiler Sunuş...... Önsöz......... v vii 1 GERİLME-BİRİM DEFORMASYON.. 1 1.1 GERİLME....... 3 1.2 DÜZLEMDEKİ GERİLMELER VE GERİLME ÇEVİRİMİ (TRANSFORMASYON)...

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI TEK EKSENLİ SIKIŞMA (BASMA) DAYANIMI DENEYİ (UNIAXIAL COMPRESSIVE STRENGTH TEST) 1. Amaç: Kaya malzemelerinin üzerlerine uygulanan belirli bir basınç altında kırılmadan önce ne kadar yüke dayandığını belirlemektir.

Detaylı

KONU 11: TAŞIN HAMMADDE OLARAK KULLANIMI: MİNERALLER. Taşın Hammadde Olarak Kullanımı

KONU 11: TAŞIN HAMMADDE OLARAK KULLANIMI: MİNERALLER. Taşın Hammadde Olarak Kullanımı KONU 11: TAŞIN HAMMADDE OLARAK KULLANIMI: MİNERALLER Taşın Hammadde Olarak Kullanımı Odun ve kemik gibi, taş da insanın varlığının ilk evrelerinden bu yana elinin altında bulunan ve doğanın ona verdiği

Detaylı

MalzemelerinMekanik Özellikleri II

MalzemelerinMekanik Özellikleri II MalzemelerinMekanik Özellikleri II Doç.Dr. Derya Dışpınar deryad@istanbul.edu.tr 2014 Sünek davranış Griffith, camlarileyaptığıbuçalışmada, tamamengevrekmalzemelerielealmıştır Sünekdavranışgösterenmalzemelerde,

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. (2014-2015 Bahar Dönemi) BÖHME AŞINMA DENEYİ

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. (2014-2015 Bahar Dönemi) BÖHME AŞINMA DENEYİ KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI (2014-2015 Bahar Dönemi) BÖHME AŞINMA DENEYİ Amaç ve Genel Bilgiler: Kayaç ve beton yüzeylerinin aşındırıcı maddelerle

Detaylı

A-Kaya Birimlerinin Malzeme ve Kütle Özellikleri B-Patlayıcı Maddenin Cinsi, Özellikleri ve Dağılımı C-Patlatma Geometrisi

A-Kaya Birimlerinin Malzeme ve Kütle Özellikleri B-Patlayıcı Maddenin Cinsi, Özellikleri ve Dağılımı C-Patlatma Geometrisi 1-BASAMAK PATLATMA TASARIMINDA GÖZ ÖNÜNE ALINMASI GEREKEN ETKENLER. A-Kaya Birimlerinin Malzeme ve Kütle Özellikleri B-Patlayıcı Maddenin Cinsi, Özellikleri ve Dağılımı C-Patlatma Geometrisi A-Kaya Birimlerinin

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

5/8/2018. Windsor Probe Penetrasyon Deneyi:

5/8/2018. Windsor Probe Penetrasyon Deneyi: BETON DAYANIMINI BELİRLEME YÖNTEMLERİ Mevcut betonarme yapılarda beton dayanımının belirlenme nedenleri: Beton dökümü sırasında kalite denetiminin yapılmamış olması. Taze betondan alınan standart numune

Detaylı

GİRİŞ. Faylar ve Kıvrımlar. Volkanlar

GİRİŞ. Faylar ve Kıvrımlar. Volkanlar JEOLOJİK YAPILAR GİRİŞ Dünyamızın üzerinde yaşadığımız kesiminden çekirdeğine kadar olan kısmında çeşitli olaylar cereyan etmektedir. İnsan ömrüne oranla son derece yavaş olan bu hareketlerin çoğu gözle

Detaylı

1. Temel zemini olarak. 2. İnşaat malzemesi olarak. Zeminlerin İnşaat Mühendisliğinde Kullanımı

1. Temel zemini olarak. 2. İnşaat malzemesi olarak. Zeminlerin İnşaat Mühendisliğinde Kullanımı Zeminlerin İnşaat Mühendisliğinde Kullanımı 1. Temel zemini olarak Üst yapıdan aktarılan yükleri güvenle taşıması Deformasyonların belirli sınır değerleri aşmaması 2. İnşaat malzemesi olarak 39 Temellerin

Detaylı

JEOLOJİK ETÜT İŞLERİ JEOFİZİK ETÜT İŞLERİ İŞİN ADI ESKİ POZ NO YENİ POZ NO

JEOLOJİK ETÜT İŞLERİ JEOFİZİK ETÜT İŞLERİ İŞİN ADI ESKİ POZ NO YENİ POZ NO JEOLOJİK ETÜT İŞLERİ Jeolojik etüt ( 1/5000 ölçekli ) 38.1101 Jeolojik rapor yazımı ( 1/5000 ölçekli ) 38.1102 jeoteknik etüt ( 1/1000 ölçekli ) 38.1103 Jeolojik rapor yazımı ( 1/1000 ölçekli ) 38.1104

Detaylı

Dolgu ve Yarmalarda Sondaj Çalışması ve Değerlendirmesi. HAZIRLAYAN Özgür SATICI Mad. Yük. Jeo. Müh. (MBA)

Dolgu ve Yarmalarda Sondaj Çalışması ve Değerlendirmesi. HAZIRLAYAN Özgür SATICI Mad. Yük. Jeo. Müh. (MBA) Dolgu ve Yarmalarda Sondaj Çalışması ve Değerlendirmesi HAZIRLAYAN Özgür SATICI Mad. Yük. Jeo. Müh. (MBA) İçerik Yarmalarda sondaj Dolgularda sondaj Derinlikler Yer seçimi Alınması gerekli numuneler Analiz

Detaylı

JEOTERMAL SONDAJ TEKNİĞİNİN ESASLARI

JEOTERMAL SONDAJ TEKNİĞİNİN ESASLARI (Sondaj Dünyası Dergisi, Sayı 4) www.sondajcilarbirligi.org.tr JEOTERMAL SONDAJ TEKNİĞİNİN ESASLARI Adil ÖZDEMİR (adilozdemir2000@yahoo.com) Jeotermal sondajların 40 yıl civarında bir tarihi vardır ve

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

Metal kesmeyi anlama # /71

Metal kesmeyi anlama # /71 Kesme işlemi Metal kesmeyi anlama Metal kesmeyi anlama Frezeleme ile tornalama arasındaki fark Değişen kesme kuvvetleri (stres). Değişen kesme sıcaklıkları (uç gerilimi). İşlemeden ödün verme Kesme koşulları

Detaylı

DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü M={(1- )/[(1+ )(1-2

DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü M={(1- )/[(1+ )(1-2 DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü = M={(1- )/[(1+ )(1-2 )]}E E= Elastisite modülü = poisson oranı = yoğunluk V p Dalga yayılma hızının sadece çubuk malzemesinin özelliklerine

Detaylı

KILAVUZ. Perçin Makineleri KILAVUZ

KILAVUZ. Perçin Makineleri KILAVUZ 2016 Perçin Makineleri 1. PERÇİNLEME NEDİR? Perçin, sökülemeyen bir bağlantı elemanıdır. İki parça bir birine birleştirildikten sonra tahrip edilmeden sökülemiyorsa, bu birleştirmeye sökülemeyen birleştirme

Detaylı

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ MUKAVEMET DERSİ (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ Ders Planı HAFTA KONU 1 Giriş, Mukavemetin tanımı ve genel ilkeleri 2 Mukavemetin temel kavramları 3-4 Normal kuvvet 5-6 Gerilme analizi 7 Şekil

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Malzemeler genel olarak 3 çeşit zorlanmaya maruzdurlar. Bunlar çekme, basma ve kesme

Detaylı

BETON* Sıkıştırılabilme Sınıfları

BETON* Sıkıştırılabilme Sınıfları BETON* Beton Beton, çimento, su, agrega kimyasal ya mineral katkı maddelerinin homojen olarak karıştırılmasından oluşan, başlangıçta plastik kıvamda olup, şekil rilebilen, zamanla katılaşıp sertleşerek

Detaylı

AKADEMİK BİLİŞİM Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI

AKADEMİK BİLİŞİM Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI AKADEMİK BİLİŞİM 2010 10-12 Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI 1 ZEMİN İNCELEME YÖNTEMLERİ ZEMİN İNCELEMESİ Bir alanın altındaki arsanın

Detaylı

SÜREKSİZLİK DÜZLEMLERİNDE AYRIŞMANIN PÜRÜZLÜLÜK ÜZERİNDEKİ ETKİSİ * Effect Of Alteration On Roughness In Discontinuities Surfaces *

SÜREKSİZLİK DÜZLEMLERİNDE AYRIŞMANIN PÜRÜZLÜLÜK ÜZERİNDEKİ ETKİSİ * Effect Of Alteration On Roughness In Discontinuities Surfaces * SÜREKSİZLİK DÜZLEMLERİNDE AYRIŞMANIN PÜRÜZLÜLÜK ÜZERİNDEKİ ETKİSİ * Effect Of Alteration On Roughness In Discontinuities Surfaces * Burcu ÖZVAN Jeoloji Mühendisliği Anabilim Dalı Altay ACAR Jeoloji Mühendisliği

Detaylı

FİZİK. Mekanik İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ KAYAÇLARIN MÜHENDİSLİK ÖZELLİKLERİ. Mekanik Nedir? Mekanik Nedir?

FİZİK. Mekanik İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ KAYAÇLARIN MÜHENDİSLİK ÖZELLİKLERİ. Mekanik Nedir? Mekanik Nedir? İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ 14.04.2015 KAYAÇLARIN MÜHENDİSLİK ÖZELLİKLERİ Dr. Dilek OKUYUCU Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır.

Detaylı

Maden Mühendisliği Bölümü. Maden Mühendisliği Bölümü Kaya Mekaniği Laborattuvarı. 300 tton Kapasitteli Hidrolik Pres

Maden Mühendisliği Bölümü. Maden Mühendisliği Bölümü Kaya Mekaniği Laborattuvarı. 300 tton Kapasitteli Hidrolik Pres Kaya dayanımlarını bulmak için kullanılır. Cihaz 300 ton kapasitelidir. Yükleme hızı ayarlanabilir. Yük okuması dijitaldir. 40 X 40 x 40, 70 X 70 X 70 mm boyutlarında düzgün kesilmiş 10 adet küp numune

Detaylı

Madencilik, sahada karşılaştığı sorunlar ve bilinmeyenleri

Madencilik, sahada karşılaştığı sorunlar ve bilinmeyenleri Kapak Konusu www.madencilik-turkiye.com Sondaj Sektörünün İş Ortağı: Barkom Madencilik, sahada karşılaştığı sorunlar ve bilinmeyenleri ile oldukça zor bir sektördür. Madencilikte kaybedilen zamanın önemli

Detaylı

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. YORULMA 1 Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. Bulunan bu gerilme değerine malzemenin statik dayanımı adı verilir. 2 Ancak aynı

Detaylı

İLERİ YAPI MALZEMELERİ-1 MALZEMELERİN GENEL TANIMI

İLERİ YAPI MALZEMELERİ-1 MALZEMELERİN GENEL TANIMI İLERİ YAPI MALZEMELERİ-1 MALZEMELERİN GENEL TANIMI MALZEMELERİN GENEL TANIMI Giriş: Tasarlanan yapının belirli bir amaca hizmet edebilmesinde en önemli öğe malzemedir. Bu nedenle yapı malzemelerinin özelliklerinin

Detaylı

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi:

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi: Deneyin Adı: Malzemelerde Sertlik Deneyi Deneyin Tarihi:13.03.2014 Deneyin Amacı: Malzemelerin sertliğinin ölçülmesi ve mukavemetleri hakkında bilgi edinilmesi. Teorik Bilgi Sertlik, malzemelerin plastik

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Farklı üretim yöntemleriyle üretilen ürünler uygulama koşullarında üzerlerine uygulanan kuvvetlere farklı yanıt verirler ve uygulanan yükün büyüklüğüne bağlı olarak koparlar,

Detaylı

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar).

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). . KONSOLİDASYON Konsolidasyon σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). σ nasıl artar?. Yeraltısuyu seviyesi düşer 2. Zemine yük uygulanır

Detaylı

ZEMİN MEKANİĞİ DERS NOTLARI

ZEMİN MEKANİĞİ DERS NOTLARI Ankara Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü ZEMİN MEKANİĞİ DERS NOTLARI Prof. Dr. Recep KILIÇ ÖNSÖZ Jeoloji Mühendisliği eğitiminde Zemin Mekaniği dersi için hazırlanmış olan

Detaylı

FOREKAZIK ÇALIŞMALARINDA SIVI POLİMER KULLANIMI

FOREKAZIK ÇALIŞMALARINDA SIVI POLİMER KULLANIMI FOREKAZIK ÇALIŞMALARINDA SIVI POLİMER KULLANIMI Adil ÖZDEMİR Gazi Üniversitesi,Fen Bilimleri Enstitüsü adil@sondajteknigi.com BU ÇALIŞMADA İRDELENECEK HUSUSLAR 1. FOREKAZIK NEDİR? 1. FOREKAZIKLAR NASIL

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

JEOLOJİ MÜHENDİSLİĞİ BÖLÜMÜ 2015 YILI BİRİM FİYAT LİSTESİ

JEOLOJİ MÜHENDİSLİĞİ BÖLÜMÜ 2015 YILI BİRİM FİYAT LİSTESİ JEOLOJİ MÜHENDİSLİĞİ BÖLÜMÜ 2015 YILI BİRİM FİYAT LİSTESİ 1. KAYA MEKANİĞİ LABORATUVARI HİZMETLERİ BİRİM FİYAT LİSTESİ (KDV HARİÇ) KOD İŞİN ADI STANDART NO BİRİMİ 1.1. Parça Kayadan Numune Alınması 1.2.

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ- YAPI MALZEMELERİ LABORATUARI. Kemal Tuşat YÜCEL

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ- YAPI MALZEMELERİ LABORATUARI. Kemal Tuşat YÜCEL SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ- YAPI MALZEMELERİ LABORATUARI Kemal Tuşat YÜCEL İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ- YAPI MALZEMELERİ LABORATUARI YIĞMA YAPI MALZEME

Detaylı

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler. MALZEMELER VE GERĐLMELER Malzeme Bilimi mühendisliğin temel ve en önemli konularından birisidir. Malzeme teknolojisindeki gelişim tüm mühendislik dallarını doğrudan veya dolaylı olarak etkilemektedir.

Detaylı

YAPI MALZEMESİ AGREGALAR

YAPI MALZEMESİ AGREGALAR YAPI MALZEMESİ AGREGALAR 1 YAPI MALZEMESİ Agregalar en önemli yapı malzemelerinden olan betonun hacimce %60-%80 ini oluştururlar. Bitümlü yol kaplamalarının ağırlıkça % 90-95, hacimce %75-85 ini agregalar

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_3 INM 308 Zemin Mekaniği Zeminlerde Kayma Direnci Kavramı, Yenilme Teorileri Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular

Detaylı

II. KUYU MÜHENDİSİNİN GÖREVLERİ

II. KUYU MÜHENDİSİNİN GÖREVLERİ II. KUYU MÜHENDİSİNİN GÖREVLERİ Genel olarak bir kuyu başında sürekli bulunan jeoloji mühendisinin görevlerini iki grupta özetlemek mümkündür: 1) Bilgi toplamak, 2) Rapor yazmak. Açılan bir sondaj kuyusunun

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

Kaya Kütlesi İndisi Sistemi (RMI)

Kaya Kütlesi İndisi Sistemi (RMI) Kaya Kütlesi İndisi Sistemi (RMI) Kaya kütlesi sınıflama sistemlerinde kullanılan kaya sınıfı parametreleri birbirleriyle benzer şekildedir. Kaya mühendisliği sınıflamaları sistemi, kaya mühendisliği ve

Detaylı

INM 305 Zemin Mekaniği

INM 305 Zemin Mekaniği Hafta_8 INM 305 Zemin Mekaniği Zeminlerde Gerilme ve Dağılışı Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com Haftalık Konular Hafta 1: Zeminlerin Oluşumu Hafta 2: Hafta 3: Hafta

Detaylı

Elastisite modülü çerçevesi ve deneyi: σmaks

Elastisite modülü çerçevesi ve deneyi: σmaks d) Betonda Elastisite modülü deneyi: Elastisite modülü, malzemelerin normal gerilme (basınç, çekme) altında elastik şekil değiştirmesinin ölçüsüdür. Diğer bir ifadeyle malzemenin sekil değiştirmeye karşı

Detaylı

2.2 KAYNAKLI BİRLEŞİMLER

2.2 KAYNAKLI BİRLEŞİMLER 2.2 KAYNAKLI BİRLEŞİMLER Aynı veya benzer alaşımlı metal parçaların ısı etkisi altında birleştirilmesine kaynak denir. Kaynaklama işlemi sırasında uygulanan teknik bakımından çeşitli kaynaklama yöntemleri

Detaylı

GÜZ DÖNEMİ HİD 453 YERALTISUYU SONDAJ TEKNİĞİ. 2_nci ARA SINAV. Ad Soyad: CEVAP ANAHTARI No: 18 Aralık 2017

GÜZ DÖNEMİ HİD 453 YERALTISUYU SONDAJ TEKNİĞİ. 2_nci ARA SINAV. Ad Soyad: CEVAP ANAHTARI No: 18 Aralık 2017 2017-2018 GÜZ DÖNEMİ HİD 453 YERALTISUYU SONDAJ TEKNİĞİ 2_nci ARA SINAV Ad Soyad: CEVAP ANAHTARI No: 18 Aralık 2017 Sorular 1, 2, 3, 4 ve 5= 10 ar puan, Soru 6= 30 puan, Sorular 7, 8, 9 ve 10 = 5 er puan.

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

Endüstriyel Yatık Tip Redüktör Seçim Kriterleri

Endüstriyel Yatık Tip Redüktör Seçim Kriterleri Endüstriyel Yatık Tip Redüktör Seçim Kriterleri Gelişen imalat teknolojileri ile birlikte birim hacimde daha yüksek tork değerlerine sahip redüktörihtiyacı kullanıcıların en önemli beklentilerinden biri

Detaylı

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

Malzeme Bilgisi ve Gemi Yapı Malzemeleri Malzeme Bilgisi ve Gemi Yapı Malzemeleri Grup 1 Pazartesi 9.00-12.50 Dersin Öğretim Üyesi: Y.Doç.Dr. Ergün Keleşoğlu Metalurji ve Malzeme Mühendisliği Bölümü Davutpaşa Kampüsü Kimya Metalurji Fakültesi

Detaylı

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır.

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır. Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır. Bütün metal ve alaşımlarda bulunan dislokasyonlar, katılaşma veya plastik deformasyon sırasında veya hızlı soğutmadan

Detaylı

ĐSTA BUL TEK ĐK Ü ĐVERSĐTESĐ FE BĐLĐMLERĐ E STĐTÜSÜ DEĞĐŞĐK KAYAÇ VE DĐSK KESKĐLERĐ KAYAÇ KAZILABĐLĐRLĐĞĐ ÜZERĐ E ETKĐSĐ Đ ARAŞTIRILMASI

ĐSTA BUL TEK ĐK Ü ĐVERSĐTESĐ FE BĐLĐMLERĐ E STĐTÜSÜ DEĞĐŞĐK KAYAÇ VE DĐSK KESKĐLERĐ KAYAÇ KAZILABĐLĐRLĐĞĐ ÜZERĐ E ETKĐSĐ Đ ARAŞTIRILMASI ĐSTA BUL TEK ĐK Ü ĐVERSĐTESĐ FE BĐLĐMLERĐ E STĐTÜSÜ DEĞĐŞĐK KAYAÇ VE DĐSK KESKĐLERĐ KAYAÇ KAZILABĐLĐRLĐĞĐ ÜZERĐ E ETKĐSĐ Đ ARAŞTIRILMASI DOKTORA TEZĐ Deniz TUMAÇ Anabilim Dalı : Maden Mühendisliği Programı

Detaylı

Yeraltısuları. nedenleri ile tercih edilmektedir.

Yeraltısuları. nedenleri ile tercih edilmektedir. DERS 2 Yeraltısuları Türkiye'de yeraltısularından yararlanma 1950den sonra hızla artmış, geniş ovaların sulanmasında, yerleşim merkezlerinin su gereksinimlerinin karşılanmasında kullanılmıştır. Yeraltısuları,

Detaylı

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ Prof. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Kaynak

Detaylı

HAFİF AGREGALARIN YAPISAL BETON İMALATLARINDA KULLANIMI Çimento Araştırma ve Uygulama Merkezi

HAFİF AGREGALARIN YAPISAL BETON İMALATLARINDA KULLANIMI Çimento Araştırma ve Uygulama Merkezi HAFİF AGREGALARIN YAPISAL BETON İMALATLARINDA KULLANIMI Çimento Araştırma ve Uygulama Merkezi Hafif Agrega Nedir? Hafif Agregalar doğal ve yapay olarak sınıflandırılabilir; Doğal Hafif Agregalar: Pomza

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI TEK EKSENLİ SIKIŞMA (BASMA) DAYANIMI DENEYİ (UNIAXIAL COMPRESSIVE STRENGTH TEST) 1. Amaç: Kaya malzemelerinin üzerlerine uygulanan belirli bir basınç altında kırılmadan önce ne kadar yüke dayandığını belirlemektir.

Detaylı

İLLER BANKASI A.Ş. İHALE DAİRESİ BAŞKANLIĞI

İLLER BANKASI A.Ş. İHALE DAİRESİ BAŞKANLIĞI İLLER BANKASI A.Ş. İHALE DAİRESİ BAŞKANLIĞI 2014 YILI JEOLOJİK - JEOTEKNİK ETÜTLER, JEOFİZİK ETÜTLER, JEOTEKNİK HİZMETLER İLE ZEMİN VE KAYA MEKANİĞİ LABORATUVAR DENEYLERİ BİRİM FİYAT CETVELİ Oğuzhan YILDIZ

Detaylı

ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ 01330 ADANA

ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ 01330 ADANA Sayı:B30.2.ÇKO.0.47.00.05/ 488 Tarih:19.06.2009 EMRE TAŞ ve MADENCİLİK A.Ş. TARAFINDAN GETİRİLEN 3114780 ERİŞİM NOLU VE 20068722 RUHSAT NOLU SAHADAN ALINAN BAZALT LEVHALARININ VE KÜP ÖRNEKLERİNİN MİNEROLOJİK,

Detaylı

Zeminlerin Sıkışması ve Konsolidasyon

Zeminlerin Sıkışması ve Konsolidasyon Zeminlerin Sıkışması ve Konsolidasyon 2 Yüklenen bir zeminin sıkışmasının aşağıdaki nedenlerden dolayı meydana geleceği düşünülür: Zemin danelerinin sıkışması Zemin boşluklarındaki hava ve /veya suyun

Detaylı

2015 YILI JEOLOJİK - JEOTEKNİK ETÜT VE HİZMET İŞLERİ, JEOFİZİK ETÜT İŞLERİ, ZEMİN VE KAYA MEKANİĞİ LABORATUVAR DENEYLERİ BİRİM FİYAT CETVELLERİ

2015 YILI JEOLOJİK - JEOTEKNİK ETÜT VE HİZMET İŞLERİ, JEOFİZİK ETÜT İŞLERİ, ZEMİN VE KAYA MEKANİĞİ LABORATUVAR DENEYLERİ BİRİM FİYAT CETVELLERİ İLLER BANKASI A.Ş. YATIRIM KOORDİNASYON DAİRESİ BAŞKANLIĞI 2015 YILI JEOLOJİK - JEOTEKNİK ETÜT VE HİZMET İŞLERİ, JEOFİZİK ETÜT İŞLERİ, ZEMİN VE KAYA MEKANİĞİ LABORATUVAR DENEYLERİ BİRİM FİYAT CETVELLERİ

Detaylı

DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi.

DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi. DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi. TEORİK BİLGİ: Kritik soğuma hızı, TTT diyagramlarında burun noktasını kesmeden sağlanan en

Detaylı

Döner Sondaj(Rotary Drilling) Yöntemleri. Döner Sondaj Yöntemi

Döner Sondaj(Rotary Drilling) Yöntemleri. Döner Sondaj Yöntemi Döner Sondaj(Rotary Drilling) Yöntemleri Yrd. Doç.Dr. İrfan Yolcubal Döner Sondaj Yöntemi Sondaj hızını artırmak ve bir çok formasyonda derin sondaj yapmak için geliştirilmiş bir metod. Kayaçın parçalanması

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

DIAMANTINA CHRISTENSEN Karotlu ve ters sirkülasyon sondaj malzemeleri üretiminde bir öncü

DIAMANTINA CHRISTENSEN Karotlu ve ters sirkülasyon sondaj malzemeleri üretiminde bir öncü ŞİRKET HAKKINDA SONDAJ MATKAPLARI PORTKRONLAR MUHAFAZA ÇARIKLARI SONDAJ TİJLERİ & MUHAFAZALAR KAROTİYER & OVERSHOT SEGMANLAR SU BAŞLIKLARI YEDEK PARÇALAR TERS SİRKÜLASYON (RC) ADAPTÖRLER KURTARMA EKİPMANI

Detaylı

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER Günümüzde bara sistemlerinde iletken olarak iki metalden biri tercih edilmektedir. Bunlar bakır ya da alüminyumdur. Ağırlık haricindeki diğer tüm özellikler bakırın

Detaylı

Yapı veya dolgu yüklerinin neden olduğu gerilme artışı, zemin tabakalarını sıkıştırır.

Yapı veya dolgu yüklerinin neden olduğu gerilme artışı, zemin tabakalarını sıkıştırır. 18. KONSOLİDASYON Bir mühendislik yapısının veya dolgunun altında bulunan zeminin sıkışmasına konsolidasyon denir. Sıkışma 3 boyutlu olmasına karşılık fark ihmal edilebilir nitelikte olduğundan 2 boyutlu

Detaylı