ENDÜSTRİYEL BİR DAMITMA KOLONUNDA YAPAY SİNİR AĞI VE ADAPTİF SİNİRSEL BULANIK TAHMİN METOTLARININ KULLANIMI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ENDÜSTRİYEL BİR DAMITMA KOLONUNDA YAPAY SİNİR AĞI VE ADAPTİF SİNİRSEL BULANIK TAHMİN METOTLARININ KULLANIMI"

Transkript

1 ENDÜSTRİYEL BİR DAMITMA KOLONUNDA YAPAY SİNİR AĞI VE ADAPTİF SİNİRSEL BULANIK TAHMİN METOTLARININ KULLANIMI A. BAHAR, E. GÜNER, C. ÖZGEN Department of Chemical Engineering, Middle East Technical University, Ankara Turkey ÖZET Bu çalışmada, endüstriyel çok bileşenli bir damıtma kolonunda, sürekli ölçülebilen sıcaklık değerlerinden ürün derişimlerini tahmin etmek için, bir yapay sinir ağı (YSA) tahmin edicisi ve bir adaptif sinirsel bulanık tahmin sistemi (ANFIS) geliştirilmiş ve bu tahmin ediciler, yatışkın olmayan bir kolon benzeticisi ile test edilmiştir. Kolonun tepe ve alt ürün derişim denetimi için, bir model öngörümlü denetleç (MÖD), geliştirilen tahmin edicilerle birlikte ayrı ayrı kullanılmıştır. Geliştirilen tahmin edicileri kullanan denetim sistemlerinin performansları, ayar noktası değişimi ve bozan etken değişimi için incelenmiş ve başarılı oldukları görülmüştür. Anahtar Kelimeler: Adaptif Sinirsel Bulanık Tahmin Sistemi, Damıtma Kolonu, Model Öngörümlü Denetleç, Tahmin Edici, Yapay Sinir Ağı. 1. GİRİŞ Damıtma kolonlarının denetim çalışmalarında gereken ürün derişimlerinin sürekli ölçümleri, gaz kromatografi gibi analiz cihazları kullanılarak doğrudan yapılabilir. Fakat bu cihazların kullanılması, ölçüm gecikmesi, yüksek yatırım ve bakım maliyetleri gibi problemlere sebep olmaktadır [1]. Durum değişkenlerinin ikincil ölçüm değerleri kullanılarak tahmin edildiği algısal denetim sistemleri bu sorunlara bir çözüm olarak geliştirilmiştir [2]. Bu çalışmada, endüstriyel çok bileşenli bir damıtma kolonunun ürün derişimlerini tahmin etmek için, kolonda kolaylıkla ölçülebilen sıcaklık değerleri kullanılmıştır. Bu amaçla, Yapay Sinir Ağı (YSA) ve Adaptif Sinirsel Bulanık Tahmin Sistemi (ANFIS) geliştirilmiş ve bu tahmin ediciler, kolonun yatışkın olmayan benzeticisi kullanılarak test edilmiştir. Mühendislik bakış açısından YSA, özellikle girdi çıktı bilgisini göstermede, zaman sürecinde tahminler yapmada, verileri ayırmada, örnekleri tanımada faydalı, doğrusal olmayan deneysel bir model olarak düşünülebilir [3]. YSA nın geniş bir uygulama alanı bulmasındaki başlıca nedenler, onun yeni bilgileri öğrenerek girdiler ve çıktılar arasındaki yapıyı geliştiren öğrenme yeteneği, doğrusal olmayan fonksiyonlara da uygulanabilmesi, oldukça esnek bir model yapısına sahip olması, girdiler ve çıktılar arasında yapısal bir ilişkiye gereksinimi olmaması, ve çoklu değişkenli sistemlerde kullanılabilmesidir [3]. Sinirsel bulanık sistemler, bilgiyi otomatik olarak sinir ağları öğrenme algoritmalarıyla elde edebilen, bulanık sistemler ile sinir ağlarının birleştirildiği sistemlerdir. ANFIS, bulanık sistemin adaptif ağ sisteminin yapısında uygulandığı sinirsel bulanık sistemlerden biridir ve uzman bilgisine (bulanık sistem kuralları şeklinde) ve elde edilen girdi-çıktı verilerine dayalı olarak sistemin girdi-çıktı yapısını oluşturur [4]. Ürün derişimlerinin denetimi için tasarlanan YSA ve ANFIS ayrı ayrı Model Öngörümlü Denetleç (MÖD) ile kullanılmıştır. Geliştirilen bu denetim sistemlerinin performansları, çıktıların ayar noktasını takip etmeleri ve bozan etkenin etkisinin ortadan kaldırılması açısından incelenmiştir.

2 2. ÇALIŞILAN SİSTEM Bu çalışmada kullanılan damıtma kolonu, Türkiye deki bir rafineride bulunan bir C 3 -C 4 ayrıştırma kolonudur. Bu kolon, tepe ürün olarak %96.05 saflıkta propan ve alt ürün olarak da %62.56 saflıkta n-bütan ı etan, propan, i-bütan, n-bütan ve i-pentan dan oluşan bir karışımdan ayırmaktadır. Derişim denetim çalışmalarında, bu kolonun daha önceden geliştirilen dinamik modeli kullanılmıştır [5,6,7] Algılayıcı Yerlerinin Seçimi Kolonun algısal denetiminde kullanılacak üst ürün derişimini tahmin etmek için tepedeki üç tepsiden, alt ürün derişimini tahmin etmek için dipteki üç tepsiden sıcaklık ölçümü gerekmektedir. Bu sıcaklık ölçüm yerleri, SVD (Tekil Değer Ayrıştırma) metodu kullanılarak bulunmuştur [8]. Besleme derişimleri girdi değişkenleri olarak alındığında, T = Gz (T tepsi sıcaklık vektörü, G yatışkın durum kazanç matrisi ve z besleme derişimleri vektörü) eşitliğindeki G matrisi SVD yöntemiyle tekil değerlerine denklem (1) deki gibi ayrılabilir. n m boyutlu U ortonormal matrisi sol-tekil vektör, m m boyutlu V ortonormal matrisi sağ-tekil vektör, ve n m boyutlu S köşegen matrisi tekil değerler matrisi olarak adlandırılır. U matrisinin ilk kolonundaki elemanların (eleman sayısı = tepsi sayısı) büyüklükleri bozan etkene (besleme derişimleri) olan duyarlılıkları göstermektedir. Bu nedenle, büyük elemanlara denk düşen tepsilerdeki (bileşen sayısından bir eksik) sıcaklıklar, besleme derişimindeki bozan etkene en duyarlı oldukları için, bu tepsiler ölçüm yerleri olarak seçilirler. T T = Gz = (USV ) z (1) Tepsi numaraları seçiminde, SVD önerisine ek olarak kolonun dinamiği de göz önüne alınmıştır. Önerilen tepsilerde özellikle aşırı ters tepki (inverse response) olmamasına dikkat edilerek, kolonun alt bölümünden tepsiler, üst bölümünden tepsiler sıcaklık ölçüm yerleri olarak seçilmiştir. 3. YAPAY SİNİR AĞI TAHMİN EDİCİSİ Bu çalışmada, sistem dinamik bir yapıda olduğu için, yapay sinir ağı hareketli pencere metodu kullanılarak tasarlanmıştır. Damıtma kolonu sisteminin olası girdilerine (besleme hızı, besleme derişimi, geri akış oranı ve kaynama hızı) karşı sistem çıktıları kolonun benzetimi yardımıyla bulunmuş ve bunlar YSA tahmin edicinin eğitiminde kullanılmıştır. Sistem dinamik bir yapıda olduğu için, zaman bilgisini de YSA ya öğretebilmek amacıyla tahmin edici için girdi vektörü denklem (2) deki gibi ve çıktı vektörü ise yk+ ( 1) şeklinde seçilmiştir. Burada, u k vektörü k anındaki sıcaklık değerlerini, uk nvektörü n zaman önceki sıcaklık değerlerini ve y k k anındaki derişim değerlerini, yk n n zaman önceki derişim değerlerini belirtir. Hareketli pencere aralığı, 5n, 6 dakika olarak seçilmiştir. xk = [ uk ykuk n yk nuk 2n yk 2n... uk 5n yk 5n] (2) YSA tahmin ediciden, toplam altı derişim değeri çıktı olarak alındığından, çıktı katmanında 6 sinir içeren çok katmanlı, ileri beslemeli YSA, girdi katmanında 36, gizli katmanında ise 12 sinir seçilerek tasarlanmışıtr. Her katmanda tan-sigmoid transfer fonksiyonları kullanılmıştır. YSA nın kullandığı bütün rakamsal değerler 0 ile 1 arasına indirgenmiştir. Sinir ağının eğitimi için birçok alanda başarıyla uygulanmış olan geri yayılım algoritması kullanılmıştır. Eğitimden sonra tahmin edici, denetleçle birlikte çalışmaya başlar ve tahmin edici için gerekli olan pencere verisi güncelleşir.

3 4. ADAPTİF SİNİRSEL BULANIK TAHMİN EDİCİSİ ANFIS yapısında, Takagi-Sugeno (TS) bulanık tahmin modeli kullanılmıştır. Her bir kuralın çıktısı girdi değişkenlerinin lineer birleşimi ve bir sabit terimden oluşabilir ya da sadece bir sabit terimden oluşabilir. Son çıktı, her bir kuralın çıktısının ağırlıklı ortalamasıdır. Şekil (1) de iki TS bulanık kurallı örnek bir ANFIS yapısı verilmiştir. Kural tabanı iki tane TS kuralı içermektedir: Kural 1: Eğer x A 1 ise, f 1 = p 1 x + q 1 y + r 1 Kural 2: Eğer x A 2 ise, f 2 = p 2 x + q 2 y + r 2 Şekil 1. Örnek ANFIS yapısı. 1. Katman: Bu katmandaki her nod denklem (3) de nod fonksiyonları verilen bir kare noddur. Bu denklemde, x nod i ın girdisi, A i (veya B i-2 ) ise bu nod ile ilişkili üyelik fonksiyonudur. 0 = µ ( x), i = 1,2 1, i A i (3) 0 = µ ( y), i = 3,4 1, i B 2 i 2. Katman: Bu katmandaki her nod Π ile gösterilen sabit bir noddur ve çıktısı denklem (4) de verildiği gibi gelen bütün sinyallerin çarpımına eşittir. Her nodun çıktısı, bir bulanık kuralın ateşleme kuvvetini gösterir. 0 2, i = wi = µ ( x) µ ( y), i = 1, 2 (4) Ai Bi 3. Katman: Bu katmandaki her nod N ile gösterilen sabit bir noddur. Nod i, denklem (5) de verildiği gibi, kuralın ateşleme kuvvetinin bütün kuralların ateşleme kuvvetlerinin toplamına oranını hesaplar. Bu katmanın çıktıları normalize ateşleme kuvvetleri olarak adlandırılır. 03, i = wi = wi /( w1 + w2 ), i = 1,2 (5) 4. Katman: Bu katmandaki her nod, denklem (6) de verilen nod fonksiyonu ile gösterilen p, q, r, bu nodun parametre setidir. adaptif bir noddur. { i i i } = w f = w ( p x + q y + r ) 0 4, i i i i i i i (6) 5. Katman: Bu katmandaki tek nod, denklem (7) da Σ ile gösterilen sabit bir noddur ve tüm çıktıyı gelen bütün sinyallerin toplamı olarak hesaplar. wf 0 tüm çıktı wf i i (7) = = 5, i i i i = iw i Parametrelerin hesaplanması, verilen bir parametre seti için ANFIS nin girdi-çıktı bilgisini ne kadar iyi modellediğini ölçen bir gradyan vektörü ile kolaylaştırılmıştır. Gradyan vektörü elde edildikten sonra, parametreleri ayarlamak için geri besleme veya hibrid öğrenme algoritması (gradient descent ve least square tahminleri) uygulanabilir. ANFIS sisteminin tasarımında, derişim tahminleri sadece tepsi sıcaklıkları kullanılarak yapılmıştır.

4 Normal bir fabrika işletmesinde, tepe ve alt ürün derişimlerinin ölçülmesi belli zaman aralıklarında alınan örneklerle laboratuvarlarda yapılmaktadır. Tasarımı yapılan denetim sistemi, bu verileri de kullanacak yapıda geliştirilmiştir. Kolonun ölçülen gerçek üst ve alt derişim değerleri, denetim sistemine belli aralarda girdi olarak kabul edilmiştir. Bu çalışmada, normalde fabrikada yapılacak gerçek derişim ölçüm değerleri benzetim çalışmasından elde edilen değerlerle aynı olarak kabul edilmiştir. Böylece, gerçek derişim değerleri eş zamandaki YSA/ANFIS den çıkan değerlerle karşılaştırılarak tahmindeki hata hesaplanmıştır. Bir sonraki gerçek derişim bilgisi gelene kadar YSA/ANFIS nin tahmin ettiği değerlere bu hata değeri eklenerek derişim değerlerindeki hata giderilmeye çalışılmıştır. Her yeni ölçülen gerçek derişim bilgisi geldiğinde de hata değeri yenilenmiştir. 5. SONUÇLAR Bu çalışmada tahmin edicilerin tasarımındaki amaç, onları çalışılan endüstriyel çok bileşenli damıtma kolonunun tepe ve alt ürün derişim denetimi için MÖD algoritmasında kullanmaktır. Bu nedenle, tahmin ediciler denetim algoritmasında kullanılmadan önce kolonun benzetimi yardımıyla test edilmiştir. Daha sonra, geliştirilen tahmin ediciler ayrı ayrı denetim amaçlı kullanılmış ve denetim algoritması ayar noktası değişimi ve bozan etken değişimi için incelenmiştir Tahmin Edicilerin Açık-Çevrim Performansları Şekil 2, kolonun geri akış oranındaki %5 lik bir değişime karşılık tepe ve alt ürün derişimlerinin tepkilerini göstermektedir. Hem YSA nın hem de ANFIS nin çıktıları iyi bir şekilde tahmin ettikleri ve ANFIS nin YSA ya göre daha doğru sonuç verdiği görülmektedir. Şekil 2. Geri akış oranındaki %5 lik bir artış için gerçek ve tahmini ürün derişimleri. Ürün derişimlerinin besleme akış hızındaki %7 lik bir artışa karşılık tepkileri ise Şekil 3 de verilmektedir. Her iki tahmin edicinin de besleme akış hızındaki bozan etken değişimine karşı çok iyi sonuç verdiği görülmektedir.

5 Şekil 3. Besleme akış hızındaki %7 lik bir artış için gerçek ve tahmini ürün derişimleri Tahmin Edicilerin Kapalı-Çevrim Performansları Geliştirilen tahmin ediciler ayrı ayrı çok girdili çok çıktılı MÖD algoritmasında kullanılmış ve performansları ayar noktası takibi ve bozan etken etkisinin ortadan kaldırılması açısından test edilmiştir. Tasarlanan YSA ve ANFIS nin açık-çevrim başarısı gözlemlendikten sonra bu tahmin ediciler denetim sisteminde kullanılmıştır. YSA ve ANFIS kullanan MÖD sistemlerinin servo performansları Şekil 4 de verilmiştir. Her iki sistemin de ayar noktasındaki değişimi başarıyla takip ettiği ve ANFIS kullanan sistemin daha az bir hata ile ayar noktasına geldiği görülmektedir. Şekil 4. Üst ürün derişimdeki %1 lik bir azalma sonra %1 lik bir artışa karşılık MÖD ün servo performansı. YSA ve ANFIS kullanan MÖD sistemlerinin düzenleyici performansları Şekil 5 de verilmiştir. Her iki sistemin de bozan etken etkisini ortadan kaldırdığı ve ANFIS kullanan sistemin IAE skorunun daha az olduğu görülmektedir.

6 Şekil 5. Besleme akış hızındaki %5 lik bir artışa karşılık MÖD ün düzenleyici performansı. 5. SEMBOLLER G yatışkın durum kazanç matrisi S tekil değerler matrisi T tepsi sıcaklık vektörü U sol-tekil vektör V sağ-tekil vektör w ateşleme kuvveti w normalize ateşleme kuvveti z besleme derişimleri vektörü µ üyelik derecesi 6. KAYNAKLAR 1. Mejdell, T., Skogestad, S., Estimation of Distillation Compositions from Multiple Temperature Measurements Using Partial Least-Square Regression, Ind. Eng. Chem. Res., 30, , Quintero-Marmol, E., Luyben, W.L., Inferential Model Based Control of Multi-Component Batch Distillation, Chemical Engineering Science, 47, 4, , Himmelblau, D.M. Applications of Artificial Neural Networks in Chemical Engineering, Korean J. Chem. Eng., 17, 4, , Jang, R.J., ANFIS: Adaptive-Network Based Fuzzy Inference System, IEEE Transactions on Man, and Cybernetics, 23, 3, , Alkaya, D., Özgen, C., Gürkan, T., Inferential Control Studies on an Industrial Column, ICHEME Symposium Series, Rugby, U.K., 128, , Kaya, M., Özgen, C., Leblebicioğlu, K., Halıcı, U., Model Predictive Control of a High Purity Industrial Distillation Column, 6th World Congress of Chemical Engineering, Melbourn, Australia, September, Dokucu, M.T., Özgen, C., November 6, Adaptive Model Predictive Control of an Industrial Distillation Column, AIChE 2002 Annual Meeting, Indianapolis. 8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recepies in C: The Art of Scientific Computing, Cambridge University Press, 1992.

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU B. HACIBEKİROĞLU, Y. GÖKÇE, S. ERTUNÇ, B. AKAY Ankara Üniversitesi, Mühendislik

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

ETİL ASETAT-ETANOL AZEOTROP KARIŞIMININ DAMITILDIĞI BİR EKSTRAKTİF DOLGULU DAMITMA KOLONUNUN SICAKLIK KONTROLÜ

ETİL ASETAT-ETANOL AZEOTROP KARIŞIMININ DAMITILDIĞI BİR EKSTRAKTİF DOLGULU DAMITMA KOLONUNUN SICAKLIK KONTROLÜ ETİL ASETAT-ETANOL AZEOTROP KARIŞIMININ DAMITILDIĞI BİR EKSTRAKTİF DOLGULU DAMITMA KOLONUNUN SICAKLIK KONTROLÜ Levent Taştimur a, Abdulwahab Giwa b, Süleyman Karacan b,* a Ankara Patent Bürosu Limited

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI Merve ARABACI a, Miray BAYRAM a, Mehmet YÜCEER b, Erdal KARADURMUŞ a a Hitit Üniversitesi, Mühendislik

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

KÜMEN ÜRETİMİNİN YAPILDIĞI TEPKİMELİ BİR DAMITMA KOLONUNUN BENZETİMİ

KÜMEN ÜRETİMİNİN YAPILDIĞI TEPKİMELİ BİR DAMITMA KOLONUNUN BENZETİMİ KÜMEN ÜRETİMİNİN YAPILDIĞI TEPKİMELİ BİR DAMITMA KOLONUNUN BENZETİMİ Damla Gül a,*, Abdulwahab GIWA a, Süleyman KARACAN a a,* Ankara Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Dögol

Detaylı

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ADAPAZARI KENTSEL ATIKSU ARITMA TESĐSĐ ÇIKIŞ SUYU PARAMETRELERĐ VE VERĐM DEĞERLERĐNĐN

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ

YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 897-904, 2011 Vol 26, No 4, 897-904, 2011 YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ Yeşim OK *, Mehmet ATAK

Detaylı

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ * Nuran BAĞIRGAN 1, Muhammet Mahir YENİCE 2 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Kütahya, nbagirgan@dumlupinar.edu.tr

Detaylı

DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ

DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ Halil Murat Öztürk, H. Levent Akın 2 Sistem ve Kontrol Mühendisliği Bölümü, Boğaziçi Üniversitesi, 885 Bebek, İstanbul 2 Bilgisayar Mühendisliği Bölümü,

Detaylı

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ U. Özveren 2, S. Dinçer 1 1 Yıldız Teknik Üniversitesi, Kimya Müh. Bölümü, Davutpaşa Kampüsü, 34210 Esenler / İstanbul e-posta: dincer@yildiz.edu.tr

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Electronic Letters on Science & Engineering 3(1) (2007) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 3(1) (2007) Available online at www.e-lse.org Electronic Letters on Science & Engineering 3(1) (2007) Available online at www.e-lse.org Fuzzy and Adaptive Neural Fuzzy Control of Compound Pendulum Angle Ahmet Küçüker 1,Mustafa Rüzgar 1 1 Sakarya University,

Detaylı

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 212, Hava Harp Okulu, İstanbul İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ Oğuz Kaan ONAY *, Javid KHALILOV,

Detaylı

H1 - Otomatik Kontrol Kavramı ve Örnek Devreler. Yrd. Doç. Dr. Aytaç Gören

H1 - Otomatik Kontrol Kavramı ve Örnek Devreler. Yrd. Doç. Dr. Aytaç Gören H1 - Otomatik Kontrol Kavramı ve Örnek Devreler MAK 3026 - Ders Kapsamı H01 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri beslemenin önemi H04

Detaylı

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Fatih Kölmek ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Türkiye Elektrik Piyasası Dengeleme ve Uzlaştırma Mekanizması Fiyat Tahmin Modelleri Yapay Sinir

Detaylı

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D ĠS L ĠK B ĠL ĠM L E R ĠD E R G ĠS

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Process Control EEE423 7 3+2 4 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Process Control EEE423 7 3+2 4 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Process Control EEE423 7 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

Endüstriyel Bir Hidrokraker Reaktörünün Modellenmesi

Endüstriyel Bir Hidrokraker Reaktörünün Modellenmesi Endüstriyel Bir Hidrokraker Reaktörünün Modellenmesi Ümmühan Canan a, Berna Çakal a, Fırat Uzman a, Dila Gökçe a, Emre Kuzu a Yaman Arkun b,* a Türkiye Petrol Rafinerileri A.Ş., Kocaeli, 41790 b Kimya

Detaylı

VII 0 0 6 0 0 3 9. Bu dersin önkoşulu bulunmamaktadır.

VII 0 0 6 0 0 3 9. Bu dersin önkoşulu bulunmamaktadır. DERS TANIMLAMA FORMU Dersin Kodu ve Adı: KMU 406 Kimya Mühendisliği Laboratuvarı II Programın Adı: Kimya Mühendisliği Bölümü Yarıyıl Eğitim ve Öğretim Yöntemleri (ECTS) Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

Mevcut Betonarme Binaların Yapısal Parametrelerinin Binaların Deprem Performansına Etkilerinin Belirlenmesi

Mevcut Betonarme Binaların Yapısal Parametrelerinin Binaların Deprem Performansına Etkilerinin Belirlenmesi Mevcut Betonarme Binaların Yapısal Parametrelerinin Binaların Deprem Performansına Etkilerinin Belirlenmesi 1 Naci Çağlar and 2 Zehra Şule Garip * 1 Faculty of Engineering, Department of Civil Engineering

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi

Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi Araştırma Makalesi Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi (05) 6-7 Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi Ahmet NUR *, Zeki

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

ANFIS ve YSA Yöntemleri ile İşlenmiş Doğal Taş Üretim Sürecinde Verimlilik Analizi

ANFIS ve YSA Yöntemleri ile İşlenmiş Doğal Taş Üretim Sürecinde Verimlilik Analizi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 16 (2016) 017101 (174 185) AKU J. Sci. Eng. 16 (2016) 017101 (174

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ ÖZET: B. Öztürk 1, C. Yıldız 2 ve E. Aydın 3 1 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Niğde

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN

BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN 42 BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN ETKİLERİNİN İNCELENMESİ Murat LÜY 1, İlhan KOCAARSLAN 2, Ertuğrul ÇAM 3 Electrical & Electronics Engineering Department, Kirikkale University,

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

AKILLI BİR PLAKANIN SERBEST VE ZORLANMIŞ TİTREŞİMLERİNİN KONTROLÜ

AKILLI BİR PLAKANIN SERBEST VE ZORLANMIŞ TİTREŞİMLERİNİN KONTROLÜ AKILLI BİR PLAKANIN SERBEST VE ZORLANMIŞ TİTREŞİMLERİNİN KONTROLÜ Fatma Demet Ülker 1 Ömer Faruk Kırcalı 1 Yavuz Yaman 1 dulker@ae.metu.edu.tr fkircali@stm.com.tr yyaman@metu.edu.tr Volkan Nalbantoğlu

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

Yrd. Doç. Dr. Mustafa NİL

Yrd. Doç. Dr. Mustafa NİL Yrd. Doç. Dr. Mustafa NİL ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Fırat Üniversitesi Elektrik-Elektronik Mühendisliği Y. Kocaeli Üniversitesi Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI

ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI Denizhan YILMAZ, Saliha YILMAZ, Eda HOŞGÖR, Devrim B. KAYMAK *

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ ELECTRICAL PEAK LOAD FORECASTING IN KÜTAHYA WITH ARTIFICIAL NEURAL NETWORKS. Y. ASLAN * & C. YAŞAR * & A. NALBANT * * Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik Fakültesi Dumlupınar Üniversitesi,

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ

ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ 1 45 89 133 177 221 265 309 353 397 441 485 529 573 617 661 705 GW MW ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ Mehmet ÖZEN 1 e-posta: ozenmehmet.92@gmail.com Ömer GÜL 1 e-posta: enerjikalitesi@gmail.com

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı:

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı: Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama Giriş ve Projenin Amacı: Bu projenin amacı; matrisler ile diskriminant analizi yaparak, bir düzlem üzerine el ile yazılan bir sayının

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

T.C. KTO KARATAY ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ

T.C. KTO KARATAY ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ T.C. KTO KARATAY ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları Arş.Gör. Erdi GÜLBAHÇE

Detaylı

YÖK TEZLERİ PROJE KELİME TARAMASI

YÖK TEZLERİ PROJE KELİME TARAMASI YÖK TEZLERİ PROJE KELİME TARAMASI YÖK Tezleri Proje Kelimesi Taraması Sonuçları Toplam Çalışma Sayısı 1833 İncelenen 1673 İlgisiz 372 Toplam İncelenen 1301 X Projesi 720 Proje Yönetimi 123 Yatırım Projeleri

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

Murat CANER ve Emre AKARSLAN * Geliş Tarihi/Received : 27.10.2008, Kabul Tarihi/Accepted : 30.03.2009

Murat CANER ve Emre AKARSLAN * Geliş Tarihi/Received : 27.10.2008, Kabul Tarihi/Accepted : 30.03.2009 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 15, Sayı 2, 2009, Sayfa 221-226 Mermer Kesme İşleminde Spesifik Enerji Faktörünün ANFIS ve YSA Yöntemleri ile Tahmini Estimation of Specific Energy

Detaylı

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Solution of Forward Kinematic for Five Axis Robot Arm using ANN A. Mühürcü 1 1 Sakarya University, Electrical-Electronical

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ TERMAL ANALİZİ

FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ TERMAL ANALİZİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 905-913, 2011 Vol 26, No 4, 905-913, 2011 FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12 Electronic Letters on Science & Engineering () (2005) Available online at www.e-lse.org A Study on Binary Gas Mixture Ali Gülbağ, Uğur Erkin Kocamaz, Kader Uzun Sakarya University, Department of Computer

Detaylı

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 211, Elazığ, Turkey Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini S. Yıldız 1, Y. Bölükbaş

Detaylı

Electronic Letters on Science & Engineering 4(1) (2008) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 4(1) (2008) Available online at www.e-lse.org Electronic Letters on Science & Engineering 4(1) (8) Available online at www.e-lse.org Artificial Neural Networks Application for Modelling of Wastewater Treatment Plant Performance Ece Ceren Yilmaz 1

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Yapı Sağlığı İzleme Sistemlerinin Farklı Taşıyıcı Sistemli Uzun Açıklıklı Tarihi Köprülere Uygulanması

Yapı Sağlığı İzleme Sistemlerinin Farklı Taşıyıcı Sistemli Uzun Açıklıklı Tarihi Köprülere Uygulanması Yapı Sağlığı İzleme Sistemlerinin Farklı Taşıyıcı Sistemli Uzun Açıklıklı Tarihi Köprülere Uygulanması Alemdar BAYRAKTAR Temel TÜRKER Ahmet Can ALTUNIŞIK Karadeniz Teknik Üniversitesi İnşaat Mühendisliği

Detaylı

Regresyon Analizi Kullanılarak Kısa Dönem Yük Tahmini. Short-Term Load Forecasting using Regression Analysis

Regresyon Analizi Kullanılarak Kısa Dönem Yük Tahmini. Short-Term Load Forecasting using Regression Analysis ELECO '0 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 9 Kasım - 0 Aralık 0, Bursa Regresyon Analizi Kullanılarak Kısa Dönem Yük i Short-Term Load Forecasting using Regression Analysis Hüseyin

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı Tolga YÜKSEL Ünvanı Birimi Doğum Tarihi Yrd. Doç. Dr. Mühendislik Fakültesi/ Elektrik Elektronik Mühendisliği 23.10.1980

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız?

Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Lisansüstü Eğitiminizi Neden Endüstri Mühendisliği Bölümünde Yapmalısınız? Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Endüstri Mühendisliği Bölümü, 1990 yılında kurulmuş ve ilk mezunlarını 1994

Detaylı

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması Özlem Özgöbek ozlem.ozgobek@ege.edu.tr Ege Üniversitesi Bilgisayar Mühendisliği Bölümü İZMİR Sunum Planı - Giriş - Benzer

Detaylı

ANTALYA LİMANI KONTEYNER TRAFİĞİNİN BULANIK SİNİR AĞI İLE TAHMİNİ

ANTALYA LİMANI KONTEYNER TRAFİĞİNİN BULANIK SİNİR AĞI İLE TAHMİNİ Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi Cilt: 5 Sayı: 2 Yıl: 2013 ANTALYA LİMANI KONTEYNER TRAFİĞİNİN BULANIK SİNİR AĞI İLE TAHMİNİ ÖZET Rıfat TÜR 1 Alp KÜÇÜKOSMANOĞLU 2 Özen KÜÇÜKOSMANOĞLU

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması

Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması Hasan Ferit Enişer İlker Demirkol Boğaziçi Üniversitesi / Türkiye Univ. Politecnica de Catalunya / İspanya 1. MOTİVASYON

Detaylı

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng)

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng) Müfredat: Mekatronik Mühendisliği lisans programından mezun olacak bir öğrencinin toplam 131 kredilik ders alması gerekmektedir. Bunların 8 kredisi öğretim dili Türkçe ve 123 kredisi öğretim dili İngilizce

Detaylı

CELAL BAYAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KONTROL VE OTOMASYON LABORATUVARI

CELAL BAYAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KONTROL VE OTOMASYON LABORATUVARI CELAL BAYAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KONTROL VE OTOMASYON LABORATUVARI Kuruluş Amacı Celal Bayar Üniversitesi Elektrik-Elektronik Mühendisliği Kontrol

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Doç. Dr. Bilge Karaçalı Biyomedikal Veri İşleme Laboratuvarı Elektrik-Elektronik

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

YÜZEYSULARI ÇALIŞMA GRUBU

YÜZEYSULARI ÇALIŞMA GRUBU 1/23 HEDEFLER Mühendislerimiz ve akademisyenlerimiz ile birlikte gelişmiş yöntem ve teknikleri kullanarak; su kaynaklarımızın planlama, inşaat ve işletme aşamalarındaki problemlere çözüm bulmak ve bu alanda

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜHENDİSLİĞİ

ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜHENDİSLİĞİ ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜHENDİSLİĞİ 2013 - S A M S U N DAMITMA (DİSTİLASYON) Distilasyon, bir sıvının ısıtılması ve buharlaştırılmasından oluşmaktadır ve buhar bir distilat ürünü oluşturmak için

Detaylı

BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI

BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI ÖZET: O. Merter 1 ve T. Uçar 2 1 Araştırma Görevlisi Doktor, İnşaat Mühendisliği Bölümü, Dokuz

Detaylı

LAZER FLAŞ YÖNTEMİNİ KULLANARAK MALZEMELERİN ISI İLETİM KATSAYISININ DENEYSEL OLARAK TAYİN EDİLMESİ VE ÖRNEK BİR UYGULAMA

LAZER FLAŞ YÖNTEMİNİ KULLANARAK MALZEMELERİN ISI İLETİM KATSAYISININ DENEYSEL OLARAK TAYİN EDİLMESİ VE ÖRNEK BİR UYGULAMA 375 LAZER FLAŞ YÖNTEMİNİ KULLANARAK MALZEMELERİN ISI İLETİM KATSAYISININ DENEYSEL OLARAK TAYİN EDİLMESİ VE ÖRNEK BİR UYGULAMA Özge ALTUN ÖZET Malzemelerin en önemli karakteristik özelliklerinden biri olan

Detaylı

Dersin Yarıyılı. Kredisi. Prof. Dr. İbrahim YÜKSEL/ Öğr. Gör. Dr. Mesut ŞENGİRGİN/ Öğr. Gör. Dr. Gürsel ŞEFKAT/Öğr.Gör.Dr. Zeliha K.

Dersin Yarıyılı. Kredisi. Prof. Dr. İbrahim YÜKSEL/ Öğr. Gör. Dr. Mesut ŞENGİRGİN/ Öğr. Gör. Dr. Gürsel ŞEFKAT/Öğr.Gör.Dr. Zeliha K. MAK3002 OTOMATİK KONTROL 2007-2008 YAZ OKULU Adı Otomatik Kontrol Dili Türü Ön Koşulu Koordinatörleri İçeriği Amacı Kodu MAK 3002 Türkçe Zorunlu Yok Yarıyılı 6 Kredisi Laboratuar (Saat/Hafta) Prof. Dr.

Detaylı

YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ. İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr

YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ. İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr Öz: Yapay sinir ağları birçok basit elemanın birleşmesinden oluşmuş paralel bağlantılı

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Birim BALCI 2. Doğum Tarihi : 28.07.1975 3. Unvanı : Yrd. Doç. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans

ÖZGEÇMİŞ. 1. Adı Soyadı : Birim BALCI 2. Doğum Tarihi : 28.07.1975 3. Unvanı : Yrd. Doç. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans ÖZGEÇMİŞ 1. Adı Soyadı : Birim BALCI 2. Doğum Tarihi : 28.07.1975 3. Unvanı : Yrd. Doç. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Teknik Eğitim, Elektronik- Bilgisayar Eğitimi Marmara Üniversitesi.

Detaylı

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015 Musa DEMİRCİ KTO Karatay Üniversitesi Konya - 2015 1/46 ANA HATLAR Temel Kavramlar Titreşim Çalışmalarının Önemi Otomatik Taşıma Sistemi Model İyileştirme Süreci Modal Analiz Deneysel Modal Analiz Sayısal

Detaylı