VEKTÖR HESAPLAMALARI (grav,del,curl) Giriş

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VEKTÖR HESAPLAMALARI (grav,del,curl) Giriş"

Transkript

1 Elektmnetik Tei Bh -6 Dönemi EKTÖR HEPMRI (gv,el,cul) Giiş ektö hesplmlın ifensiel uunluk, ln ve hcim elemnlı önemlii. Dh önce mtemtik esleine göüğümü tüev ve integl işlemlei vektöle içine ugulnbili. Bu bölüme bu tip işlemlele ilgileneceği. Difensiel uunluk, ln ve hcim (kteen kintl) Kteen kintl uunluk l ile veili. Şekil.e kteen kintl ifensiel uunluk gösteilmişti. Difensiel ln (Şekil.) biçimine gösteili. Hcim ise v ile hesplnı. P C Q B D R Şekil. ğ-el kteen kint sistemine ifensiel elemnl. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

2 Elektmnetik Tei Bh -6 Dönemi Şekil. Kteen kint sistemine ifensiel nml lnl. Bu bğıntıln nlşılcğı üee ifensiel uunluk ve nml lnl vektö büüklüklei. Hcim ise skle bi büüklüktü. Bu uunluk, önlee göe eğişmektei. Dh önce skle lk tnımlnn uunluk biiminen fklıı. Bu hehngi bi cismin uunluğu ksteilmemektei. Buki uunluk vektöel bi lnın çigisel öelliğii ve lısıl önlee göe eğişmektei. Bu bğıntıl kullnıln, ve önlee göe ifensiel uunluktu. Difensiel uunluk, ln ve hcim (siliniik kintl) iliniik kintl uunluk l ile veili. Şekil 3.e silinik kintl ifensiel uunluk gösteilmişti. Difensiel ln (Şekil 4.) biçimine gösteili. Hcim ise v ile hesplnı. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

3 Elektmnetik Tei Bh -6 Dönemi Şekil 3. iliniik kint sistemine ifensiel elemnl. Şekil 4. iliniik kint sistemine ifensiel nml lnl. Difensiel uunluk, ln ve hcim (küesel kintl) Küesel kintl uunluk l KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 3

4 Elektmnetik Tei Bh -6 Dönemi ile veili. Şekil 3.e siliniik kintl ifensiel uunluk gösteilmişti. Difensiel ln (Şekil 4.) biçimine gösteili. Hcim ise v ile hesplnı. Şekil. Küesel kint sistemine ifensiel elemnl. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 4

5 Elektmnetik Tei Bh -6 Dönemi Şekil 6. Küesel kint sistemine ifensiel nml lnl Önek: Şekil 7. e göe şğıki istenilenlei hesplını. F(,,) C (,,) D (,,) B (,,) (,,) Şekil 7. iliniik kintl uunluk, ln ve hcim hesbı. Nkt kintlı (,, ) biçiminei. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

6 Elektmnetik Tei Bh -6 Dönemi ) BC sınki uklığı b) CD sınki uklığı c) BCD lnını ) BO lnını e) OFD lnını f) BDCFO hcmini hesplını. Cevp: ) BC l b)iliniik kintl (Şekil 4.) CD. l ve bölece c) BCD lnını hesplmk için Şekil 4 ten lnbilii. BCD ln elemnı ile veilmişti. Bu uum BCD nin lnı iki ktlı integl lınk şğıki şekile hesplnı. BCD ( ) ( ) ) BO şeklinin lnı için tek Şekil 4 ten lnbilii. ile veilmişti. Bu uum istenilen ln BO ( ) 6. e) OFD lnı Şekil 7 en bsitçe göülebili. OFD ikötgenin lnını bulmlıı. Yni nin iki ktlı integlini lmmı geekmektei. OFD ( ) ( ) KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 6

7 Elektmnetik Tei Bh -6 Dönemi f) iliniik kintl hcim elemnı v üç ktlı integlinin snucu bie istenilen bölgenin hcmini vei. Bu uum BDCFO v 6. ( ) ( ) ÇİZGİ ve N İNTEGRERİ Dh önce biliğimi integl hesplını vektölee ugullım. Çigi integli bi eği bunc integlinin lınmsı essın nmktı. Öneğin gibi bi vektö lnın lu bunc integli l b csl ile veili. Bu ife vektö lnını eğisi bunc integlinin lınmsıı. Eğe eğisi kplı bi lns bu uum bu ifee nın bunc lnımı eni. e bu uum integl ile gösteili. ( ) l b. l.. c lu Şekil 8. Bi vektö lnın lu bunc çigisel integli. eilen vektöü için, süekli ügün bi üeinin ln integli ve vektöünün üeineki kısı KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 7

8 Elektmnetik Tei Bh -6 Dönemi ve bsitçe ψ cs n şekline gösteili (Şekil 8). ψ ve ψ üei n Şekil 9. vektö lnın üei bunc üe integli ve vektöünün üei bunc kısı. DİFERNİYE EKTÖR İŞEÇERİ Del Opetöü ve Gent Del petöü ile gösteilen bi ifensiel vektö işlecii. Kteen kintl şekline ılı. Del petöü mtemtikte çk kullnışlı bi petöü. Bu este el işlecini şğıki şekillee göeceği: ) kle bi fnkun genti, ) vektöünün ivejnsı, 3) vektöünün tsnu, KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 8

9 Elektmnetik Tei Bh -6 Dönemi 4) kle bi fnkunun plsieni. Bu işlemlee bşlmn önce el işlecini siliniik ve küesel kintl sısıl tnımllım. Bi skle vektö lnın genti, ni önlee göe eğişimi Şekil. veilmişti. Şekile skle lnın kntulnmış hli veilmişti. Bı uuml skle lnın önlee göe eğişimi, ni tüevini hesplmk geeklii. Bu uuml gent işlecini kullnıı. Gent işleminin snucu bi vektöü. Del petöü bi vektö luğunn skle bi fnkun bi vektöle çpımının snucu ine bi vektöü.. 3 Δ. Şekil. vektö lnın üei bunc üe integli ve vektöünün üei bunc kısı. kle bi fnk için gent KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 9

10 Elektmnetik Tei Bh -6 Dönemi g ile gösteili. Bu (,,) fnku süekli bi fnku. Bu skle bi ln, hehngi bi skle lnın genti vektöü. 3 Önek : f (,, ) şekline veilen fnk için f i ve (,-,) nktsınki eğeini bulunu. Çöüm: ve 3 f (,, ) fnklın ihtiç vı. f f 3 3 ( ) ( ) f 3 lk bulunu. Bu ifenin (,-,) nktsınki eğei ise f 3 3 ()( )( ) ( )( ) 3( )( )( ) 6 8 lk bulunu. Önek : eilen fnklın gentleini hesplını. ) e csh (kteen kintl) b) U cs (siliniik kintl) c) W cs (küesel kintl) Çöüm: KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

11 Elektmnetik Tei Bh -6 Dönemi KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit ) e csh e csh ( ) ( ) ( ) csh csh csh e e e csh h csh cs e e e b) cs U cs U ( ) ( ) ( ) cs cs cs U cs cs U c) cs W cs W ( ) ( ) ( ) cs cs cs W cs cs W

12 Elektmnetik Tei Bh -6 Dönemi Divejns ve Divejns Teemi Bu bölüme bi vektö lnın kplı bi üeen geçen tplm kısını hesplmmıı sğln ivejns teemile ilgileneceği. Hehngi bi P nktsının ivejnsı vektö lnı için iv lim Δv Δv ile veili. Bu nı mn bi vektö lnın u nktn nkt nsıl eğiştiğinin ölçüsüü. Divejns skle bi büüklüktü. Bi vektö lnın ivejnsı sıfın fklı lmsı bu nkt bi knk ve utk luğunun göstegesii. Fklı uuml ivejnsın eğişimi Şekil. e gösteilmişti. P P.. P. () (b) (c) Şekil. Bi vektö lnın P nktsınki ivejnsının şemtik gösteimi. () Divejns pitif. (b) Divejns negtif. (c) Divejns sıfı. 3 6 P 4 Şekil. P nktsın nın teeminin ele eilmesi. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

13 Elektmnetik Tei Bh -6 Dönemi Şekil. e veilen küçük kutul ve, 3 ve 4, ve 6 tplm kıı hespllım. Bu uum üleinen geçen ψ bğıntısını kullnılı. üe lnlı, ve ile hesplnı. Bu uum limiti sıfı gien küçük küp şeklineki cisim tplm 6 üei için kı ( Net kı) ( ). ( Net kı) ( ). 3 4 ( Net kı) ( ). 6 ile hesplnbili. Bu bğıntılı tplığımı ( Net kı) Tplm ele eei. v eşitliği kullnılı ve enklem enien üenlenise ( Net kı) v Tplm ( Net kı) v Tplm () ele eili ve iv lim Δ Δv () bğıntısı şğıki şekile ılıs lim Δv Δv ( Net kı) v Tplm (3) KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 3

14 Elektmnetik Tei Bh -6 Dönemi ele eili. (),() ve (3) bğıntılınn ivejns bğıntısı şğıki şekile iv (4) ılı. Divejns bğıntısının snucu sklei. ektö bi büüklüğün önlee göe tüevleinin lınığı enklem (4) te göülmektei. Denklem () en ivejns teemi şğıki şekile ılı. v () v Bu mtemtiksel ife; hehngi bi vektö lnının bi üe bunc tplm kısı, bu vektö lnın önsel tüevleinin tplmı, ni hcmine eşit lcğını söle. ve B iki vektö lmk üee öelliği vı. ( B) B Önek 3: eilen P vektöünün ivejnsını hesplını. Çöüm: P P P P ( ) ( ) ( ) Önek 4: eilen vektöü için ivejnsını hesp eini ve (,-,3) nktsınki eğeini bulunu. 4 Çöüm: ( ) ( 4) ( ) 4 4 KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 4

15 Elektmnetik Tei Bh -6 Dönemi Bi ektöün Rtsnu ve tkes Teemi Bi vektö lnın kplı bi eği bunc integlini ife ee. Cul ve Rt şekline e gösteili. Bu mtemtiksel ife eğe sıfın fklı ise bie vektöün ekseni etfın bi önüücü kuvveti luğunu ife ee. Bi küvet içineki su bşlm bşlığın heke biliği gibi su üeine iesel hlkl göüü. İşte bu suun bi önüme kuvveti, ni tsn sıfın fklıı. cul lim l Δ l Δ ( ) bğıntısı tkes teemi lk bilini. Şekil 3. te çigi integl ve ln integli gösteilmişti. Bu bğıntı Δ kplı eğiin çeveleiği lnı. n m kplı lu ln l Şekil 3. tkes teemi çigisel kplı ln ve ilgili üe. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

16 Elektmnetik Tei Bh -6 Dönemi (,) 3 (,) 4 (,) (,) Şekil 4. Çk küçük bi kenin kenlı bunc çigi integli. ψ l Şekil 4 te,,3 ve 4 nlu çigilein integli ile veili. n 4 enklem tplnıs 3 4 l () l () l (3) l (4) ( () (3)) ( () (4)) l (6) ve (3) () (7) () (4) (8) KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 6

17 Elektmnetik Tei Bh -6 Dönemi KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 7 luğu Şekil 4 ten göülebili. Dlısıl (7) ve (8) bğıntısı (6) eine knulus l enklemi ele eili. nın bileşeni için Δ Δ l lim ele eili. Bene şekile nın ve bileşenlei için çigi integl ılıp tplnıs. ısıl ( ) cul ( ) cul ( ) cul ele eili. nuç lk nın tsneli şğıki şekile gösteili ve hesplnı. Bi vektöün tsneli bi bşk vektö lnı. Del petöü bi vektö ve vektöüle tsneli ine bi vektöü.,b vektö ve skle ln lmk üee tsnel işlemi şğıki öelliklee shipti.

18 Elektmnetik Tei Bh -6 Dönemi KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 8 ) ( ) B B ) ( ) 3) Önek : P vektöü için P işlemini pını. Çöüm: P P P P P [ ] [ ] [ ] P ( ) P Önek 6: 4 3 vektöü için işlemini pını ve (,-,) nktsınki eğeini bulunu. Çöüm:

19 Elektmnetik Tei Bh -6 Dönemi [ ] [ 3 ] [ 4 ] 4 ( ) ( 3 ) ( 4) snucun (,-,) nktsınki eğei 4 ( () ( ) ( ) ) 3( ) ( ) 3 4 ( ) 4( )( )( ) ( ) Önek 3: Eğe cs ise l çigi integlini veilen şekle göe hesplını ve tkes teemini ğulını. c ο 6 ο 3 b Şekil. önek 3 te tnımlnn çigi integl. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 9

20 Elektmnetik Tei Bh -6 Dönemi Çöüm: l b için ve l l 3 6 bc için 3 ve l b c b c l 3 ( cs) ( 3 ) 6 l c için ve l cs cs3 3 4 l ( cs) ( 3 ) ve çigi integlin sn kısmı için ni için 6 ve l 3 l cs cs6 4 sn lk hesplnn öt pç tplnıs çigi integlin eğei ( 3 ) l tkes teemini ğulbilmek için şğıki integli lıp bi önceki çigi integlin snucul eşit luğunu gömelii. Bu uum l ( ) bu işlemi pbilmek için siliniik kintl tsn petöünü bilmemi geeki. Bu ise şğıki şekilei. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit

21 Elektmnetik Tei Bh -6 Dönemi KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit ( ) nı mn ln elemnı ile veilmişti. ( ) ( ) ( ) cs ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) Dlısıl ( ) l integline buluğumu bğıntılı eleine sk ( ) ( ) ( ) 6 3 ( ) ( ) ( ) 6 3

22 Elektmnetik Tei Bh -6 Dönemi KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit ( ) ( ) 6 3 ( ) ( ) cs 6 3 Önek 4: vektöü için ( ) luğunu gösteini. Çöüm: ( ),,,, Öev skle lmk üee luğunu gösteini. plsien plsien işlemi bi skleinin gentinin ivejnsıı ve ile gösteili. Dh çık biçime lplsien

23 Elektmnetik Tei Bh -6 Dönemi KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 3 ve snuç lk lplsien kteen kintl ılı. klein lplsieni ine bi sklei. Eğe bu eğe sıfı ise enklem plce enklemi, sıfı eğilse Pissn enklemi lk bilini. Bu enklemle jefiikte sıkç kullnılıl. Dğu kım öienç mellemesi ve ptnsiel tei bu enklemlein ugulm lnlınn sece biisii. Denklemin sıfı lmsı şu nlm gelmektei: plce enkleminin tnımlı luğu ln knk ve utk nktsı k şekline umlnı. plsienin sıfın fklı lmsı uumun enklem Pissn enklemi lk bilini. Bu bölgee utğın ve knğın vlığın işetti. plsien vektölee şğıki şekile ugulnbili. bi vektö lmk üee ( ) şekline ılı. Önek : e csh için hesplını. Çöüm: ( ) ( ) ( ) csh csh csh e e e

24 Elektmnetik Tei Bh -6 Dönemi ( e cscsh ) ( e h ) ( e csh ) 4e 4e e csh e csh e csh e csh csh csh ektö lnlın ınıflnıılmsı Şekil 6 öt temel sınıflnım göülmektei. Bu sınıflnıml vektölein ivejns ve tsn uumlın göe pılmıştı. Divejns ve tsn işlemleinin snucunun sıfı eşit lup lmmsın göe vektölein uumu Şekil 6 gösteilmişti.,,,, Dh öncee bhseiliği gibi eğe bi vektö lnın ivejnsı sıfı ise bu uum vektö lnı knk ve utk nktsı eğili. Önek lk Şekil 6 () gösteilebili. Eğe ivejns sıfı eşit eğilse bu uum nktsı bi knk nktsı lk eğeleniili (Divejns pitif ise kl ışı ğu, bi knk nktsını temsil ee. Eğe ivejns negtif ise kl içe ğu, bi utk nktsını temsil ee.) Şekil 6 (b). Şekil 6 (c) e ivejnsı sıfı fkt tsnu sıfın fklı bi vektö lnın şekli gösteilmişti. Bu uum vektö lnın bi önüme kuvveti luğu şekilen nlşılmktı. Şekil 6 () e ise hem tsn hem e ivejns sıfın fklıı.. () (b) (c) () Şekil 6. ektö lnlın ivejns ve tsn işlemleinin snucun göe sınıflnıılmsı. KYNK iku, M. N. O., 99, Elements f Electmgnetics, Of Univesit Pess, 8 sf. KOÜ, Mühenislik Fkültesi, Jefiik Mühenisliği Bölümü, İmit 4

Elektromagnetik Alan Teorisi

Elektromagnetik Alan Teorisi Elektomgnetik ln Teoisi ttik ln teoisi Zmnl eğişim ok Elektosttik ln sttik elektik ln) Mgnetosttik ln sttik mgnetik ln) Dlg Teoisi enince inmik ln mnl eğişim v) kl gelio Mtemtiksel Temelle + B = B + B

Detaylı

ELEKTRİK ALANI III.2.01.ELEKTRİK ALANI.

ELEKTRİK ALANI III.2.01.ELEKTRİK ALANI. 1 III.. LKTRİK ALANI III..01.. Fiziksel lylın nltımınd klylık sğlnmsı mcıyl ln kvmı geliştiilmişti. İlgilendiğimiz fiziksel ly için seçilen kdinnt sisteminin belili bi nktsın, ynı nd kşılık gelen fiziksel

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili

Detaylı

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425 Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

SIFIR HÜCUM AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKIM HIZININ TESPİTİ. Doç. Dr. M. Adil YÜKSELEN

SIFIR HÜCUM AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKIM HIZININ TESPİTİ. Doç. Dr. M. Adil YÜKSELEN SIFIR HÜCU AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKI HIZININ TESPİTİ Doç. D.. Ail YÜKSELEN Temmuz 997 SIFIR HÜCU AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKI

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜ T BSNC ODE SORU - DEİ SORURN ÇÖZÜERİ... Şe kil - e : Şe kil - e :. olu F i. F F e ifl mez. CEV D Tuğllın e biinin ğılığın iyelim. Sistemlein e uyulıklı bsınç kuvvetlei ğılıklın eşitti. F F F Bun

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A BÖÜ TI BSINCI IŞTIRR ÇÖZÜER TI BSINCI Cis min ğır lı ğı ise, r( r) 40 & 60rr 4rr zemin r r Şekil-I de: I p ters çev ril di ğin de ze mi ne y pı ln b sınç, ı rr 60rr rr 60 N/ m r zemin r + sis + + 4 4 tı

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

ARDIŞIL DEVRELER FLIP FLOP (İKİLİ DEVRELER)

ARDIŞIL DEVRELER FLIP FLOP (İKİLİ DEVRELER) AIŞIL EVELE TANIM: ÇIKIŞLAIN BELİLİ Bİ ANAKİ EĞEİ, GİİŞLEİN YANLIZA O ANKİ EGEİNE EĞİL, AYNI ZAMANA GİİŞLEİN ÖNEKİ EĞELEİNİN IAINA A BAĞLI OLAN EVELEE AIŞIL EVELE AI VEİLİ. GEÇMİŞ GİİŞ EĞELEİNİN IAI HAFIZA

Detaylı

IŞIK VE GÖLGE BÖLÜM 24

IŞIK VE GÖLGE BÖLÜM 24 IŞI VE GÖLGE BÖLÜM 24 MODEL SORU 1 DE SORULARIN ÇÖÜMLER MODEL SORU 2 DE SORULARIN ÇÖÜMLER 1 1 Dünya Ay Günefl 2 2 Bu olay ışı ğın fak lı say am o la a fak lı hız la a yayıl ı ğı nı açık la ya maz Şe kil

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY FİZ2 FİZİK-II Ank Ünivesitesi Fen Fkültesi Kimy Bölümü 24-25 Bh Yıyılı Bölüm-4 Ank Aysuhn OZANSOY Bölüm 4. Elektiksel Potnsiyel. Elektiksel Potnsiyel Eneji 2. Elektiksel Potnsiyel ve Potnsiyel Fk 3. Noktsl

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI MÜHENDİSLİK MEKNİĞİ DİNMİK DERS NOTLR Ya. Doç. D. Hüsein aıoğlu EKİM 00 İSTNUL İçindekile 1 İRİŞ EKTÖREL NLİZ.1 ektö fonksionu. ektö fonksionunun tüevi.3 ektö fonksionunun integali 3 EĞRİLERDE DİFERNSİYEL

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR Tüm aın haklaı Doç. D. Bülent Yeşilata a aitti. İinsi çoğaltılama. III/ 7. İSKOZ ( SÜTÜNMELİ ) AKIŞLA 7.. Giiş Bi akışta iskoite etkisi önemli ise bu akış isko (sütünmeli) akış adını alı. Akışkan iskoitesinden

Detaylı

Uzun Düz Bir Telin Manyetik Alanı... 333. Akım Taşıyan Bir Çemberin Merkezindeki Manyetik Alan... 334. Bir Selenoidin Eksenindeki Manyetik Alan...

Uzun Düz Bir Telin Manyetik Alanı... 333. Akım Taşıyan Bir Çemberin Merkezindeki Manyetik Alan... 334. Bir Selenoidin Eksenindeki Manyetik Alan... ÜİTE 3 MAYETİZMA ölüm 1 Manyetik Alan 3 MAYETİZMA ayfa o ÖÜM 1 MAYETİ AA................................................. 331 Uzun Düz i Telin Manyetik Alanı..............................................

Detaylı

4.BÖLÜM 4.1 HİDROLİK POMPALAR

4.BÖLÜM 4.1 HİDROLİK POMPALAR BÖLÜM 1 HİDROLİK POMPALAR Pompala çalıştıklaına iki temel göevi yeine getiile a) Vakum yaatmak, akışkanı emmek (105 m en sona poblemli) b) Akışkanı sisteme basmak Emilen akışkan içeisine yaklaşık %10 (hacimsel

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

δx,δy,δz olan bir hacim elemanından meydana gelmiştir. Kütle, momentum ve enerji bütçeleri,

δx,δy,δz olan bir hacim elemanından meydana gelmiştir. Kütle, momentum ve enerji bütçeleri, TOPLAM DİFERANSİYEL Atmoseik haeketle üç temel iziksel pensip ile iae eilile: 1) Kütlenin kounumu 2) Momentumun kounumu 3) Enejinin kounumu. Bu yasalaı iae een matematiksel bağıntıla, akışkan içine sonsuz

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i f fonksionu veilmiş olsun ve e [, ] için f olduğunu kul edelim. f in gfiği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ BÖLÜM SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ. Poblemin tanımlanması. Geen idantitesine daanan genel çöüm. Çöümün metodolojisi. Temel çöüm - Noktasal kanak.5 Temel çöüm - Noktasal duble.6

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No -0-00 dı /Sodı : No : İmz: STTİK FİN SINVI Öğrenci No 00000 z m Şekildeki kirişinde bğ kuvvetlerin bulunuz. =(+e)n/m, =5(+e)N m m Şekildeki ğırlıksız blok det pndül k ve noktsınd küresel mfsl ile dengededir.

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEK FAZLI ŞEBEKE KALKIŞLI SÜREKLİ MIKNATISLI SENKRON MOTOR. YÜKSEK LİSANS TEZİ Müh.

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEK FAZLI ŞEBEKE KALKIŞLI SÜREKLİ MIKNATISLI SENKRON MOTOR. YÜKSEK LİSANS TEZİ Müh. İSANBUL EKNİK ÜNİESİESİ FEN BİLİMLEİ ENSİÜSÜ EK FAZL ŞEBEKE KALKŞL SÜEKLİ MKNASL SENKON MOO YÜKSEK LİSANS EZİ Müh. Aun FA Anbili Dlı : ELEKİK MÜHENDİSLİĞİ Pogı : ELEKİK MÜHENDİSLİĞİ KASM 6 İSANBUL EKNİK

Detaylı

BÖLÜM 6: KABLOLAR 6.1. KABLOLAR

BÖLÜM 6: KABLOLAR 6.1. KABLOLAR ÖLÜM 6 KLOLR ÖLÜM 6: KLOLR 6.. KLOLR Kllr, mühendislikte kullnıln tşııcı sistemlerden iridir. rihe kıldığınd çk önceleri kullnılmış ln ir tşııcı sistem lduğu görülmektedir. Kllr,. sm köprülerde. Enerji

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ TC SKRY ÜNİVERSİTESİ TEKNOLOJİ FKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM201 ELEKTRONİK-I DERSİ LBORTUR FÖYÜ DENEYİ YPTIRN: DENEYİN DI: DENEY NO: DENEYİ YPNIN DI ve SOYDI: SINIFI: OKUL NO: DENEY GRUP

Detaylı

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar.

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar. . BÖÜ EETROSTATİ AIŞTIRAAR ÇÖÜER EETROSTATİ. 3 olu. 3. kü e si ön ce ye o kun - u ul u ğun a top lam yü kü ya çap la y la oğ u oan t l ola ak pay la ş la. top 3 olu. Bu u um a, 3 6 ve olu. Da ha son a

Detaylı

YTÜ İNŞAAT FAKÜLTESİ. Harita Mühendisliği Bölümü FİZİKSEL JEODEZİ. Doç. Dr. Cüneyt AYDIN

YTÜ İNŞAAT FAKÜLTESİ. Harita Mühendisliği Bölümü FİZİKSEL JEODEZİ. Doç. Dr. Cüneyt AYDIN YTÜ İNŞAAT FAKÜLTESİ Haita Mühendisliği Bölümü FİZİKSEL JEODEZİ Doç. D. Cüneyt AYDIN İstanbul, 014 İÇİNDEKİLER Sayfa 1. ÇEKİM KUVVETİ, ÇEKİM İVMESİ ve POTANSİYEL KAVRAMLARI.... 1 1.1 Çekim Kuvveti ve Çekim

Detaylı

2009 Kasım. MUKAVEMET ve MALZEME 05-Ö ÖZET. M. Güven KUTAY. 05-mukavemet.doc

2009 Kasım. MUKAVEMET ve MALZEME 05-Ö ÖZET. M. Güven KUTAY. 05-mukavemet.doc 009 Ksım UKVEET ve LZEE 05-Ö ÖZET. Güven KUTY 05-mukveme.oc u k v e m e ve l z e m e İ Ç İ N D E K İ L E Pçlki geilmele...7. Önemli zolnm çeşilei...7.. Kşılşım momenlei..... Hez sm geilmesi.... Kesi önemi

Detaylı

IfiIK VE GÖLGE. a) Benzerlikten, r K = 3 2 r olur. 6d Tam gölgenin alan 108 cm 2 oldu undan, 4d = r K

IfiIK VE GÖLGE. a) Benzerlikten, r K = 3 2 r olur. 6d Tam gölgenin alan 108 cm 2 oldu undan, 4d = r K IfiI VE GÖGE MODE SORU DE SORUARIN ÇÖZÜMER. P R. cm a) Benzelikten, cm cm a) Cismin çap cm ise ya çap cm i. Benzelikten tam nin ya çap, (+) (8++) 4 cm olu. b) Benzelikten ya nin ya çap, 8+ 0 5 cm olu.

Detaylı

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E - 8. LYS Mtemtik Soulı Ve Çözümlei M + +. eel sısının değei kçtı? M. > eşitsizliğinin en geniş çözüm kümesi şğıdkileden hngisidi? ) ) ÇÖZÜM : ve ) ) ve olduğundn di.. YNIT : ) ) R ) Z ) R + ) R {} ) R

Detaylı

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER KTI ÝSÝMLR KTI İSİMLR YILLR 1966 1967 1968 1969 1970 1971 197 197 197 1975 1976 1977 1978 1979 1980 1981 198 198 198 1985 1986 1987 1988 1989 1990 1991 199 1995 1996 1997 1998 1999 001 001 00 00 00 005

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / EETRİ EEE ÇÖZÜERİ enee -.. H E desek E E EH (E uğund ot tn) olu. ` j $ $ c hlde, ^h $ $ 0 0 0 0 üüüş esfesi 0 c di. ulunu. evp de 0 0 0 ile c di. de 0 0 0 ile c di. hlde, lnın nık klcğı üüüş esfesi

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

TG 11 ÖABT İLKÖĞRETİM MATEMATİK

TG 11 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN BİLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖAB İLKÖĞREİM MAEMAİK Bu testlein he hkkı sklıdı. Hngi mçl olus olsun, testlein tmmının ve i kısmının İhtiç Yıncılık

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

2.Hafta: Kristal Yapı

2.Hafta: Kristal Yapı MALZEME BİLİMİ MAL0.Hft: Kristl Ypı Mlzemeler tmlrın bir ry gelmesi ile luşur. Bu ypı içerisinde tmlrı bir rd tutn kuvvete tmlr rsı bğ denir. Ypı içerisinde birrd bulunn tmlr frklı düzenlerde bulunbilir.

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn

Detaylı

Uçuş Kumanda Yüzeyi Kilitlenme Etkilerini Düzeltici Otomatik Pilot Tasarımı

Uçuş Kumanda Yüzeyi Kilitlenme Etkilerini Düzeltici Otomatik Pilot Tasarımı Uçuş Kumanda Yüzei Kilitlenme Etkileini Düzeltici Otomatik Pilot Tasaımı Coşku Kasnakoğlu 1, Ünve Kanak 1 Elektik ve Elektonik Müendisliği Bölümü TOBB Ekonomi ve Teknoloji Ünivesitesi, Söğütözü, Ankaa

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Optik Sorularının Çözümleri

Optik Sorularının Çözümleri Ünite 4 Optik Soulaının Çözümlei 1- Gölgele ve Ayınlanma 2- Işığın Yansıması ve Düzlem Aynala 3- üesel Aynala 4- Işığın ıılması 5- Renkle 6- ecekle 1 Gölgele ve Ayınlanma Testleinin Çözümlei 3 Test 1

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

Sayı Kümeleri ve Koordinatlar

Sayı Kümeleri ve Koordinatlar DERS 1 Sı Kümeleri ve Koordintlr 1.1 Kümeler. Mtemtiğin temel kvrmlrındn biri küme kvrmıdır. Okuucunun küme kvrmın bncı olmıp kümelerle ilgili temel işlemleri bildiğini kbul edioruz. Bununl berber kümelerle

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

TG 2 ÖABT İLKÖĞRETİM MATEMATİK

TG 2 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ Şubt TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hkkı sklıdı. Hngi mçl olus olsun, testlein tmmının ve bi kısmının

Detaylı

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur.

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur. Mtemtik SAĞDAN VE SOLDAN YAKLAŞMA Yndki tblod bir değişkeninin 4 sısın sğdn ve soldn klşımı ifde edilmiştir. u durumu genellemek gerekirse; değişkeni re el s ı sın, dn kü çük de ğer ler le k l şı or s,

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 4. BÖÜ SIIARIN ADIRA UEİ ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ. F F 1. F F F Ci sim le r engee oluğuna göre; için, F. s. s için, F. s. s oğunlukların oranı, s s 4 s CEAP B Ci sim ler eşit böl me li ve en ge

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A 0 - LYS/MT GOMTRİ ÇÖZÜMLRİ NM.. 70 k k 70 40 m ( X ) m ( ) m ( ) 70 kolsun.. k ln( ) sn m ( ) 80-40 40 + 40 70 0 evp: de sn olduğun göe k k ln( ). 8 cm k evp: 4.. 0 0 y y H çıotyın kollın ndlen dkmele

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir. GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld

Detaylı

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK DÝFERANSÝYEL DENKLEMLER ( Genel Teka Testi-). Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) tü?. Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) ve

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ 11. SINI SOU BANKASI 1. ÜNİTE: KUVVET VE HAEKET 1. Konu VEKTÖLE TEST ÇÖZÜMLEİ 1 Vektörler Test 1 in Çözümleri 3. 4 N 1. 1,2 = 2 3 2 3 120 4 N 4 N 6 N 4 N Şekil I Şekil II A Şekil I Şekil II A 3 Değeri

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

SIVI BASINCI. 3. K cis mi her iki K. sı vı da da yüzdü ğü ne gö re ci sim le re et ki eden kal dır ma kuv vet le ri eşittir. = F ky 2V.d X.

SIVI BASINCI. 3. K cis mi her iki K. sı vı da da yüzdü ğü ne gö re ci sim le re et ki eden kal dır ma kuv vet le ri eşittir. = F ky 2V.d X. BÖÜ SIVI BSINCI IŞTIRR ÇÖZÜER SIVI BSINCI 4a a a a a a a a a a 4a ka bı nın ta ba nın a ki sı vı ba sın cı, 4ag ka bı nın ta bı nın a ki sı vı ba sın cı, ag ve ba sınç la rı ta raf ta ra fa oran la nır

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

Çubukta açılan delikler

Çubukta açılan delikler YTÜ İş Müh. Böl. Çlik Ypıl I D Nolı Y. Doç. D. Dvim ÖZHENDEKCİ ÇEKME ÇUBUKLRI Ki zou olk ylız l oğulu çmy muz kl ll çm çuuklı i; kf ili çm çuuklı, il, kıl, v. u ü şıyıı ll ö öilili. Çm çuuklı y çok çlı

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ ÖÜM TRİS UT TRİS N MD SRU - Dİ SRURIN ÇÖZÜMRİ uvveti bileşenleine ayılığına yatay ve üşey bileşenle bibiine eşit olu u uuma, 4 4 yü ü nün işa e ti ( ol ma lı ı yü ü nün yü ü ne uy gu la ığı ele ti sel

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Sf No tek ve çok üeli kplı üele ve ktı cisimle.................................. KVRMSL IM EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Üç boutlu nesnelee ktı

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı