3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ"

Transkript

1 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ

2 Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek ve gerekli hesaplamaları yapabilmek Bugükü değer ve gelecek değer kavramlarıı öğremek ve gerekli hesaplamaları yapabilmek Borç itfa türlerii bilmek Borç taksit usurlarıı bilmek Borçlarda eşit ödeme tutarlarıı hesaplayabilmek Aahtar Kavramlar Faiz Bileşik Faiz Bugükü Değer Aüite Devamlı Eşit Ödemeler Borç İtfası Eşit Ödemeler Balo Ödeme 1

3 Ġçidekiler Faiz Kavramı o Basit Faiz o Basit Faiz Örek Uygulamalar o Bileşik Faiz ve Gelecek Değer o Bileşik Faiz Örek Uygulama o Bileşik Faiz ve Paraı Zama Değeri o Bileşik Faiz ve Bugükü Değer o Örek Uygulamalar o Etki (Efektif) Faiz o Örek Uygulamalar o Sürekli Bileşik Faiz o Örek Uygulamalar o Nomial Faiz ve Reel Faiz o Örek Uygulamalar Eşit Ödemeler (Aüiteler) o Eşit Ödemeleri Gelecekteki Değeri o Örek Uygulamalar o Eşit Ödemeler Tutarı (Aüite) o Örek Uygulama o Eşit Ödemeleri Bugükü Değeri o Örek Uygulamalar o Devamlı Eşit Ödemeler (Perpetuity) o Örek Uygulamalar o Eşit Ödemelerde Döemsel Faiz Oraı o Örek Uygulamalar o Eşit Ödemelerde Taksit Sayısı 2

4 Borç İtfası ve Örek Uygulamaları o Eşit Ödemelerle (eşit Taksitlerle) Bir Borcu İtfası o Döem Sou Eşit Ödemelerle Bir Borcu İtfası o Döem Başı Eşit Ödemelerde Bir Borcu İtfası o Eşit Aapara Taksitleriyle Bir Borcu İtfası o Taksitleri Belli Bir Döem Sora Başladığı Borç İtfaları o Balo Ödeme o Değişke Faizli Krediler Özet Çalışma Soruları Çalışma Soruları Yaıt Aahtarı Yararlaıla Kayaklar 3

5 BÖLÜM 3 PARANIN ZAMAN DEĞERĠ 1. Faiz Kavramı Faiz e yalı alamıyla mali foları (paraı) maliyetidir. Eğer bir kişi tüketimii ya da bir kurum faaliyetlerii veya yatırımlarıı fiase etmek içi yeterli foa sahip değilse, buu fo fazlası ola kişi veya kurumlarda ileride geri ödemek koşuluyla sağlayacaktır. Başkalarıda ödüç aldığı bu foları kullaa kişi ve kurumlar buu karşılığıda faiz ödeyeceklerdir. Buu ev kiralaya bir kişii durumua bezetebiliriz. Ev kiralaya bir kişi kedisie ait olmaya bir koutu kullamakta, buu karşılığıda ev sahibie kullaım süresi boyuca belirli bir kira ödemekte ve ev sahibii talebi veya kedi isteğiyle evde çıkarak koutu sahibii kullaımıa iade etmektedir. Burada ödee kira evi kullaım maliyetidir. Ayı şekilde, kedisie ait olmaya bir fou belirli bir süre kullaa kişi ve kurum da bu kullaım süresi ile oratılı olarak faiz ödemekte ve sürei souda fou iade etmektedir (geri ödemektedir). Burada da faiz, fou veya başka bir ifade ile belirli miktardaki paraı belirli bir süre içi kullaım maliyetidir. Geliride az tüketimi ola bir kişi tasarruf olarak adladırıla fo fazlasıı bakaya yatırdığıda bir alamda bakaya borç vermekte ve buu karşılığıda vade boyuca (paraı baka tarafıda kullaım süresi) faiz elde etmektedir. Bu bakada fo eksiği ola bir kişi veya kurum kredi aldığıda söz kousu fo içi vade boyuca faiz ödemektedir. Burada da görüleceği gibi, fo fazlası olalar borç vererek folarıı kullaımıı başkalarıa faiz geliri karşılığıda devretmekte, fo eksiği olalar da gerekli ola foları faiz ödeyerek temi etmektedirler. Fo fazlası olaları elde ettikleri faiz miktarı ile fo kullaaları ödedikleri faiz miktarı (F) üç usura bağlıdır. Bularda biricisi ödüç verile veya alıa fo miktarıdır. Ödüç verile veya alıa fo miktarı aapara (A) olarak adladırılır. İkicisi, bu fou e kadar bir süre içi ödüç alıdığıı belirte vadedir (). Üçücüsü ise faiz oraıdır (i). Faiz oraı değişik bileşelerde oluşur. Faiz oraı söz kousu bileşeler ciside aşağıdaki şekilde ifade edilebilir: i = Paraı zama değeri + eflasyo riski primi + geriye ödeyememe riski primi + likidite riski primi + vade riski primi + kur riski primi Paraı zama değeri: Gerçek alamda faizi karşılığı paraı zama değeridir. Faizi bileşeleri ola ve yukarıda yazıla diğer riskler olmasa da, borç vere kişi karşı tarafta bir bedel talep edecektir. Bu bedel, borç verei borç alaa ödüç verdiğide, ödüç verile para tutarı ile oratılı öüe çıkabilecek fırsatları karşı tarafa devretmesii karşılığıdır. Eğer, borç vere kişi karşı tarafa belli bir döem içi ödüç veriyorsa, ödüç verile meblağla ilgili öüe çıkabilecek yatırım fırsatlarıı karşı tarafa devretmiş olmaktadır. Doğal olarak, kaçırılabilecek olası fırsatları bedelii borç alada talep edecektir. Aksi halde, borç vermeye yaaşmayabilecektir. Nitekim fias yazııda özellikle temettü politikaları ile ilgili olarak çok kullaıla bir deyim ola Eldeki bir kuş daldaki iki kuşta iyidir. ifadesi bu durumu çok güzel bir biçimde açıklamaktadır. Eflasyo riski primi: Eflasyo, fiyatları geel seviyesideki artıştır. Eflasyou e öemli etkisi paraı alım gücüü düşürmesidir. Eflasyo edeiyle ayı mal ve hizmetlere sahip olabilmek içi gelecekte daha yüksek bir tutar ödeir veya ayı parayla gelecekte daha az mal ve hizmet satı alıabilir. Reel faiz, bugü ödüç verile folar karşılığıda alıa bedeldir. Reel faiz, bir diğer deyişle, eflasyoda arıdırılmış faiz olup eflasyo risk primi hariç yukarıda belirtile diğer beş usurda oluşmaktadır. Reel faiz 4

6 hesaplaması bizim gibi göreceli yüksek eflasyo yaşaya ülkeler açısıda öem taşımaktadır. Çükü eflasyo edeiyle vade souda elde edilecek faizi satı alma gücü düşecektir. Buu telafi etmek ve borç vereleri satı alma gücüü korumak içi reel faize, vade boyuca beklee eflasyo oraı kadar bir eflasyo primi ekleir. Geriye ödeyememe riski primi: Borç ala kişi ve kurumları aldıkları borcu aaparasıı ve faizii zamaıda ödeyebilme kabiliyetie göre belirlee risk primidir. Eğer borçluu ödeme kabiliyeti yüksekse geri ödeyememe risk primii değeri düşük, borçluu ödeme kabiliyeti düşükse geri ödeyememe risk primii değeri yüksektir. Öreği, devleti kısa vadede iç borçlarıı ödeyememe olasılığı yoktur. Çükü kısa vadede merkez bakası kayaklarıı kullaarak borçlarıı ödeyebilir. Buda dolayı hazie boosuu faiz oraı risksiz faiz oraı olarak kabul edilir. Aslıda burada belirtile risksiz ifadesi geriye ödeyememe riskii olmadığıı belirtmektedir, diğer riskler hazie boosuda da söz kousu olduğuda hazie boosuu faizi diğer risk primlerii ihtiva etmektedir. Borçluu vadeside borcu aapara ve faizii ödeyebilme olasılığı düşükse, borç vereler geri ödeyememe riski olarak adladırıla aapara ve faizi tahsil edememe olasılığı ile karşılaşırlar. Söz kousu riski taşıya borç vereler bu riskle karşılaşma ihtimali yüzüde daha yüksek bir getiri elde etmek isterler ve geri ödeyememe riski primii yüksek tutarak talep ettikleri faiz oraıı artırırlar. Likidite riski primi: İşletmeler baze tahvil ve fiasma boosu gibi borçlamayı temsil ede mekul kıymetler ihraç ederek piyasada borçlaırlar. Eğer bu mekul kıymetler kolaylıkla piyasa değeride akde döüştürülebiliyorsa likiditesi yüksektir, aksi halde likiditesi düşüktür. Söz kousu mekul kıymetleri kolaylıkla akde döüştürülebilmesi içi ikicil piyasada fazla bir zorlukla karşılaşmada satılabilmeleri gerekir. Hazie boosu ve devlet tahvili likiditesi oldukça yüksek borçlama araçlarıdır. Çükü bu araçları alım-satımıı yapıldığı aktif bir ikicil piyasa mevcuttur ve elide bu araçları buluduralar buları bu piyasada kolaylıkla satarak akde çevirebilirler. Acak, adı fazla duyulmamış bir işletme tarafıda ihraç edile borçlama araçlarıa ikicil piyasada ayı kolaylıkla alıcı buluamayabilir. Bu durumda söz kousu borçlama araçlarıı elleride tutalar paraya ihtiyaçları olduğuda buları satarak akde çevirememe riski ile karşılaşırlar. Bu riski taşıyalar likidite primii yüksek tutarak daha fazla faiz talep ederler. Vade riski primi: Uzu vadeli borçlama araçları faiz riskie daha fazla maruz kalır. Çükü piyasa faiz oraları arttığıda hazie boosu, devlet tahvili, özel kesim tahvili gibi borçlama araçlarıı piyasa değeri düşer. Uzu vadede faiz oralarıdaki dalgalamalar daha fazla olabileceğide ve vade uzadıkça faiz oraı riski de artacağıda, borç vereler bu durumu telafi etmek içi daha yüksek vade riski primi uygulayarak daha fazla faiz talep edeceklerdir. Ayrıca borç vereler, verdikleri borcu kısa vadeli kayaklarla fiase ediyorlarsa (öreği 10 yıllık kout kredisii ortalama 3 aylık mevduatla fiase etmek gibi) vade boyuca yeide fiasma ihtiyacı ile karşılaşacaklardır. Faizler yükselirse yeide fiasma içi daha yüksek bir faiz ödemek durumuda kalacaklardır. Bu yöüyle de borç vereler faiz oraı riskie maruz kalacak ve buu telafi etmek içi verdikleri borçlara daha yüksek vade primi uygulayacaklardır. Öreği, güümüzde mevduatı ortalama vadesii 3 ay olduğu Türk Bakacılık Sistemide bakalarımızı uzu vadeli kredi kulladırırke karşılaştıkları e öemli risklerde birisi de budur. Bakacılık sistemide bu riske vade uyumsuzluğu riski de deilmektedir. Kur riski primi: Hesaplamalarıı yabacı para birimi üzeride yapa yatırımcıı, ödüç verile para birimii yabacı para birimlerie karşı olası değer kaybı riskie karşı talep ettiği risk primidir. Öreği TL ciside ödüç vere yatırımcı, faiz oraıı 5

7 uyguluğuu değerledirirke TL i diğer para birimleri karşısıda taşıdığı kur riskii göz öüe alır ya da almak zorudadır. Eğer yerli para birimi aşırı değerlemişse, piyasa faiz haddii e öemli usurlarıda birisi olarak kur riski ö plaa çıkmaya başlar. Faizi çeşitli şekillerde sııflamak mümküdür. Vade souda sadece aapara üzeride elde edile faiz Basit Faiz olarak isimledirilir. Öreği bakada üç ay vadeli bir hesap açtırıldığıı kabul edelim. Döem souda isterseiz aapara ve faizi çekebilir, isterseiz sadece faizi çekerek (faizi aaparada ayırarak) aaparayı bir üç ay daha yatırabilirsiiz. Bu durumda elde edeceğiiz faiz basit faizdir. Faizi çektiğiizde aaparaız sabit kalmakta ve ikici üç aylık döemde de ayı aapara üzeride faiz hesaplamaktadır. İkici üç aylık döemi souda da faizi çektiğiizi kabul edelim. Bu durumda aapara yie değişmemekte ve üçücü üç aylık döem içi de ayı aapara üzeride faiz hesaplamaktadır. Vade souda faizi aaparaya ekleerek aapara + faiz toplamıa yeide belli bir süre içi faiz yürütülmesi ise Bileşik Faiz kavramıı ortaya çıkarmaktadır. Öreğimize devam edersek, üç ayı souda aaparamız belirli bir faiz kazaacaktır. Bu faiz ve aaparaya hiç dokumada bir üç ay daha yatırırsak, aapara miktarı faiz kadar artacak ve ikici üç ay içi faiz bu toplam miktar üzeride hesaplaacaktır. İkici üç ay souda elde ettiğimiz faizi aaparaya eklersek aaparamız yie artacak ve üçücü üç ay içi faiz arta aapara miktarı üzeride hesaplaacaktır. Basit faizde aapara miktarı değişmediğide her üç aylık döemi souda elde edile faiz de ayı olmaktadır (faiz oraıı değişmediği kabul edilmektedir). Bileşik faizde ise aapara her üç aylık döemde arttığıda elde edile faiz de artmaktadır. Faiz ile ilgili olarak belirlee sürei de uygulamalarda farklılaştığı görülmektedir. Eğer faiz hesaplamalarıda kullaılacak süre 360 gü üzeride hesaplaacak ise yapıla hesaplama Ticari Faiz; kullaıla süre 365 gü olarak hesaplaacak ise Gerçek Faiz olarak adladırılır. Basit Faiz Belli bir aapara miktarı esas alıarak, belli bir süre içi, belli bir faiz oraı üzeride hesaplaa faize basit faiz ismi verilir. Basit faiz, ilgili döem souda elde edile faizdir. Daha öce de belirtildiği gibi, basit faiz hesaplaırke, döem souda elde edile faizi aaparaya eklemesi ve bir döem daha yatırılması söz kousu değildir. Faizi aşağıdaki usurlarda oluştuğu daha öce belirtilmişti: Aapara, A Faiz Oraı, i Süre (vade), Faiz, F Nomial faiz bir yıllık basit faiz oraıa verile isimdir ve bakalar değişik vadelere ilişki faiz oralarıı hep omial faiz ciside ifade ederler. Diğer bir değişle omial faiz bakacılıkta mevduat ve kredi faiz oralarıı verirke kullaıla stadart ora olarak da ifade edilebilir. Nomial faiz içi kullaıla faiz oraları gülük, aylık ya da yıllık olarak ifade edilebilir. Öreği, ülkemizde bakalar mevduat faiz oralarıı yıllık, acak tüketici kredisi veya kout kredisi faiz oralarıı aylık olarak ila etmektedirler. Bu farklılıkları 6

8 hesaplamalarda doğru kullaılabilmesi içi faiz oraıı süre ile birlikte dikkate alıması ve oa göre oraı formüllerde kullaılması gerekmektedir. Döemlik faiz oraıı ifade ede i oraıı yıllık faiz oraı r ile ilişkiledirerek hesaplamak gerekir. Faiz oraı yüzde olarak ifade edilir (% 20 gibi). Süre yıl ise döemlik faiz oraı (i) = r/100 şeklide gösterilebilirke; süre ay ise i= r/1200; süre gülük verilmişse i=r/36000 olarak kullaılması gerekir. Burada verile bilgilere göre Basit Faiz şu şekilde hesaplaabilir: F = A**i Örek Uygulamalar A) Bay A, tasarrufu ola TL yi bir bakaya yatırarak değerledirmek istiyor. 60 gü süre ile değerledireceği paraya baka yıllık % 15 faiz uygulamaktadır. Bua göre Bay A bakaya yatıracağı bu paraya ilişki e kadar faiz alacaktır? F = A**i formülüde Öcelikle i yi hesaplamak gerekecektir. Burada i = r/36000 de i = 15/36000 t= 0, gülük faiz olarak buluur. F = A * * i F = TL * 60 gü * 0, F= 250 TL olarak buluur. Bu öreği, sadece süre kısmıı değiştirerek çözersek aşağıda olduğu gibi souçları farklılaşmadığıı görebilirsiiz. Süreyi 60 gü yerie 2 ay olarak dikkate alırsak; i = 15/1200 hesaplamasıda i= 0,0125 olarak buluur. F ay = A * * i F ay = TL x 2 Ay x 0,0125 F ay = 250 TL Verile bilgiler itibariyle, istee her zama faiz tutarı olmayabilir. Aapara, süre ya da faiz oraı da sorulalar arasıda yer alabilir. B) Bay A, tasarrufu ola TL yi 60 gü süre ile bir bakaya yatırarak değerledirmiş ve souda 250 TL faiz elde etmiştir. Bua göre Bay A ı bakaya yatırdığı bu para ile ilgili olarak, bakaı uyguladığı faiz oraı edir? F = A * * i 7

9 i F A* i *60 i = 0, olarak buluur. Acak burada bulua ora gülük faiz oraıdır. Dikkat edilirse yukarıda süre () 60 gü olarak ifade edilmiştir. Süre gü olarak alıdığıda bulua ora da gülük faiz oraıdır. Yıllık faiz oraı hesaplamak istediğide; i = r / formülüde, r = 0, * = 15 olarak buluur. Yıllık faiz oraı % 15, gülük (döemsel) faiz oraı ise yaklaşık %0,04 dür. Sürei 2 ay olarak alıdığıı kabul edelim. Bu durumda formül aşağıdaki şekilde yazılacaktır. i *2 i= 0,0125 olarak buluur. i = r / 1200 formülüde, r= 0,0125 * 1200 = 15 olarak buluur. Burada da yıllık ora % 15, aylık (döemsel) ora ise % 0,125 dir. Bileşik Faiz ve Gelecek Değer Döem souda, aaparaya o döemde elde edile faizi ekleerek yeide yatırılması durumda, bir soraki döemde elde edile faize bileşik faiz dediği daha öce ifade edilmişti. Bir soraki döemde aapara, öceki döemde elde edile faiz miktarı kadar arttığıda elde edile faiz de daha fazla olmaktadır. Çükü bir soraki döemi faizi arta aapara miktarı üzeride hesaplamaktadır. Bir kişii bakada bir yıllık mevduat hesabı açtırdığıı kabul edelim. Bu kişi üç yıl boyuca aaparaya ve her yıl elde edile faize dokuması. Bu kişii üçücü yılı souda bakada toplam e kadar parası olur? Gelecek değer olarak adladırıla üçücü yılı souda hesaptaki toplam para miktarı, birici yılı souda elde edile faizi aaparaya eklemesi ve bu şekilde bir daha yatırılması, ikici yılı souda elde edile faizi ikici yılbaşıdaki aapara miktarıa eklemesi ve bir daha yatırılması ve üçücü yılı souda elde edile faizi üçücü yılbaşıdaki aapara miktarıa eklemesi ile buluur. Buu aşağıdaki şekilde gösterebiliriz: A, başlagıçtaki aapara miktarı, i döemsel (yıllık) faiz oraı olsu. Her yılsouda; o yıl elde edile faiz, aaparaya ekleerek bir daha yatırılmaktadır. Birici yılı souda elde edilecek faiz, basit faiz formülü kullaılarak aşağıdaki şekilde buluacaktır: F= A * i 8

10 Burada i döemsel (öreğimizde yıllık) faiz oraıı ifade etmektedir. Bu ora, daha öce de açıkladığı gibi r omial faiz oraıda i = r / 100 ifadesiyle elde edilmektedir. Birici yılı souda elde edile faiz aaparaya eklediğide, ikici yıl içi yatırıla aapara miktarı A + (A * i) olacaktır. Bu ifadei diğer bir gösterim şekli A * (1+i) şeklidedir. A * (1+i) miktardaki aapara ikici yıl içi i yıllık faiz oraıda yatırılacak ve ikici yılı souda [A * (1+i)] * (1+i) veya A * (1+i) 2 miktarıa ulaşacaktır. Üçücü yıl içi de ayı işlem yapılacak ve üçücü yılı souda aapara miktarı A * (1+i) 3 olacaktır. Buu geelleştirirsek, A miktardaki aapara, i döemsel faiz oraı üzeride, döem solarıda elde edile faiz aaparaya ekleerek adet döem (öreği yıl) yatırılsa, ici döemi souda aşağıdaki miktara ulaşır. Gelecek Değer (GD) = A* (1+i) Buradaki (1+i) Gelecek Değer Faktörü (GDF) olarak adladırılır. Fias kitaplarıı souda bu faktöre ait değerler değişik i ve değerlerii karşılığı olarak hesaplamış vaziyette okuyucuu istifadesie suulur. Okuyucuu yapacağı tek şey ilgili ora (i) ve vadei () kesiştiği değeri almak ve buu aapara değeri (A) ile çarparak gelecek değeri bulmaktır. Gelecek değer (GD), literatürde İgilizce karşılığı ola FV (Future Value) kısaltması ile de gösterilmektedir. Yukarıdaki açıklamalarda her döem içi faiz oraıı değişmediği kabul edilmektedir. Buu biraz daha açarsak, ikici döem içi uygulaa faiz oraı birici döemdeki faiz oraıyla, üçücü döemde uygulaa faiz oraı birici ve ikici döemlerdeki faiz oraıyla ayıdır. Acak, değişik döemlerde uygulaa faiz oraları farklılık gösterebilir. Çükü, faiz oraları piyasa şartlarıa göre değişebilmektedir. Bir kişii bakada altı ay vadeli bir hesap açtırdığıı ve parasıa üç yıl boyuca dokumak istemediğii düşüelim. Baka birici altı ayda hesabı cari faiz oraı üzeride açacaktır. İkici altı ayda cari faiz oraı düşebilir veya yükselebilir. Birici altı ayı souda vade dolduğuda, baka hesaba ikici altı ay içi o gükü cari faiz oraıı uygulayacaktır. Bu ora ilk altı ayda uygulaa orala ayı olabilir veya bu orada farklı olabilir. Üç yıl boyuca baka, hesabı her yeilediğide, hesabı yeilediği gükü cari faiz oraıı uygulayacaktır. Döemler itibariyle faiz oraıı değiştiği durumda gelecek değer aşağıdaki şekilde hesaplaır: GD = A * (1+i 1 ) *(1+i 2 ) * (1+i 3 ) * (1+i ) i 1 i 2 i 3.. i GD = A * ( 1 i t ) ; t1 Burada; Π çarpma operatörü, i t ise t döemide uygulaacak döemsel faiz oraıdır. Örek Uygulama Bay B, TL lik tasarrufuu bakaya yatırarak değerledirmek istiyor ve % 15 yıllık faiz üzeride bir yıl vadeli hesap açtırıyor. Bay B, bakadaki parasıa üç yıl hiç dokumazsa, hesabıda üçücü yılı souda kaç TL olur? 9

11 Gelecek Değer = A * (1+i) Gelecek Değer = * (1+0,15) 3 = TL Bileşik Faiz ve Paraı Zama Değeri Fiasmadaki e temel kavramlarda birisi, yukarıda kısaca değiile paraı zama değeridir. Bu kavrama göre, paraı zamaa göre belirlee bir değeri vardır. Bugü elde edilecek para, gelecekte elde edilecek parada daha değerlidir. Çükü bugü elde edilecek para ile yatırım yapılarak getiri elde edilebilir. Ayı miktardaki para gelecekte elde edilirse, bugü yatırım yapılarak kazaılabilecek getiride mahrum kalımış olur. Dolayısıyla yakı zamada elde edilecek para, her zama daha ileride elde edilecek ayı miktardaki parada daha değerlidir. Bu durumu, yukarıda açıklaa gelecek değer kavramı ile de ilişkiledirerek basit bir örekle açıklayalım. Piyasa faiz oraıı yıllık % 16 olduğuu kabul edelim. Bize şöyle bir teklif yapılmaktadır. Bugü mü TL istersiiz; yoksa bugü TL, ikici yılı başıda TL, üçücü yılı başıda TL mi istersiiz? Birici alteratifte suula para miktarı TL dir, ikici alteratifte ise suula toplam para miktarı TL dir. Eğer bu çok basit hesaba dayaarak ikici alteratifi tercih edersiiz çok yaılırsıız. Çükü bu basit işlem paraı zama değerii dikkate almamaktadır. Bu alteratifleri paraı zama değerii dikkate alarak iceleyelim. Bugü aldığımız TL yi piyasa faizi üzeride bir yıllık vadeli mevduat hesabıa yatırdığımızı ve üç yıl boyuca hiç dokumadığımızı kabul edelim. Bu durumda, TL i üçücü yılı soudaki değeri (gelecek değeri) bir öceki bölümde öğrediğimiz gelecek değer formülüde aşağıdaki şekilde hesaplaacaktır: GD = * (1 + 0,16) 3 = ,96 TL Şimdi ikici alteratifi ele alalım. Bugü elde ettiğimiz TL yi bir yıl vadeli olarak piyasa faiz oraı üzeride yatırdığımızda bir yıl sora paramız * 1,16 = TL olacaktır. İkici yılı başıda alacağımız TL yi bu tutara ekleyip bir yıl daha yatırdığımızda, ikici yılı souda paramız * 1,16 = 6.171,2 TL ye erişecektir. Üçücü yılı başıda alacağımız TL yi bu tutara ekleyip bir yıl daha yatırdığımızda, üçücü yılsouda paramız ,2 * 1,16 = ,59 TL olacaktır. Görüldüğü gibi birici alteratifte elde edile toplam para ikici alteratifte elde edile toplam parada daha fazladır. Çükü birici alteratifte, ilk yılı başıda elde edile TL değerledirilerek birici yılda itibare faiz kazaılmıştır. Şimdi kouyu biraz daha basitleştirelim. Birici yılı başıda elde edile TL i değeri ile üçücü yılı başıda elde edile TL i değeri ayı mıdır? Bu soruu cevabı hayır dır. Çükü birici yılı başıda elde edile TL heme yatırılarak üçücü yılı souda (% 16 yıllık faiz üzeride), * (1 + 0,16) 3 = 7.804,48 TL değerie ulaşır. Üçücü yılı başıda elde edile TL yatırılarak üçücü yılı souda, * 1,16 = TL değerie ulaşılır. Görüldüğü gibi daha erke elde edile TL daha geç elde edile TL de kıymetlidir TL yi üçücü yılı başıda elde edersek, bir ve ikici yıllarda kazaacağımız faizde mahrum oluruz. O halde, üçücü yılı başıda elde edilecek TL i bugükü değeri, birici yılı başıda elde 10

12 edilecek TL i bugükü değeride azdır. Bu hesaplamalar bizi bugükü değer kavramıa getirmektedir. Bileşik Faiz ve Bugükü Değer Bugükü değer, gelecekteki bir tutarı belli bir iskoto oraı ile bugükü değerii bulmaya yaraya bir hesaplama biçimidir. Öreği, Üç yıl sora elde edilecek (üçücü yılı souda) TL i bugükü değeri kaç TL dir? sorusuu cevabı bugükü değer formülü yardımıyla buluur. Bugükü değer formülü aşağıda gösterilmiştir: (Bugükü değer) GD BD ( 1 i) Burada i iskoto (faiz oraı veya sermaye maliyeti) oraıdır. Bugükü değer, İgilizce karşılığı ola PV (preset value) kısaltması ile de gösterilir. Yukarıdaki formülü faktör hesaplaması ile şöyle de yazabiliriz. 1 BD GD* ya da BD = GD * Bugükü Değer Faktörü (BDF) (1 i) Souç değişmeyecek olup, öcede hazırlamış paraı zama değeri tablolarıda ilgili döem ve iskoto oraıı kesiştiği yerdeki bugükü değer faktörü, gelecek değer ile çarpılmak suretiyle bugükü değer kolayca hesaplaabilecektir. Örek Uygulamalar A) Bay C, 1 döem sora elde edeceği TL i % 15 iskoto oraı ile bugükü değerii hesaplamak isterse; BD :? GD : i : % 15 : 1 Döem BD (1 0,15) 1 => BD = TL olarak buluur. Burada dikkat edilirse; gelecek yıl ya da 1 yıl demek yerie 1 döem ifadesi kullaılmıştır. Döem her zama yıla eşit olmayabilir. Öemli ola döem ifadesi ile o döeme ait iskoto oraıı kullaılmasıdır. Ayı soruyu Bugükü Değer Faktörü Tablosuyla çözmek istersek; BD = GD * BDF (1 Döem;% 15) 11

13 BD = x 0, => BD = TL olarak buluur Burada kullaıla BDF i kitabı arkasıdaki paraı zama değeri tablosuda (EK-B) döem 1 ile 0,15 oraıı kesiştiği yerdeki değer (0, ) olduğu görülür. B) Bay C, 4 döem sora elde edeceği TL i % 10 iskoto oraı ile bugükü değerii hesaplamak isterse; BD :? GD : i : % 10 : 4 Döem Ya da BD =>BD = TL olarak buluur. 4 (1 0,10) BD = TL * BDF (4;%10) BD = * 0, => BD = TL olarak da buluur. C) Bay B, TL lik tasarrufuu bir yıl vadeli mevduat hesabı açarak değerledirmek istiyor. Bay B i üçücü yılı souda TL ye ihtiyacı vardır. Bay B, yılsolarıda parasıa dokumayacak, kazaıla faiz aaparaya ekleerek bir yıl daha yatırılacaktır. Bay B, üçücü yılı souda ihtiyacı ola parayı elde etmek içi parasıı yıllık yüzde kaç faiz ile bakaya yatırmalıdır? Gelecek Değer = A * (1+i) = * (1+i) i i = 0,1935 olarak buluur. Dolayısıyla Bay B yıllık % 19,35 faiz üzeride parasıı yatırmalıdır. D) Bay B, TL lik tasarrufuu bakaya yatıracak ve bu paraı gelecek değeri TL olacaktır. Bakaı uygulayacağı yıllık faizi % 16 olduğu bilidiğie göre, Bay B parasıı bakaya bu tutara ulaşabilmesi içi e kadar süre ile yatırmalıdır? Gelecek Değer = A * (1+i) = * (1+0,16) Bu çözümü yapabilmek içi logaritmada destek almak gerekmektedir. log = log * log 1,16 12

14 log log => = 4 yıl olarak buluur. log1,16 E) Bay C i TL lik tasarrufu vardır. Bay C bu tasarrufuu 6 aylık mevduat hesabıa yatırarak değerledirmek istemektedir. Baka yıllık % 16 faiz uygulamaktadır. Bay C parasıa hiç dokumazsa, dördücü yılı souda hesabıda kaç parası olur? Bu problemi çözmek içi öcelikle döemlik (altı aylık) faiz oraıı hesaplamamız gerekir. i (altı aylık faiz oraı) = 16 / 200 (bir yılda iki altı ay olduğuda 100 * 2 = 200) = 0,08 Dört yılda toplam 8 adet altı aylık döem vardır. O halde = 8 döem olarak buluur. Gelecek Değer = * (1+0,08) 8 = TL F) Bay C i TL lik tasarrufu vardır. Bay C bu tasarrufuu 3 aylık mevduat hesabıa yatırarak değerledirmek istemektedir. Baka yıllık % 14 faiz uygulamaktadır. Bay C parasıa hiç dokumazsa, üçücü yılı souda hesabıda e kadar parası olur? i (üç aylık faiz oraı) = 14 / 400 (bir yılda dört üç aylık döem olduğuda 100 * 4 = 400) = 0,035. = 3 * 4 = 12 döem Gelecek Değer = * (1+0,035) 12 = TL G) Bay C i TL lik tasarrufu vardır. Bay C bu tasarrufuu bir aylık mevduat hesabıa yatırarak değerledirmek istemektedir. Baka yıllık % 17 faiz uygulamaktadır. Bay C parasıa hiç dokumazsa, ikici yılı souda hesabıda kaç parası olur? i (aylık faiz oraı) = 17 / 1200 = 0,0142 ve = 2 * 12 = 24 döem Gelecek Değer = * (1+0,0142) 24 = TL H) Bay E i üç yıl sora TL ye ihtiyacı vardır. Bay E parasıı bakaya altı ay vadeli yatıracak ve üç yıl hiç dokumayacaktır. Yıllık faiz oraı % 16 dır. Bay E üç yıl sora istediği parayı elde etmek içi şimdi bakaya kaç TL yatırmalıdır? i (altı aylık faiz oraı) = 16 / 200 = 0,08 = 2 * 3 = 6 döem = A * (1 + 0,08) = A * 1,5869 A = ,38 TL. 13

15 Etki (Efektif) Faiz Faiz, daha öce de belirtildiği gibi, geelde yıllık bazda ifade edilir (omial faiz). Öreği yıllık % 15 faiz gibi. Eğer bir yılda kısa bir süre ile bakaya para yatırılırsa, vade souda elde edile faiz aaparaya ekleerek yılsoua kadar yeide yatırılabilir ve bu miktar üzeride yılsouda bir kere daha faiz kazaılır. Dolayısıyla bir yılda elde edile faiz daha yüksek olur. Bakaları ila ettikleri yıllık basit faizi omial faiz olduğuu yukarıda ifade etmiştik. Bua karşı bir yılda kısa süreli hesaplarda vade souda elde edile faizi aaparaya eklemesi ile oluşa miktarı yılsoua kadar tekrar yatırılması durumuda elde edile faiz ise etki (efektif veya bileşik) faiz olarak adladırılır. Yai, bir diğer deyişle, 1 yıllık bileşik faize efektif faiz deilmektedir. Buu bir örekle açıklayalım. Bay D i TL si vardır ve bu para ile üç aylık mevduat hesabı açtırmıştır. Baka % 18 basit faiz üzeride hesabı açmıştır. Bir öceki kısımda hesapladığı gibi bir yıl sora Bay D i parasıı kaç TL olacağıı bulalım. i = 18 / 400 = 0,045. Gelecek Değer = * (1 + 0,045) 4 = TL. Bay D i orijial aaparası TL idi. Bay D, bir yılda TL faiz kazamıştır. Bay D i kazadığı faiz, / = % 19,25 dir. Dolayısıyla yıllık basit faiz oraı (omial faiz) % 18, yıllık etki (bileşik) faiz oraı ise % 19,25 dir. Etki faiz ayı zamada gerçekleşe faizdir. Yıllık etki (bileşik) faiz oraı aşağıdaki şekilde hesaplaır. i yıllık, etki = (1 + i döemlik, basit ) 1 Yukarıdaki problemde, yıllık etki faiz oraıı bu ifadeyi kullaarak hesaplayalım. i döemlik, basit = 18 / 400 = 0,045, = 4 i yıllık, etki = (1 + 0,045) 4 1 = 0,1925 => % 19,25 olarak buluur. Örek Uygulamalar A) 100 TL omial değerli, üç ay vadeli bir hazie boosu 94 TL de satılmıştır. Bu hazie boosuu yıllık basit (omial) ve etki (bileşik) faizi edir? Hazie boosuu satı ala kişi, satı aldığı gü 94 TL ödemekte, vade bitimide üç ay sora, devlette 100 TL almaktadır. Bu durumda üç ayda 6 TL faiz geliri elde etmektedir. i döemlik, basit = 6 / 100 = 0,06 => % 6. t yıllık, basit = 6 x 4 = 24. Yıllık basit faiz % 24 dür. i yıllık, etki = (1 + i döemlik, basit ) 1 = (1 + 0,06) 4 1 = 0,2625 Yıllık bileşik faiz % 26,25 dir. 14

16 B) Hazie altı ayda bir faiz ödemeli, yıllık basit faizi % 20 ola devlet tahvili ihraç etmiştir. Bu devlet tahvilii yıllık etki (bileşik) faizi edir? i döemlik, basit = 20 / 200 => 0,1 i yıllık, etki = (1 + i döemlik, basit ) 1 = (1 + 0,1) 2 1 = % 21 Sürekli Bileşik Faiz Yukarıdaki öreklerde, yatırıla aapara belirli bir zama dilimide faiz kazamaktadır. Öreği, bakaya üç ay vadeli parasıı yatıra bir kişi üçücü ayı souda faiz kazamakta, kazadığı faizi aaparaya ekleyerek yeide yatırmakta ve bu aapara üzeride ikici üç ayı souda bir daha faiz kazamaktadır. Bu durum kesikli bileşik faiz olarak adladırılır. Sürekli bileşik faizde ise, yatırımcı belirli döemlerde değil fakat sürekli olarak faiz kazamakta ve kazadığı faizi aaparaya ekleyerek faiz kazamaya devam etmektedir. Sürekli bileşik faizde, gelecek değer ve etki faiz oraıı hesaplayabilmek içi yukarıda icelee formüllerde bazı düzelemeler yapmak gerekir. Kesikli bileşik faizde gelecek değer, A * (1+i) ifadesiyle hesaplamaktaydı. Sürekli bileşik faiz uygulamasıda gelecek değer aşağıdaki şekilde hesaplaır: Gelecek değer = A * e i* e = 2, değerii ifade etmektedir. Kesikli bileşik faizde yıllık etki faiz, i yıllık, etki = (1 + i döemlik, basit ) 1 ifadesiyle hesaplamaktaydı. Sürekli bileşik faiz uygulamasıda yıllık etki faiz aşağıdaki şekilde hesaplaır: i yıllık, etki = e i - 1 => i = i yıllık, basit Örek Uygulamalar A) Bay B, TL sii yıllık % 18 sürekli bileşik faizle yatırıyor. Dördücü yılı souda Bay B i parası kaç TL olur? i = 18/100 => 0,18 = 4 döem Gelecek değer = A * e i* ifadeside, Gelecek değer = * e 0,18 * 4 = ,66 TL B) Bay C i TL si vardır. Bay C parasıı yıllık sürekli bileşik faiz üzeride iki yıl yatırmak istiyor. Yıllık basit faiz oraı % 16 ise Bay C i iki yıl sora kaç parası olur? i = 16 / 100 => 0,016 15

17 Gelecek değer = * e 0,16 * 2 = ,83 TL. C) Yıllık basit faiz % 20 dir. Sürekli bileşik faiz uygulaması durumuda, yıllık etki (bileşik) faiz oraı edir? i yıllık, etki = e i 1 i yıllık, etki = e 0,2-1 = 0,2214 => % 22,14 Nomial Faiz ve Reel Faiz Nomial faiz eflasyo primii de içere faizdir. Reel faiz ise eflasyoda arıdırılmış reel getiridir. Nomial ve reel faiz arasıda aşağıdaki gibi bir ilişki vardır. Burada bahsi geçe eflasyo değeri geçmiş döeme ilişki değer değil, gelecek döem içi beklee eflasyou ifade etmektedir. (1 + i omial ) = (1 + i reel ) (1 + Eflasyo) Yai : i reel 1 iomi al 1 Eflasyo 1 Örek Uygulamalar A) Nomial faiz oraı % 22 dir. Eflasyo % 10 ise reel faiz oraı edir? (1 + 0,22) = (1 + i reel ) (1 + 0,10) 1,22 = (1 + i reel ) * 1,1 1,109 = 1 + i reel i reel = 0,109 => % 10,9 B) Bir yatırımcı % 8 reel faiz elde etmek istemektedir. Mevcut omial faiz oraı % 18 dir. Yatırımcıı istediği reel faizi elde edebilmesi içi eflasyo e olmalıdır? (1 + 0,18) = (1 + 0,08) (1 + Eflasyo) 1,18 = 1,08 (1+Eflasyo) 1,0926 = 1 + Eflasyo Eflasyo = 0,0926 => % 9,26 C) Bir yatırımcı % 12 reel faiz elde etmek istemektedir. Beklee eflasyo % 10 olduğua göre, yatırımcı istediği reel faizi elde etmek içi hagi omial faiz üzeride yatırım yapmalıdır? (1 + i omial ) = (1 + 0,12) (1 + 0,1) 16

18 (1 + i omial ) = 1,232 i omial = 0,232 => % 23,2 2. EĢit Ödemeler (Aüiteler) Eşit ödemeler (aüiteler) belirli bir süre boyuca, belirli döemlerde yapıla sabit ödemeleri ifade eder. Öreği bir kişi, 5 yıl süreyle her yıl bakaya TL yatırırsa, bu TL lik seri eşit ödemeler olarak adladırılır. Buu, bir öceki bölümde ele alıa koularda öemli bir farkı vardır. Bir öceki bölümde yatırımcı başlagıçta belirli miktarda parayı yatırıyor ve süre boyuca (öreği üç yıl) bu para ile ilgili hiçbir işlem yapmıyordu (para yatırmak ya da para çekmek gibi). Eşit ödemelerde ise yatırımcı sadece birici döemde değil, süre boyuca her döem belirli miktarda para yatırmaktadır. İki türlü eşit ödeme vardır. Bularda biricisi döem sou eşit ödemeler (ordiary aüite), diğeri ise döem başı eşit ödemelerdir (aüite due). Döem sou eşit ödemelerde, ödemeler döem solarıda, döem başı eşit ödemelerde ise ödemeler döem başıda yapılmaktadır. Fias alaıda e çok kullaıla eşit ödeme türü, döem sou eşit ödemelerdir. Bileşik faiz hesaplamalarıda dört parametre değeri (gd, bd,, i) söz kousu ike; eşit ödemelere ilişki hesaplamalarda bu dört parametreye ilavete eşit (devresel) ödeme parametresi de hesaplamalarda yer almaktadır. Bir öceki bölümde açıklaa bileşik faiz hesaplamalarıda gd hesaplaırke bd, ve i; bd hesaplaırke gd, ve i; hesaplaırke gd, bd ve i; i hesaplaırke de gd, bd ve değerlerie ihtiyaç duyulmaktadır. Öte yada, aşağıda öreklerle açıklaacak ola eşit ödemelere ilişki hesaplamalarda gd içi eşit (devresel) ödeme, i, ; bd içi eşit (devresel) ödeme, i ve ; eģit (devresel) ödeme içi gd ya da bd, i ve ; i içi gd ya da bd, eşit (devresel) ödeme ve ; içi de gd ya da bd, eşit (devresel) ödeme ve i değerlerii bilimesie gereksiim duyulmaktadır. Eşit Ödemeleri Gelecekteki Değeri Döem sou eşit ödemeleri gelecekteki değerii hesaplarke aslıda adet bileşik faiz hesaplaması yapılmakta ve daha sora yapıla bu hesaplamaları toplamı alımaktadır. Uygulamada oldukça zama ala bu yaklaşım yerie eşit ödemeler içi daha kolay bir hesaplama yötemi bulumaktadır. Kouyu bir örekle açıklayalım. Her yılı souda, yıllık % 16 faiz oraı ile TL yatırılırsa üçücü yılı souda para kaç TL olur? Bu hususu zama doğrusu üzeride gösterelim * 1,16 = * (1,16) 2 = 1.345,6 Eşit Ödemeleri Gelecekteki Değeri (GDA) = 1.345, = 3.505,6 Görüldüğü gibi eşit ödemeleri gelecekteki değerii hesaplarke adet bileşik faiz hesaplaması yapılmakta ve daha sora buları toplamı alımaktadır. Öreğimizde bua göre üçücü yılı souda elde edilecek para toplamı 3.505,6 TL dir. Yukarıdaki zama 17

19 doğrusuda da görüleceği gibi ilk ödeme birici yılı souda, ikici ödeme ikici yılı souda, üçücü ödeme ise üçücü yılı souda yapılmıştır. Burada dikkat edilmesi gereke kou yapıla ödemeleri eşit olması ve faiz oraıı süre boyuca sabit kalmasıdır. Eşit (devresel) ödemeler ilgili literatürde DT, A veya İgilizce karşılığı ola PMT kısaltması ile gösterilmektedir. Yukarıdaki örekte, eşit ödeme (DT) TL olup gelecek değer (GDA) aşağıdaki şekilde hesaplaabilir: GDA = * (1 + i) * (1 + i) * (1 + i) 0 (1 + i) 0 ifadesii bire eşit olduğu uutulmamalıdır. GDA eşit ödemeleri üçücü yılsoudaki değeridir. Ödemeler yılsouda yapıldığıda, birici yılı souda yapıla ödeme ikici ve üçücü yıllarda bileşik faiz kazamakta, ikici yılı souda yapıla ödeme sadece üçücü yıl faiz kazamakta, üçücü yılı souda yapıla ödeme ise faiz kazaamamaktadır. Yukarıdaki örek içi yaptığımız hesaplamayı geelleştirirsek aşağıdaki ifadeyi elde ederiz. GDA = DT (1 + i) -1 + DT (1 + i) -2 + DT (1 + i) DT (1 + i) 0 (1) Yukarıda ifadei her iki tarafı da (1+i) ifadesi ile çarpılırsa aşağıdaki ifade elde edilir: GDA(1 i) DT(1 i) DT(1 i) 1... DT(1 i) (2) Bir umaralı ifade iki umaralı ifadede çıkarıldığıda, (2) (1): ( GDA) i DT(1 i) DT(1 i) 0 ifadesi elde edilir. Burada, ( GDA) i DT[(1 i) 1] ifadesie geçilir. Burada da döem sou eşit ödemeleri gelecek değeri, ( 1 i) 1 GDA DT şeklide buluur. i ( 1 i) 1 Yukarıdaki ifadesi Döem Sou Eşit Ödemeler Gelecek Değer Aüite Faktörü i olarak isimledirilir ve aşağıdaki şekilde gösterilir. (1 i) GDAF( i, ) i 1 Yukarıda adet bileşik faiz hesaplamasıyla bulua GDA değeri yukarıda çıkarıla formülde de görüldüğü gibi sadece bir tek hesaplama yapılarak elde edilebilmektedir. Bu formülde kullaıla GDAF değeri bir öceki bölümde icelediğimiz gelecek değer faktörüde 1 çıkarılarak iskoto oraıa oralaması ile buluabilir. Tablolar i ve değerie karşılık gele Döem Sou Eşit Ödemeler Gelecekteki Değer Aüite Faktörüü (GDAF) bize sumaktadır. Tabloda da buluabilecek bu GDAF değerii yukarıdaki formüle göre çözersek; 18

20 (1 0,16) GDAF (0,16;3) 0, = 3,5056 değeri buluur. Daha sora döem sou eşit ödemeleri gelecekteki değerii aşağıdaki gibi hesaplarız: GDA = DT * GDAF (i, ) Eşit (devresel) ödeme miktarı TL olduğuda, üçücü yılı soudaki toplam para miktarı (gelecek değer); GDA = * GDAF (0,16; 3) GDA = * 3,5056 = 3.505,6 TL olarak buluur. Burada da, bir öceki bölümde olduğu gibi getiri oraıı (i) eşit ödemeler süresice değişmediği kabul edilmiştir. Getiri oraı döemler itibariyle değişiklik gösterirse gelecek değer faktörü kullaılamaz. Bu durumda eşit ödemeleri gelecek değeri aşağıdaki şekilde buluur: GDA = DT ( 1 i t ) + DT ( 1 i t ) + DT ( 1 i t ) DT (1 + i) 0 t2 t3 Burada ödemeleri döem solarıda yapıldığı uutulmamalıdır. İlk ödeme birici yılı souda yapıldığıda, birici yılda faiz kazaılmamaktadır. Yukarıdaki öreğe döersek, ikici yıldaki faiz yıllık % 16, üçücü yıldaki faiz yıllık % 18 ise eşit ödemeleri üçücü yılsoudaki değeri aşağıdaki gibi hesaplaır: GDA = (1 + 0,16) (1 + 0,18) (1 + 0,18) = 3.548,8 TL Döem başı eşit ödemelerde, ödemeler döem başlarıda yapılmaktadır. Bölüm başıdaki öreği döem başı eşit ödemeler olarak çözersek aşağıdaki zama doğrusuu elde ederiz. t * 1,16 = Burada, ilk ödeme birici yılı başıda, ikici ödeme ikici yılı başıda, üçücü ödeme ise üçücü yılı başıda yapılmakta ve üçücü yılı souda toplam 4.066,5 TL para elde edilmektedir. Döem başı eşit ödemeler içi gelecek değer faktörü aşağıdaki şekilde buluur. GDAF döem başı = GDAF döem sou (1 + i) * (1,16) 2 = 1.345, * (1,16) 3 = 1.560,9 GDA = , ,9 = 4.066,5 19

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Zaman tercihinden dolayı paranın zaman değeri her zaman söz konusudur. Parayı şimdi yada gelecekte almanın tercihi hangisi daha avantajlı ise ona

Zaman tercihinden dolayı paranın zaman değeri her zaman söz konusudur. Parayı şimdi yada gelecekte almanın tercihi hangisi daha avantajlı ise ona Zaman tercihinden dolayı paranın zaman değeri her zaman söz konusudur. Parayı şimdi yada gelecekte almanın tercihi hangisi daha avantajlı ise ona göre yapılır. Bugün paranızı harcamayıp gelecekte harcamak

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

FİNANSMAN MATEMATİĞİ

FİNANSMAN MATEMATİĞİ FİNANSMAN MATEMATİĞİ Serbest piyasa ekonomisinde, sermayeyi borç alan borç aldığı sermayenin kirasını (faizini) öder. Yatırımcı açısından faiz yatırdığı paranın geliridir. Başlangıçta yatırılan para ise

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

MADENCİLİK YATIRIM PROJELERİNİN SOSYAL KARLILIK ANALİZİYLE DEĞERLENDİRİLMESİ

MADENCİLİK YATIRIM PROJELERİNİN SOSYAL KARLILIK ANALİZİYLE DEĞERLENDİRİLMESİ MADENCİLİK, Cilt 42, Sayı 3, Sayfa 25-30, Eylül 2003 Vol. 42, No. 3, pp 25-30, September 2003 MADENCİLİK YATIRIM PROJELERİNİN SOSYAL KARLILIK ANALİZİYLE DEĞERLENDİRİLMESİ Appraisal of Miig Ivestmet Projects

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009 http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 SORU - 1 31.12.2009 itibariyle, AIC Şirketi'nin çıkarılmış sermayesi 750.000.000 TL olup şirket sermayesini temsil eden

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL.

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL. TEMEL BANKACILIK HİZMEERİ TALEP ve BİLGİ FORMU ÜRÜNÜN /TANIMI : Katılım Fou (/Yabacı Para) Süresi (Vadesi) : Süresiz TAHSİL EDİLECEK ÜCRET, MASRAF VE KOMİSYON; Özel Cari Hesap İşletim Ücreti Hesap Özeti

Detaylı

1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır.

1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır. Örnekler 1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır. a) Buzdolabı 35 ay sonra alınacak olsa kaç liraya alınabilir? b) Buzdolabının bugünkü peşin

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Treçevski Aeta Gatsovska Naditsa İvaovska İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF III İKTİSAT - HUKUK VE TİCARET MESLEĞİ TİCARET VE PAZARLAMA TEKNİSYENİ Deetleyeler:

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK KAPAK KONUSU Kırsal Kalkıma içi IPARD Programı da Sektöre BÜYÜK DESTEK Kırsal Kalkıma (IPARD) Programı Kırmızı Et Üretimi ve Et Ürülerii İşlemesi ve Pazarlaması alalarıda gerçekleştirilecek yatırımları

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

TÜRKİYE İÇİN SERMAYE STOK VERİLERİ GÜNCELLENMESİ VE BÜYÜME ORANIYLA İLİŞKİSİ: 1972-2008 DÖNEMİ

TÜRKİYE İÇİN SERMAYE STOK VERİLERİ GÜNCELLENMESİ VE BÜYÜME ORANIYLA İLİŞKİSİ: 1972-2008 DÖNEMİ TÜRKİYE İÇİN SERMAYE STOK VERİLERİ GÜNCELLENMESİ VE BÜYÜME ORANIYLA İLİŞKİSİ: 1972-2008 DÖNEMİ Updatig Capital Stock Data for Turkey ad Its Relatioship with Growth Rate: The Period of 1972-2008 Dr. Ahmet

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

TOPLUMDA ERKEK HEMŞİRE ALGISI

TOPLUMDA ERKEK HEMŞİRE ALGISI TOPLUMDA ERKEK HEMŞİRE ALGISI Meryem Saatçı * Özet Amaç: Toplumu erkek hemşirelerle ilgili düşüce ve görüşlerii belirlemesi. Yötem: Kesitsel türde yapıla çalışma 100 kişi üzeride, yüz yüze görüşülerek

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Finans Matematiği Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Paranın Zaman Değeri Finansın temel prensibi Elimizde bugün bulunan 1000 YTL bundan bir yıl sonra elimize

Detaylı

Bölüm 3. Gelecekteki Değer

Bölüm 3. Gelecekteki Değer Bölüm 3 Paranın Zaman Değeri İşlenecek Konular Gelecekteki Değer ve Bileşik Faiz Bugünkü Değer Çoklu Nakit Akımları Sonsuz ödemeler ve Anüiteler Fiili Yıllık Faiz Oranları Gelecekteki Değer Gelecekteki

Detaylı

FİNANS MATEMATİĞİ / PARANIN ZAMAN DEĞERİ. Prof.Dr.Yıldırım Beyazıt ÖNAL

FİNANS MATEMATİĞİ / PARANIN ZAMAN DEĞERİ. Prof.Dr.Yıldırım Beyazıt ÖNAL FİNANS MATEMATİĞİ / PARANIN ZAMAN DEĞERİ Prof.Dr.Yıldırım Beyazıt ÖNAL PARANIN ZAMAN DEĞERİ Araya zamanın girmesi bugünkü parayı, diğerine göre değerli kılmaktadır. Çünkü parayı sunan açısından o günkü

Detaylı

Değerlemenin Temelleri. Ders 2 Finansal Yönetim, 15.414

Değerlemenin Temelleri. Ders 2 Finansal Yönetim, 15.414 Değerlemenin Temelleri Ders 2 Finansal Yönetim, 15.414 Bugün Değerlemenin Temelleri Bugünkü değer Paranın Fırsat maliyeti Okuma Brealey ve Myers, 2. ve 3. Bölümler Değerleme Uygulamalar Gerçek varlıklar

Detaylı

Piyasa Yorumu. Global Piyasalar:

Piyasa Yorumu. Global Piyasalar: 25 Ocak 2013 Cuma Gülük Bülte İMKB verileri İMKB 100 86,437.9 Piyasa Değeri-TÜM ($m) 341,167.9 Halka Açık Piyasa Değeri-TÜM ($m) 98,376.5 Gülük İşlem Hacmi-TÜM ($m) 2,354.65 Yurtdışı piyasalar Borsalar

Detaylı

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ 7 Ağustos 011 CUMARTESİ Resmî Gazete Sayı : 8038 TEBLİĞ Bilgi Tekolojileri ve ĠletiĢim Kurumuda: SABĠT TELEFON HĠZMETĠNE ĠLĠġKĠN HĠZMET KALĠTESĠ TEBLĠĞĠ BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayaak ve Taımlar Amaç

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Güncellenmiş Faiz Dersi

Güncellenmiş Faiz Dersi Güncellenmiş Faiz Dersi Faiz Nedir Nasıl Hesaplanır? Faiz Nedir? Piyasa açısından bakarsak faizi, tasarruf sahibinin, tasarrufunu, ihtiyacı olana belirli süre için kullandırmasının karşılığı olarak aldığı

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme Dağıtım Ağı Tasarımı Seçimi Uygu ağ seçimide ürü karakteristiklerii yaısıra dağıtım ağıı güçllü ve zayıf yöleri de göz öüüe alımalıdır. Geçe hafta ele aldığımız tasarımları hem güçlü hem de zayıf yöleride

Detaylı

Günlük Bülten. 31 Ocak 2013. Turizm gelirleri 2012 yılında %1.8 arttı. HSBC Takipteki Şirketler 4Ç 2012 Finansal Tahminleri

Günlük Bülten. 31 Ocak 2013. Turizm gelirleri 2012 yılında %1.8 arttı. HSBC Takipteki Şirketler 4Ç 2012 Finansal Tahminleri 31 Ocak 2013 Perşembe Gülük Bülte İMKB verileri İMKB 100 78,982.9 Piyasa Değeri-TÜM ($m) 315,056.7 Halka Açık Piyasa Değeri-TÜM ($m) 90,359.1 Gülük İşlem Hacmi-TÜM ($m) 2,603.21 Turizm gelirleri 2012 yılıda

Detaylı

GAYRİMENKUL DEĞERLEMESİNDE GELİR İNDİRGEME YAKLAŞIMI VE YAKLAŞIMIN TÜRKİYE KOŞULLARINDA UYGULANABİLİRLİĞİ (KOCAELİ UYGULAMASI)

GAYRİMENKUL DEĞERLEMESİNDE GELİR İNDİRGEME YAKLAŞIMI VE YAKLAŞIMIN TÜRKİYE KOŞULLARINDA UYGULANABİLİRLİĞİ (KOCAELİ UYGULAMASI) Ç.Ü. Sosyal Bilimler Estitüsü Dergisi, Cilt 19, Sayı 1, 2010, Sayfa 382-397 GAYRİMENKUL DEĞERLEMESİNDE GELİR İNDİRGEME YAKLAŞIMI E YAKLAŞIMIN TÜRKİYE KOŞULLARINDA UYGULANABİLİRLİĞİ (KOCAELİ UYGULAMASI)

Detaylı

http://www.cengizonder.com Analiz Yöntemleri Örnek Soru Çözümleri Sayfa. 1 Ocak 2009 Mayıs 2014 ) 8 =2,343

http://www.cengizonder.com Analiz Yöntemleri Örnek Soru Çözümleri Sayfa. 1 Ocak 2009 Mayıs 2014 ) 8 =2,343 1 Ocak 2009 Mayıs 2014 Ocak 2009 / SORU - 1 8 ay süresince nominal %24 faiz oranıyla 1 aylık mevduatta değerlendirilen 2.000 TL kaç TL olur? Hesaplama yıllık nominal faizin aylık karşılığı üzerinden yapılır.

Detaylı

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... Tahvil Değerleme. İşletme Finansının Temelleri

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... Tahvil Değerleme. İşletme Finansının Temelleri İşletme Finansının Temelleri Bölüm 4 Tahvil Değerleme İşlenecek Konular Tahvil Piyasası Faiz Oranları ve Tahvil Fiyatları Cari Getiri ve Vadeye Kadar Getiri Tahvil Getiri Oranları Getiri Eğrisi Şirket

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

INSA394 İnşaat Mühendisliğinde Yapım ve Ekonomi. Doç. Dr. Gürkan Emre Gürcanlı İTÜ İnşaat Fakültesi İnşaat Müh. Bölümü

INSA394 İnşaat Mühendisliğinde Yapım ve Ekonomi. Doç. Dr. Gürkan Emre Gürcanlı İTÜ İnşaat Fakültesi İnşaat Müh. Bölümü INSA394 İnşaat Mühendisliğinde Yapım ve Ekonomi Doç. Dr. Gürkan Emre Gürcanlı İTÜ İnşaat Fakültesi İnşaat Müh. Bölümü Para Yönetimi ve Paranın Zaman Değeri Para Yönetimi ve Paranın Zaman Değeri Nominal

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... 3/21/2013. Tahvil Değerleme. İşletme Finansının Temelleri

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... 3/21/2013. Tahvil Değerleme. İşletme Finansının Temelleri İşletme Finansının Temelleri Bölüm 4 Tahvil Değerleme İşlenecek Konular Tahvil Piyasası Faiz Oranları ve Tahvil Fiyatları Cari Getiri ve Vadeye Kadar Getiri Tahvil Getiri Oranları Getiri Eğrisi Şirket

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:134-4141 Makie Tekolojileri Elektroik Dergisi 28 (3) 41-48 TEKNOLOJĐK ARAŞTIRMALAR Makale Düşük Sıcak Kayaklı Isı Pompaları Eerji Maliyet Aalizi Özet Murat KAYA Hitit

Detaylı

Düzensiz ödeme serisi

Düzensiz ödeme serisi Selçuk Üniversitesi İnşaat Mühendisliği Bölümü Para Yönetimi ve Paranın Zaman Değeri-2 Düzensiz ödeme serisi : Aşağıda belirtilen 4 yıllık harcamaları karşılamak için ne kadar para bankaya yatırılmalıdır

Detaylı

FİNANSAL HESAPLAMALAR

FİNANSAL HESAPLAMALAR FİNANSAL HESAPLAMALAR Finansal değerlendirmelerin tutarlı ve karşılaştırmalı olabilmesinin yanı sıra kullanılan kaynakların maliyet, yapılan yatırımların alternatif getiri analizlerini yapabilmek amacıyla;

Detaylı

Klinik Araştırma. Şenol Emre, Haluk Emir, Sinan Celayir. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi, Çocuk Cerrahisi Anabilim Dalı, İstanbul

Klinik Araştırma. Şenol Emre, Haluk Emir, Sinan Celayir. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi, Çocuk Cerrahisi Anabilim Dalı, İstanbul Çocuk Cerrahisi Dergisi (-):-, 0 doi:0./jtaps.0.0 Kliik Araştırma Tıp fakültesi beşici sııf öğrecilerii çocuk cerrahisi stajı içi düşüceleri: Geribildirim aketlerii ve sıav başarı oralarıı değerledirilmesi

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi ENERGY COST IN GEOTHERMAL POWER PLANTS

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi ENERGY COST IN GEOTHERMAL POWER PLANTS Joural of Egieerig ad Natural Scieces Mühedislik ve Fe Bilimleri Dergisi Sigma 2005/2 ENERGY COST IN GEOTHERMAL POWER PLANTS Ahmet DAĞDAŞ* Yıldız Tekik Üiversitesi, Makia Fakültesi, Makia Mühedisliği Bölümü,

Detaylı

2. Aşağıdakilerden hangisi bir gayrimenkulü belli bir süre için ve belli bir fiyattan alma, satma veya kiralama teklifinin açık tutulduğu anlaşma

2. Aşağıdakilerden hangisi bir gayrimenkulü belli bir süre için ve belli bir fiyattan alma, satma veya kiralama teklifinin açık tutulduğu anlaşma 1. Aşağıdakilerden hangisi değerleme uzmanının işini yaparken UDES Davranış Kuralları'nın ahlaki ve mesleki gereklerine uygun hareket ettiği gerçeğini tasdik eden taahhüt niteliğinde bir beyandır? A) Değerleme

Detaylı

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ ZKÜ Sosyal Bilimler Dergisi, Cilt 3, Sayı 5, 2007, ss. 7-87. TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ Doç.Dr. Gülsüm AKALIN Marmara Üiversitesi İİBF İktisat Bölümü gulsum@marmara.edu.tr Öğr.Gör.

Detaylı

FİNANSAL MATEMATİK. Oğuzhan ın 10 yıllık dönem müddetince yaptığı toplam ödeme aşağıdaki seçeneklerden hangisinde verilmektedir?

FİNANSAL MATEMATİK. Oğuzhan ın 10 yıllık dönem müddetince yaptığı toplam ödeme aşağıdaki seçeneklerden hangisinde verilmektedir? FİNANSAL MATEMATİK SORU 1 Oğuzhan 10 yıl süreli 10.000 TL lik yıllık %9 efektif faiz ile bir borç almaktadır. Her yılın sonunda, borca ilişkin faizi ve %8 efektif faiz lik borç ödeme fonuna ilişkin ana

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oranı ve Net Bugünkü Değer Yöntemlerinin İncelenmesi)

YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oranı ve Net Bugünkü Değer Yöntemlerinin İncelenmesi) YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oraı ve Ne Bugükü Değer Yöemlerii İcelemesi) Tarık GEDİK, Kadri Cemil AKYÜZ, İlker AKYÜZ KTÜ Orma Fakülesi 680 TRABZON ÖZET Ulusal kalkımaı

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI 1/9 Hazırlaya Oaylaya Yürürlük Tarihi Revizyo Tarihi Mehmet ÜVEY Mehmet ÜVEY 06.04.2011 05.06.2014 Gözde Geçire Gözde

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

Para Yönetimi ve Paranın Zaman Değeri

Para Yönetimi ve Paranın Zaman Değeri Selçuk Üniversitesi İnşaat Mühendisliği Bölümü Para Yönetimi ve Paranın Zaman Değeri Para Yönetimi ve Paranın Zaman Değeri Faiz: Paranın maliyeti Ekonomik Eşdeğerlik Faiz Formülleri Özel Eşdeğerlik Hesaplamaları

Detaylı

Günlük Bülten. 06 Şubat 2013. TÜFE bazlı reel efektif döviz kuru endeksi Ocak ayında 120.16'ya yükseldi

Günlük Bülten. 06 Şubat 2013. TÜFE bazlı reel efektif döviz kuru endeksi Ocak ayında 120.16'ya yükseldi 06 Şubat 2013 Çarşamba Gülük Bülte İMKB verileri İMKB 100 80,309.9 Piyasa Değeri-TÜM ($m) 321,722.1 Halka Açık Piyasa Değeri-TÜM ($m) 92,241.7 Gülük İşlem Hacmi-TÜM ($m) 1,673.26 Yurtdışı piyasalar Borsalar

Detaylı

4) Bir mekânın alt ve üstünü oluşturan yatay taşıyıcı yapı elemanına ne ad verilir? A) Döşeme B) Kolon C) Kiriş D) İnce Yapı E) Temel

4) Bir mekânın alt ve üstünü oluşturan yatay taşıyıcı yapı elemanına ne ad verilir? A) Döşeme B) Kolon C) Kiriş D) İnce Yapı E) Temel Gayrimenkul Değerleme Esasları 19/12/2015 Sınavı 1) Katılım payları sadece nitelikli yatırımcılara satılmak üzere kurulan fon Aşağıdakilerden hangisidir? A)değişken Fon B)fon sepeti C)serbest yatırım fonu

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI The Turkish Olie Joural of Educatioal Techology TOJET July 2005 ISSN: 106521 volume Issue Article 16 BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI Yard. Doç. Dr. Bahadti RÜZGAR Marmara

Detaylı

FİNANSAL YÖNETİM ÇALIŞMA SERMAYESİ

FİNANSAL YÖNETİM ÇALIŞMA SERMAYESİ FİNANSAL YÖNETİM İŞLETME (ÇALIŞMA) SERMAYESİ YÖNETİMİ VE Yrd.Doç.Dr. Serkan ÇANKAYA ÇALIŞMA SERMAYESİ Kısa vadeli veya cari varlıklar ve borçlar topluca çalışma sermayesi olarak bilinir. Dönen Varlıklar:

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

Yrd. Doç. Dr. Eşref Savaş BAŞCI

Yrd. Doç. Dr. Eşref Savaş BAŞCI SERMAYE MALİYETİ Yrd. Doç. Dr. Eşref Savaş BAŞCI İçerik Öz Sermaye Maliyeti İmtiyazlı Hisse Senedi Maliyetinin Yaygın (Adi) Hisse Senedinin Maliyetinin Finansal Varlıkları Fiyatlama Modeline Göre Özsermaye

Detaylı

Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre ve Filtreli Kompanzasyonun Kullanımı ve Simülasyon Örnekleri

Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre ve Filtreli Kompanzasyonun Kullanımı ve Simülasyon Örnekleri Politekik Dergisi Joural of Polytechic ilt: 9 Sayı: 4 s.63-69, 006 Vol: 9 No: 4 pp.63-69, 006 Elektrik Eerji Sistemleride Oluşa Harmoikleri Filtrelemeside Pasif Filtre ve Filtreli Kompazasyou Kullaımı

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

Değer4. Doç.Dr. Oktay Taş. Net Şimdiki Değer. =PV(rate;nper;pmt;fv;type) =PV(faiz;dönem sayısı;ödeme;gelecek değer;dönem başı veya sonu)

Değer4. Doç.Dr. Oktay Taş. Net Şimdiki Değer. =PV(rate;nper;pmt;fv;type) =PV(faiz;dönem sayısı;ödeme;gelecek değer;dönem başı veya sonu) Şimdiki Değer =PV(rate;nper;pmt;fv;type) =PV(faiz;dönem sayısı;ödeme;gelecek değer;dönem başı veya sonu) Üç yıl sonra 450 TL'lik bir hesaba sahip olmak isteyen bir kişi, yıllık %20 faiz veren bir bankaya

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI. Hayat ve Emeklilik Satış Departmanı 2013

BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI. Hayat ve Emeklilik Satış Departmanı 2013 BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI 1 Bireysel Emeklilik - Türkiye 30.06.2011 itibarı ile emeklilik fonlarının türe göre pazar payları Türe Göre Pazar Payı (%) Kamu İç Borçlanma (TL) Dengeli (Esnek

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA

DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA Yöeim, Yıl: 7, Sayı: 55, Ekim 6 DİNAMİK PORFÖY SEÇİMİ ve BİR UYGULAMA Dr. Mehme HORASANLI İsabul Üiversiesi İşleme Fakülesi Sayısal Yöemler Aabilim Dalı Bu çalışmada, Li ve Ng ( arafıda aaliik çözümü üreile

Detaylı

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Ocak 2009 Mayıs 2014

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Ocak 2009 Mayıs 2014 http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Ocak 2009 / SORU - 1 AIC şirketi 60.000.000TL lik yatırım yapacaktır. Bu yatırımın 48.000.000 TL lik kısmı hisse senedi

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı