Anlık ve Ortalama Güç

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Anlık ve Ortalama Güç"

Transkript

1 ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç p( ( ( laj e akı: cs( ω, cs( ω Yukarıdak denkle yenden düzenlenrse, cs( ω, cs ω p( ( ( cs ( ω cs ( ω csα cs β cs( α β cs( α β ( cs ( cs (ω Sab Güç ω lk Snusdal Güç p( > : Güç dere arafından abzrbe edlr; p( < : Güç kaynak arafından abzrbe edlr

2 sn( sn cs( cs cs( ( p ω ω β α β α β α sn sn cs cs cs(,, Anlık e Oralaa Güç Oralaa güç, anlık gücün br peryak ralaasıdır. cs ( cs ( ( p ω cs ( ( T d p T 3 Alernaf akı derelernde güç: sn( Q sn( sn cs( cs cs( p ω ω Q p ω ω sn cs cs( Akf (gerçek güç, br (W, Wa Reakf güç, br ( AR, l Aper Reakf L R C. zaana bağlı değl. se, yük aaen rezsfr. 3. ±9 se, yük aaen reakf. 4. se, yükün çekğ ralaa güç sıfırdır. Akf-Reakf GÜÇ 4

3 Saf Rezsf Derede GÜÇ Eğer dere aaen rezsf se akı le laj aynı fazlı lur; yan Rezsf dereler her zaan güç harcar böylece, akf güç daa pzf lur. p cs ω cs ω sn( ω sn( ω φ ω cs( π π R R R L R ω C π π 5 Saf Rezsf Derede GÜÇ 6

4 Saf Endükf Derede Reakf GÜÇ Eğer dere aaen endükf se, laj le akı arasındak faz farkı: 9 Yan; laj akıdan 9 önde lur. Böylece, bbn üzernde akf güç daa sıfır lur, bbn üzernde sadece reakf güç lur. (bbnn ç drenc hal edlrse p Q sn ω sn ω cs( cs(9 W sn( sn(9 Q C L R 7 Saf Kapasf Derede Reakf GÜÇ Eğer dere aaen kapasf se, laj le akı arasındak faz farkı: 9 - Yan; akı, lajdan 9 önde lur. Böylece, kapasör üzernde akf güç daa sıfır lur, kapasör üzernde sadece reakf güç lur. p Q sn ω sn ω L cs( cs( 9 W sn( sn( 9 Q C R Endükf e kapasf derelerde reakf güç, perydk larak dereden çeklr e ekrar dereye sağlanır 8

5 AC Derede GÜÇ rs rs cs φ R R R Rs Rs Eğer φ sıfır değlse? ω Eğer le arasındak faz farkı 9 se. (φ 9 (saf reakf dere Böylece ralaa güç sıfır lur. 9 Alernaf akı derelernde güç: pf rf cs( Güç fakörü sn ( Reakf fakörü GÜÇ Fakörü Yukarıdak denklelerde eğer - değer pzf se, laj akıdan 9 önde; yan dere endükf deekr, negaf se akı lajdan 9 önde; yan dere kapasf deekr. Endükf derelerde güç fakörü ger (laggng Kapasf derelerde güç fakörü ler (leadng larak adlandırılır. Saf rezsf dere çn pf lur. R se Csφ lur, enerj alışerş lur ancak akf güç sıfırdır. Güç fakörü genellkle frekansa bağlıdır. p csω Q sn ω cs( eff eff cs( cs( cs( Q sn( csω, csω RS, RS Q sn( Q eff eff sn( sn(

6 Alernaf akı derelernde Kpleks güç: S jq S S S eff eff S Q cs(, Q cs( j Kpleks Güç an an( sn( sn( j( j j S e e e aralel Yükler çn Q aralel Yükler Ser Yükler Kpleks Güç S S rs rs cs ( rs rs j rs rs sn ( S j Q : yüke akarılan Wa cnsnden ralaa güçür şe yarayan ek güçür. Q: AR cnsnden kaynak le yükün reakf kısı arasındak reakf güç değşdr Q ( rezsf yük (pf. Q < ( kapasf yük (leadng, pf. Q > (endükf yük (laggng, pf.

7 Güç Üçgen Kplex Güç, epedans üçgennde ldu Güç üçgen le göserleblr. Güç üçgennn dör paraeres :, Q, S e dır. a Güç üçgen b Epedans üçgen Güç üçgen Q ( rezsf yük (pf. Q < ( kapasf yük (leadng, pf. Q > (endükf yük (laggng, pf. 3 S jq S S ( j( Q Q 4

8 5 Örnek: Şeklde görülen üç ane yükün lduğu derede, pla akf,reakf güçler e güç fakörünü bulunuz. 3 6 Wa T Q T T ar S 6 j pf cs( 53,3,6 6

9 4 l (Rs de çalışan br chaz,8 (ger, 8KW güç çekğne göre Kpleks güç le yük epedansını bulunuz. S cs, Q S sn pf rf cs.8, cs.8 sn kW S KA cs.8 Q k.6 6k AR S ( 8 j6 KA S KA cs eff eff 8kW, eff 4 RS 8 eff 4. 67A 4.8 eff 4 Z eff Z (4.6 j3.456 Ω 7 Yan arafa görülen dere grşndek akı e laj aşağıda erlşr; buna göre akf e reakf güçler bulunuz. Q sn( 4 sn( 73.AR Örnek cs( ω 5, 4sn( ω 5 A 4sn( ω 5 4 cs( ω 5 ( 5 ( 5 cs( 4 cs( W S j73.ar Q 73.AR Gerçek güç negaf lduğuna göre, dere güç sağlıyr deekr, Reakf güç pzf lduğuna göre, reakf güç harcanıyr deekr. 8

10 Şeklde görülen elekrk deresnde; a. akıını e lajını bulunuz b. Yük üzerndek akf e reakf gücü bulunuz. c. Ha üzerndek akf e reakf gücü bulunuz. d. Kaynağın sağladığı akf e reakf gücü bulunuz. S Z A( Rs Z yük j3 (4 j3(39 j3 j6 j ( Rs kaynak Ω j4ω ha 5 RS ha Rha 5 ( 5W, Qha X ha 5 (4 AR S ha 5 j AR 39Ω j6ω yük S (34 j3(4 j S kaynak S kaynak kaynak ,3 j75 S yük 975 j AR Görüldüğü gb, yük 975 W, Qyük 65AR S kaynak ( S yük Sha 9 Şeklde görülen elekrk deresnde 6 Ω luk drenç 4W güç harcadığına göre; a. lajını bulunuz b. Her kldak akf e reakf gücü bulunuz. c. Tpla akf e reakf gücü bulunuz. R 4 A( rs R (6 j j4 3, j,4 4 36, 87 3 j 5, j,4 5,77 4, 8 (4 j48 ( j4 4 j88 4,67,45 ( rs Ω luk drenç çn Ω 4 j48 4,54 4, 8 SΩ Ω 4,54 4,8 5,77 4,8 S Ω 656A S 6,5 8, S 48 j6 56 8, 44 S 6,5 8,43 S 4 j8 53 8, 43 ST 4,67,45 5,77 4,8 ST 376 j8 378,3 3, 35

11 Şeklde k paralel yük görülekedr. a. Tpla gücü bulunuz b. Tpla güç fakörünü bulunuz. Yük çn, W pf cs.75, Yük kw f.75 Leadng Yük 4 kw f.95 Laggng cs.75 4,4 S cs S 666,67 cs Q S sn 76,85 AR S jq j76,85 Yük çn, 4W pf cs,95 ler cs.95 8,9 S 4,53 cs Q S sn 34,4 AR S jq 4 j34,4 S T S S 6 j,4495 KA pf s 6 66,8,997 ler ger Şeklde görülen derede, a. Her kldak gücü bulunuz b. Tpla gücü bulunuz c. Tpla güç fakörünü bulunuz. 5.5 A j A ( 5 ( 5 (.5.5 A S ( 5 ( 5 ( A S.7 j A S ( 5 ( A pf cs( leadng

12 Şeklde görülen derede her br kaynağın sağladığı gücü bulunuz. A 5 A A A 9 5 j5 8 j A A j5 A A ( ( j ,57 A S ( 9 ( j. 43,3 A S 3 Şeklde üç ane paralel yük görülekedr. Yük epedansları da şeklde görülekedr. s 5 l a. Her kldan geçen akıı bulunuz b. Her kldak gücü bulunuz. c. Tpla gücü bulunuz. 4

13 Tpla güç fakörü ger Knrl 5 Örnek: Şeklde görülen derede, güç fakörünü e kaynağın sağladığı akf gücü bulunuz. Kaynağın gördüğü pla epedans Güç fakörü Kaynakan geçen akı Kaynağın sağladığı akf güç yükün çekğ akf güce eşr eya 6

14 Örnek: Şeklde görülen derede, drenç e bbnn harcadığı ralaa güçler e kaynağın sağladığı ralaa gücü bulunuz. 7 Örnek: Şeklde görülen elekrk deresnde ü eleanlar üzerndek ralaa gücü bulunuz.. Göz çn. Göz çn 4 kaynak çn j kaynak çn Drenç çn 8

15 Aşağıdak şeklde aynı jeneraör k farklı yükle yüklenşr İk yükün Oralaa güçler ( aynı, faka Reakf güçler (Q e güç fakörler farklıdır. SK A S 6 KA Aşırı yüklenş Yukarıdak şekller elekrksel chazların ana (raed güçlernn nçn Wa değl de A cnsnden erldğn açıklaakadır. Şeklde görüldüğü gb her k yük de klwaır. Ancak knc derede reakf güçen dlayı akı (ana akıından çk yüksekr. Bu yüzden knc deredek jeneraör aşırı yüklenş lur. 9 Br öncek sayfadak knc jeneraör aşırı yüklü d. Eğer, knc deredek yüke paralel br kapasör bağlanırsa( 6 KAR değernde, kapasörün reakf gücü le bbnn reakf güçler brbrn yk eder e akı aşağı çeklr. Böylece jeneraör aşırı yüken kuruluş lur. 3

16 3 3

17 33

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

BÖLÜM VIII SERİ VE PARALEL REZONANS

BÖLÜM VIII SERİ VE PARALEL REZONANS Devre Terisi Ders Ntu Dr. Nurettin ACI ve Dr. Engin Ceal MENGÜÇ BÖLÜM III SEİ E PAALEL EZONANS Şu ana kadar sinüzidal kaynaklar tarafından uyarılan devrelerde kararlı duru gerili ve akıları sabit kaynak

Detaylı

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1 KAPASİTANS VE ENDÜKTANS EBE-5, Ö.F.BAY KAPASİTANS VE ENDÜKTANS Bu bölümde enerj depolayan pasf elemanlardan Kapasörler e Endükörler anıılmakadır ÖĞRENME HEDEFLERİ KAPASİTÖRLER Elekrk alanında enerj depolarlar

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ . Amaçlar: EEM DENEY ALERNAİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKRİSİK ÖZELLİKLERİ Fonksiyon (işaret) jeneratörü kullanılarak sinüsoidal dalganın oluşturulması. Frekans (f), eriyot () ve açısal frekans

Detaylı

Ğ ü ü ç ş ş ğ ğ ğ ğ Ö ü ğ ş ğ ü ş Ç ş ş Ç ş ü ü ü ğ ç ç ş ü ş ş Ç ş ü ü ü ü ğ ş ş ü ü ş ş ş ü ü ğ ü üğü ş ç ü ü Ç ç ğ ü ü üğü ğ ü ç ş ş ş ş ğ ç ü ü ü ş ş ş Ç ş Ç ğ Ç ğ Ç Ç ü ş ş ü Öğ ü ş ş ğ ç Ç Ç ş Ç

Detaylı

Ü Ü Ğ Ş Ş Ş Ş Ş Ü Ğ ç Ş Ğ Ü Ü Ğ Ü Ş Ö ç ç Ğ Ğ Ü Ş Ü Ş Ş ç ç Ç Ü Ş Ç Ç Ü Ş Ş Ü Ü Ü Ü Ü Ü ç Ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ş Ğ Ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ş ç ç ç Ç ç ç ç ç ç ç Ç ç Ç ç ç ç

Detaylı

Ş İ İ ç İ İ İ İ ç Ş ü ü ü ü ç ü üç ü ü ü ç ü ü Ü İ Ğ Ş üç ü İ ü ü ü ç ü ç Ç ç İ ü üç ü Ç üç ü ç ç Ç ü Ç ç üç ü ç Ç ç ç ç ç Ğ Ğ ç İ ü ü ç ç ç ü ü ü Ü ç ç ü ç ç ü ü ü Ö ü ü ü ü Ü ü ü ç ü ç ç ü ü ü ü ç ü

Detaylı

ç ü ü ç ç ş İ Ç Ü ş İ Ç Ü ç ş ü İ Ç Ü ş ş ç ş ü Ö ü Ö İş ş ç İ Ç Ü ş ş ç ü ç ş ş İ Ç Ü ş ç Ü İ Ç Ü İ Ç Ü ü ç ş ş ş İ Ç Ü ç ü ş İ Ç Ü İş ş ş ü ş İ Ç Ü ş ü ş üç ü ş ş ş ç ü ü ç ş ş ş ş ü ş ü ü ş ç ü ç ç

Detaylı

Ç Ü ğ Ç ç Ğ ç Ü ç ğ ç ğ ğ ç ğ ç ç ğ ç ç Ö Ş Ö ğ ç ğ Ç Ü Ç ğ Ç ğ Ü Ü Ç Ü ğ ğ Ü ğ ç Ç ğ Ü ç ç ğ Ğ Ğ ç ç ğ ğ ğ ğ ğ Ğ Ğ Ğ Ğ Ğ Ş Ş Ç Ö Ö ç Ç ğ ç ç ğ ç ğ ç ç ç ğ ç ç ç Ü ç ç ç ğ Ö Ü Ç Ş Ş ç Ö ç ğ ğ ğ ç ğ ğ ğ

Detaylı

Ü ş ğ ğ Ü ş Ç ğ ş ş Ç ğ ş Ü ğ Ü ş ğ Ü Ç ğ ğ Ü ğ ğ ğ ş ğ ğ ğ ş ş ğ ş ş ş Ç Ç Ö ş ğ ş ş ğ ş ğ ğ ş Ü Ç ğ ş ğ ş ş ğ Ü ğ ş ş ğ ş ş ş ş ş ş ğ ğ ş ş ş ş ş ş ş Ü ğ ş ş Ü Ç ğ Ç Ç ş ş ş ğ ş Ö ÇÜ Ö ş ğ Ö ş ş ğ ş

Detaylı

Ü Ğ Ğ Ş Ö Ü Ü Ğ Ğ ü ü ü ü ü Ö Ü ü ü ü Ş ü ü Ş Ş ü ü ü ü üü ü Ş ü ü ü ü ü ü ü Ç ü ü ü ü ü ü ü üü ü ü ü üü ü ü ü ü ü ü ü ü Ş ü ü Ö ü ü ü ü ü ü ü ü Ç Ş Ç üü Ş ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü Ş ü ü ü Ü ü ü

Detaylı

ç ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ ğ ç ğ ğ ç ç ğ ğ ğ Ü ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ ğ ğ Ü ğ ğ ç ç ç ğ ç ğ ğ ç ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ğ ğ ğ ç ğ ç ğ Ü ğ ğ ğ ç ç ğ ç ğ Ü ç ğ ğ ğ ç Ü ç ç ç ç ğ ç ğ ğ

Detaylı

İ Ç Ü ö üğü İ Ö ö üğü Ş ü öğ ü ç Ç ü ü ü Ç Ü ç ğ ç ğ Ğ ç Ş ğ ç ö ğ ğ ü ç Ü Ç ö üğü ö ü ü İİ Ç ğ ü ğ ç ğ ü ü ü ç ü ü Ş ü ğ ç ü ü ç ü ü ç ö Ö Ş Ö ğ ö ü ç ğ İ Ç Ü Ç ğ Ç ğ Ü Ü İ ü ç ğ ğ ğ ğ ğ ğ ç Ç ç ü ç Ş

Detaylı

İ İ İ İ İ İ İ İ İ İ Ö İ İ İ İ İ Ü Ç İ Ş Ş İ İ Ü İ İ İ İ İ İÇİ Ö Ö Ç Ç Ç İ Ü Çİ İ Ü Ü İ İ İ İ İ İ İİ İ Ç Ş İ İ İ İ Ü Çİ Ö İ Ü Çİ İ İ Ü İİ İ Ç Ö İ Ö İ Ç Ç İ Ç Ö İ İ İİ İ Ç Ç Ç Ü İ Ç İ Ç İ Ş Ç İ Ğ İ İ İ İ

Detaylı

ü Ğ İ Ğ ü İ ç ü ü ü ç Ç ü ü ç Ç ü ü ç ü ü Ü Ç Ü ç ü ü ü ü ü ç Ç ü ü ç İ ü Ğ Ş İ İ ü Ğ İ Ğ ü İ Ö üçü ü Ö Ö ü Ö ü İ İ Ş Ğ İ İĞİ ü ü ü Ğİ İ Ğ İ Ğ ü Ö Ö Ü İĞİ ü Ü İ İ Ğİ ü ü Ğ İ İ İ İ İ İ ç ü ç ü ç ü ü ç ü

Detaylı

İ İ İ Ğ İ İ İ İ Ğ Ğ Ş Ç Ş Ö Ş Ç İ Ç İ Ç Ş Ç Ü İ İ İ Ş Ş Ş Ş Ö Ç Ş Ş Ğ Ş Ç Ö Ş Ö Ö İ Ş Ç Ş Ş Ç Ş Ğ Ğ Ğ Ç İ Ğ Ş Ş Ç Ç Ş İ Ç Ş Ş Ş Ş İ Ğ Ö Ö Ş Ç Ş Ç Ş Ş Ş Ü Ö Ö Ö Ö Ö Ç Ç Ç Ö Ş Ç Ö Ö Ş İ İ Ç Ş Ş Ğ Ü Ş İ Ö

Detaylı

Ç Ç ç Ğ ç Ö Ğ Ş ç Ö Ö Ğ Ğ Ö Ö Ç Ü ç Ç Ü ç Ö ç ç ç ç Ğ ç ç Ç Ç ç Ç Ü ç ç Ç ç ç ç Ö ç Ö Ö ç ç ç ç ç ç ç ç ç ç ç Ö Ş ç ç ç ç ç ç ç ç Ü ç ç Ü ç ç ç ç ç ç ç Ö Ç ç ç ç ç ç ç ç ç ç ç Ö ç ç Ğ Ç Ü ç ç Ç Ü ç ç Ç

Detaylı

İ Ç Ü ş ö üü ş ş ö üü Ü ü ü ö ü ç ü ü ü Ö Ü Ü Ö ç ç ş ş ç ç ü İ ü ç Ü ç ş ö üü ö ü ü ç ş ş ü ş ş ç ş ş ü ü ü ç ü ş ü ç Ş ü Ü ç ü ü ü ç ş ş ö ş Ö ş Ö ş ö ü ç ş Ç Ü Ç ş Ç İ Ü İ Ü Ş ş ü ş ö çü ü Ç Ü ü ö ş

Detaylı

Ç Ç ü Ş ç Ü İ İ İ İ İ Ü İ İ Ş ğ ü Ö ç ç ü ç İ Ü ç İ İ ü ç ü ç İç ö ö ö ö ü ü ü ü ü ü ö Ü İ Ö İ ç ö ğ ü ö ç ç ö ç ö ü ğ ğ Ş ç Ç Ç Ş ü ö ç ğ ç ü ü ü ö ö ü ö ü ü ü ğ ğ ç ğ ğ ü ü ü ç ö ğ ç ğ ö ğ ğ ğ ç ü ü

Detaylı

Ş İ İ İ ç İ İ İ İ ç ç ç Ç ç ç ç ç İ Ö İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ö Ö ç ç ç ç Ö ç Ö ç ç ç ç ç ç ç Ç ç ç ç Ç ç ç ç ç ç Ç ç Ö ç ç ç ç Ç ç Ö Ç ç ç Ş ç ç Ç Ş ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

ç ç ö Ğ Ö Ş ö ü ü Ş ç ö ü ç ğ ü ç ç Ğ Ü Ü ÜĞÜ ç ö ö ü ç ü üç ç ğ ü ü Ş ğ ü ü üğü ç ö ö ü ç ü ö ç Ş Ş ü ü üğü Ğ Ğ Ş ü üğü Ğ ç ü ö ğ ü ö Ö Ü Ş ü ü ü Ğ ğ ü ö ğ ü ü üğü ğ Ö Ğ ğ ü ü ü ç ö ö ü ö ü ü ğ ç ç ö

Detaylı

ü ü üğü ğ Ö ü ö üş ö İ ü ü üğü ş ğ ç İ ç Ş ç ş ğ ş ş ğ ç ö ç ğ ş ş ş ö ü ğ ş ğ ü ü üğü ü ğ ö ü ü üğü ş ğ ş ş ş ö ü ç ğ ö ü ğ ö ü ü üğü ş ö ğ ç ğ ü ü üğü ü ğ ü ü üğü ü ü ü üğ ü ğ ö ü ğ ş ö üş ü ü üğü ü

Detaylı

ü ü ü ö ü ü Ö Ö Ö öğ öğ ü ü İ ç ö ü ü ü Ü ü ö ü ü ö ö ö ö ö ç ö ö ü ö ü İ Ö Ü ü ü ü ü ö ü ö ü ü ü ü ü ç ü ö ç Ö ü ç ö ö ö ü ü ö ö ö ç ü ç ö ç ö ö ü ö ö ç ü ç ç ö ü ü ü ü ö ü ü ö ü Ö Ö ö ü ü Ö ö ö ö ü ü

Detaylı

İ Ç Ü ö üğü İ ö üğü ü öğ ü ü ü ü Ö ği İ ü ö İ ğ Ğ Ü Ç ö üğü ö ü ü Ç ğ ü ğ Ş ğ ü ü ü ü ü ğ ö ü ü ü ü ü ö Ö Ş Ö ğ ö ü Ç ğ İ Ç Ü Ç ğ ğ Ü Ü ü «ü ö üğü İ Ü Ö Ü İ Ş İ Ü ü ö ü ö ğ ü İ «Ö ü ö ü İ ğ Ş ü Ş ö ö ü

Detaylı

ç Ğ Ü ç ö Ğ «ö ç ö ç ö ç ç ö ç ç ö ö ö ç ç ç ç ö ç ç ö ç ç ç ö ö ö ç ç ç Ç Ö Ü ç ç ç ç ç ç ç Ü ç ç ö ö ç ç ç ö ç ç ç ö ö ç ç ö Ç ç ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ü ö ç ç ç ç ç Ç Ç ç ç Ç

Detaylı

Ç ö Ü ğ ö Ş ç ç Ş Ü Ö Ü Ü ö Ü ğ ğ ö ö ç ç Ü ğ ç ç ğ ğ ğ Ü ğ ö ö Ş ö ç ğ ö ç ç ğ ç ç ö Ş Ş ö ğ ç Ç ç ö ö ç Ç ö ğ Ü ö ğ ğ ç ö ç ğ ç ğ ö ç ö ö Üç ğ ö ç ö ç ö ç ğ ö ğ ö ç Ç ğ ç ç ğ ö ö ç ç ç ğ ğ ç ğ ç ğ ç

Detaylı

Ç Ü ö ö Ü ö ç Ö Ü ç ö ç ç Ğ ç ç ç ö ö ç ç Ü ç ö ö ç ç ç ç ç ç ö Ö Ş Ö ö ç Ç Ü Ç Ç Ü Ü ö ç ö ç ç ç ç ö ç ç ç ö ç ö ö ö ç ö ö Ü ç çö çö Ü ç çö Ö ö ö çö ç Ü ö ç ç ç çö ç ç ç ö ç çö çö ö ö ö ç Çö çö çö ö ç

Detaylı

Ü İ İ İ İ ö İ ö ğ ğ Ü ö Ş Ç ğ İç Ş Ç ğ Ü ö İ İ ğ Ü ö ğ Ü ö İ İ Ş Ç ğ İ İ ğ Ü ğ ğ ğ ç ç ö ğ ö ö ğ ğ ğ ö ç ç Ç Ç ö Ö ğ ğ ç ç Ş ğ ğ Üç Ç ğ ç ö Ş Ç ğ ğ Ş Ü ğ ğ Ş ğ ç ç ç ğ ö ö ğ ö ö İ ç ç ğ ğ Ü ö İ İ ğ Ş ğ

Detaylı

İ Ç Ü ş ö ğ ş ö ğ Ü öğ ç ş Ö Ü ğ ç ö ç ş ş ğ Ğ ç ç ğ ğ ö ş İ ç Ü ç ş ö ğ ö ç ç ş ş İ ğ ş ğ ş ç ş ğ ş ç ş ğ ç ç ş ş ö ş Ö Ş Ö ğ ş ö ç ş ğ Ç Ü Ç ğ ş Ç ğ İ Ü İ Ü ö ş ş ş ğ ç ş ö ğ çö ğ ş ş ç ö ş ş ş ğ ç ş

Detaylı

ö Ü Ü ö Ö ğ ğ ğ ö Ü Ş ö Ü Ğ ö Ü ö Ü ö ğ ö ğ ö ö ğ ğ Ş Ü ğ ö ğ ğ ğ ğ ğ Ş Ş ğ ö ğ ğ ğ ğ ğ ö ö Ş ğ Ç ğ Ç Ş ö Ç ö ğ Ç ğ ö ğ ö ö ğ ö ğ ö Ş ğ Ç ğ Ç ğ ğ Ç Ş ö ö ö ğ Ç Ş Ç ö ö ğ ğ ğ ğ Ü Ü ö ğ «ğ ğ ğ ö ö «ö ğ ğ

Detaylı

Ü Ö Ö ö ö Ü Ü Ö ö ç ç ö ç ö ç ç ö ö ö ö ö ç ö ö ç ç ç ç ç ç ö ö ö ö ç ç ö ç» ö ö ö ö ç ö ö ö ö ç ö ç ö ç ö ç ö ö ç ç ç ç ö ö ö ç ç ç ç ç ç ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ö ç ç ç ö ö ö ç ç ç ç ö ç ç ç ç

Detaylı

İ» Ö İ İ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ İ ö ö ç ğ ğ ğ ğ ğ Ö Ü Ü ğ ğ ğ ö ğ ğ ğ ğ ö ğ ğ İ İ İ İ ğ ğ ğ ö İ ğ ğ ğ ğ ğ ö ğ ğ ö ö ğ öğ ğ ğ ğ İ ö ç ç ğ ö ö ç ğ ç ç ğ ç ğ ö ç ğ ğ ğ ğ ğ ğ İ Ü Ş İ ö İ ğ ğ İ İ ğ ğ ğ ç ğ ğ

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

ğ Ş ğ ş ğ İ ö ç ö ö İ ğ ş ş ç ç ğ ç ğ ş ğ İ Ş Ü İş ö Ö ğ Öğ ş ğ ğ İ ö ö Çğ ö İ ö ç İ ş ş ş ç ş öğ ş Ş ğ ö ğ ş ö ğ İ ğ ö ş ş ş ğ ğ İ ş ğ çö ğ ğ ş ö öğ ç öği İ ğ ğ ğ ğ öğ ö ş ğ İ ç ş İ İ ğ ç İ İ Ö ÖĞ İ ğ

Detaylı

Ğ Ğ Ü Ü Ö Ü Ö Ö Ö Ü Ö Ü Ü Ü Ü Ü İ İ Ü Ü Ö Ö Ü Ö Ü Ö Ü Ö İ Ü Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ü Ö İ Ö Ü Ö İ Ö İ İ İ İ İ İ İ İ İ İ Ö Ö Ö Ö Ö Ö Ö İ Ü İ Ü İ İ İ İ İ İ İ Ö İ Ü İ İ İ Ö İ Ö Ö İ İ Ö Ö İ İ İ İ İ İ İ İ İ İ Ö

Detaylı

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ İ Ş Ş İ İ Ö İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ ğ Ö Ö Ç ğ ğ ğ ğ ğ Ü ğ İ ğ ğ Ç İ ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ş ğ ğ ğ Ü ğ ğ ğ ğ Ö ğ ğ Ö ğ ğ ğ

Detaylı

Ğ Ğ ö Ş Ş Ğ Ş Ş Ü Ş Ğ Ğ Ğ ö ö Ğ Ş Ş Ğ Ğ ö Ğ ö ö ö ö ö ö ö ö Ü Ş Ö Ö Ö Ş Ş Ç Ü ö Ü Ü Ğ ö «ö ö ö Ğ Ş ö ö ö ö ö ö ö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ö ö ö Ö Ö ö ö ö ö ö ö ö ö ö ö Ö Ö ö ö Ç Ö ö Ü ö

Detaylı

Ğ Ğ Ö İ İĞİ» Çö İ İ İĞİ Ç İ İĞİ Ü İ İĞİ İ İ ö ö ö Ğ İ ç Ö Ö ö ö ö ç ç ö Ö ö ö ö ö ö Ö ç ç ç ç ç Ğ ç Ğ İ Çö öğ ö İ İ İ ç ö ö ç Ğ İ ö ö İ İĞİ İ İĞİ Ğ Ç Ğ ö ö ö Ğ ç Ö Ö ö ç ö Ö ö ö ç ö ö ö ç Ö ç ç ç ç ç Ğ

Detaylı

İ Ğ Ş İ» Ğ Ğ ö Ğ ö ö Ç ö Ç İ Ş ö ö ö ö ö ö ö ö ö ö ö Ç ö ö ö ö ö ö İ İ ö ö ö Ü ö ö ö ö ö ö ö Ş ö ö İ ö ö İ ö ö İ İ ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ç İ İ ö İ İ İ İ Ö İ Ç ö ö Ö Ç ö ö ö ö ö ö ö ö ö ö

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1.

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1. ELEKONİK DEELEİ I Kntrl ve Blgsayar Bölümü Yıl ç Sınavı Nt: Nt ve ktap kullanılablr. Süre İKİ saattr. Sru.- r 00k 5k 5k 00Ω 5 6 k8 k6 7 k 8 y k5 0kΩ Mayıs 995 Şekl. Şekl-. de kullanılan tranzstrlar çn

Detaylı

Ü Ü İ İ İ Ğİ Ü Ö İ İ Ğ Ğ İ ç İ Ğ ç ç ç İ ç ç İ İ ç ç ç İ ç ç İ ç ç ç Ü Ü İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç İ ç ç ç ç ç ç ç Ü İ ç ç İ Ö ç Ü ç ç ç ç ç ç ç ç Ü ç Ü Ü ç İ ç ç İ ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

Ü Ğ Ğ ŞŞ ş Ğ ö Ğ ç ö ö ş ş ş ö ö ç ö ş Ç Ğ Ğ ç ş Ğ ş ç ö ş ç ş ş ö ö ş ö ş Ü ş ş ş ç ç Ü ş ş ö ş ş ö ş ş ş ö ç ş ö ş ş ö ş ş ç Ş ş ö ş ş ö ö Ç ç Ş ş ç ş ş ş ç ş ş ç ş ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ş ç

Detaylı

ğ Ç ö ğ ğ ğ ğ ğ ö ğ Ş ğ ğ Ş Ş Ş ö ö ö ğ Ş ö ğ ğ ö ğ ö ğ ğ ğ Ş ö ö ğ ö ğ ğ Ç ğ ö ğ ğ ö ö ğ ğ ö Ö Ç ö Ç ö Ç ö Ç ö ğ ö ö ğ ğ ö ğ ö ğ ğ ğ ğ Ö Ü ğ Ç Ç Ç ğ ö ğ ğ ğ ö ö Ş Ç ğ Ö Ş ğ ö Ç Ş ğ Ç Ş Ç Ş ö ö ö ö Ç ğ

Detaylı

Ğ İĞİ Ü ğ ğ ğ Ş ğ ö ğ ğ ğ ğ ö Ç Ç Ç Ğ Ç ÜÜ Ğ Ş Ğ Ç Ğ Ç Ğ Ğ İ Ş İ İ ğ ğ ğ İ İ İ İ Ü İ ğ ğ ğ ÖÇ ğ ö ğ ö ö ğ ö ö ğ Ç ğ ö ö ğ ö ö ö ö ğ ğ ö ğ ğ ö ö Ç Ü İ Ş İ İ ğ Ş İ İ İ İ Ş ö Ç ö ö ğ ğ ö ö ğ ö Ç Ç İ İŞ İ

Detaylı

ş ğ ğ ğ ğ ğ ş ğ ş ğ ğ ğ ğ ğ ğ ğ ş ğ ğ ğ ğ ğ ş ğ ğ ğ ş ş ğ ğ ğ ğ ğ ğ Ç ğ ğ ğ ğ ğ ş ş Ğ ş ş ş ğ Ğ ğ ş ğ ş ğ ğ ğ ğ ğ ğ ğ Ç ş ğ Ç ğ Ç Ğ ğ ğ ğ ğ Ç Ç ğ Ç ğ Ç ğ ş ğ ğ ğ ş ğ Ç ğ ğ Ç ş ğ Ç ğ ğ ş ş Ç ğ ş Ç ğ ş ğ

Detaylı

«Ğ ğ İ ğ Ü Ü İ İ ğ ğ Ü Ü İ İ Ğ ğ ğ İ İ Ü Ü İ İ Ü İ Ğ Ü Ü ÜĞÜ Ğ İİ İ Ü ğ İ İ İ İİ İ İ Ç İ İ İ ö ö ö ğ İ İ Ö İ ö ğ Ö ğ ö ö ğ ö İ ğ ğ ğ ğ Ü Ü İ İ İ Ğ ğ ğ Ç ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ö ğ ğ ö ğ İ ğ İ ö ğ ğ ğ ğ

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ II, POTNSİYE F E DİENÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma 1.. Ünte. onu (Elektrk kımı) nın Çözümler ampul 3. Şekl yenden aşağıdak gb çzeblrz.

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

EMO İSTANBUL ŞUBESİ TARAFINDAN HOBİ ELEKTRONİK KURSU İÇİN DERLENMİŞTİR. BOBİNLER

EMO İSTANBUL ŞUBESİ TARAFINDAN HOBİ ELEKTRONİK KURSU İÇİN DERLENMİŞTİR. BOBİNLER EMO İSTANBUL ŞUBESİ TAAFNDAN HOBİ ELEKTONİK KUSU İÇİN DELENMİŞTİ BOBİNLE Bobnler, akara, adren veya karkas olarak adlandırılan yalıkanlar üzerne plask, serak, serkağı spral, helezon, düz, peek şeklnde

Detaylı

ü Ş ç Ş üç ü ö ü ö ö ü ö ç ü Ö ö ü ü ö ö üç ü ö ç ç ç ç ç Ö ü üç ü ö ç Ç ö ç ç ç Ş ö ç ö ü ö ç ç Ç Ç ç ç ç üç ü ö Ç ç ü ö ü ç ü ö ü ö ü ç ü ç Ğ Ğ ö ü ç ü ö Ş ç ö ü ü ü ü üö ü ü ü ö ö ü ü ç ö ö ö ç ç ü

Detaylı

İ Ç Ü ş İ İ ö üğü ş ş ö üğü ü ü İ öğ ü Ç İ Ö Ü ü ğ ç ö ü ü ü ç ç ş ş ğ ç ç İ Ç Ü ş ö üğü İ İ İ İ İ İ ö ü ç Ü ç ş ö üğü ö ü ü İ Ç Ü ş ö üğü ç ç ş ş ğ ü ş ğ ş ç ş ğ ş ü ü ü Ç ü ş ü ğ Ç ğ ü ü ü ü ü Ç ş ş

Detaylı

Ü ü «öü ü ö ü ö ü ü Ü ü ö ü ü Ü ü ö ü ü ü ü Ü ü ö ü ü Ü ü ü üü ö ü ü ü ö ö ö Ş ö ö Ş ö ö Ş Ş ü Ç Ç ö ö ü ü ö Ş ü ö Ç ü ü ö ü ü ü ü Ç ö ö ü ü ö ü ö Ş ö ü üü Ü ü ö ü ü Ö Ö Ü ü ü ü ü ö ü Ç ü ö ü ü ü Ü ü ö

Detaylı

ç Ğ İ Ğ İ ç ç İ ö ç ö ç ç ç ç ö ö İ İ ç ç ö ç Ü Ü İ İİĞ İÜ Ş ç Ç Ş ç ç ç ç ö ç ç İ «ç İİ İ İ İ Ş ç İ Ş ö Ş Ç Ç ö ç ç ç Ğ ö Ş ö Ş Ğ ç ç Ğ ç Ç ç ç ç ö ç ç ç İ Ş Ğ ö Ğ ç ç ç ö İ ç Ç İ Ş Ğ İ ç İ İİ ç ç Ğ İ

Detaylı

Ü Ü Ğ ç İ Ş Ğ ç İ Ü İ Ü Ş Ö ç ç Ğ» Ü Ş Ü Ş Ş İ İ İ ç ç ç Şİ İ İ ç Ç İ Ü Ş İ İ Ç Ç Ü Ş İ İ İ İ Ü İ İ Ü Ü ÜÜ İ Ş İ İ ç ç ç İ İ İ İ ç İ ç İ İ İ İ ç ç ç ç ç İ ç İ ç ç ç İ ç İ ç ç ç Ğ Ç ç İ ç ç ç ç ç ç İ ç

Detaylı

Ü Ü Ü Ü ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ü ç ç ç ç ç Ü ç ç Ü Ü Ü ç Ü ç ç Ü ç ç ç ç Ü Ü ç ç Ü ç ç ç ç Ü ç ç ç ç ç Ü ç ç ç ç ç Ü ç ç ç ç ç ç ç ç ç ç ç ç Ö ç Ö ç Ü Ü ç ç ç ç ç ç ç ç ç Ö ç ç ç ç Ö ç ç ç ç ç ç

Detaylı

ğ ğ ğ Ç ğ Ş Ü ğ ğ ğ Ö ğ Ç ğ Ç ğ ğ ğ ğ ğ Ç ğ Ç Ş Ç ğ Ç Ç Ş Ü Ü ğ ğ ğ ğ ğ ğ ğ Ş ğ ğ ğ Ş Ş ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ Ç ğ ğ ğ Ş Ş Ş Ç ğ ğ Ü ğ ğ ğ ğ ğ Ş Ş Ç Ş ğ ğ Ö ğ ğ ğ ğ ğ ğ Ş » Ü Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı