DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için"

Transkript

1 DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu kümdir.) A) f nin tanım kümsini blirlyiniz. B) Koordinat ksişimlrini bulunuz. (Eğr varsa, y-ksişimi f() dır; - ksişimlri d f() ın çözümlri.) C) Asimtotları bulunuz. ( lim f ( ) ± vya lim f ( ) ± is, a dusy asimtot; a lim f ( ) b m Adım. f () i analiz diniz. (Hazırlayacağınız bir tabloda f () in sıfır olduğu vya tanımsız olduğu yrlri, işart dğişimini göstriniz; böylc, f() in nrlrd artan, nrlrd azalan olduğunu v ayrıca yrl maksimum v minimum dğrlrini blirlyiniz.) Adım 3. f () i analiz diniz. (Hazırladığınız tabloda f () in d sıfır olduğu vya tanımsız olduğu yrlri, işart dğişimini göstriniz; böylc, f() in nrlrd aşağıya doğru, nrlrd yukarıya doğru konkav olduğunu v ayrıca varsa dönüm noktalarını blirlyiniz.) Adım 4. Grafiği çiziniz. (Hazırladığınız tablodan da yararlanarak, asimtotları çiziniz, koordinat ksişiml-rini, yrl maks. v min. noktalarını, dönüm noktalarını işartlyiniz v şklinizi tamamlayınız.) is, Şimdi bu adımları bazı örnklr üzrind grçklştirlim. + a y b yatay asimtot. Örnk. f() 4 3 il vriln fonksiyonun grafiğini çizlim. Adım. f() i analiz dlim. A) f nin tanım kümsi : tüm rl sayılar kümsi R B) y ksişimi : f() ksişimlri : f(), ( ), C) Asimtotlar : f bir polinom olduğundan düşy vya yatay asimtot yoktur. Adım. f () i analiz dlim : f () ( 3/) Kritik Dğrlr : v 3/ f () f() 3/ azalan azalan -7/6 artan Yrl min. f(), (-,3/) aralığında azalan, (3/, ) aralığında artan olup 3/ d yrl minumum vardır.

2 Adım 3. f () i analiz dlim: f () (-), f (),. f () f() Yukarıya konkav Aşağıy a - Yukarıya konkav Dönüm noktası Dönüm noktası f(), (-,) v (, - ) aralıklarında yukarıya doğru, (,) aralığında aşağıya doğru konkav olup v d dönüm noktası vardır. Şimdi, Adım v Adım 3 t ld dilnlri bir tabloda öztlylim: 3/ f() - -7/6 f () f () (,) v (,-) noktaları dönüm noktası, f(3/) -7/6 yrl minimum dğridir. Adım 4. Grafiği çizlim. y Bulduğumuz noktaları yrlştirlim f()

3 Örnk. f() in grafiğini çizlim Adım. f() i analiz dlim. A) f nin tanım kümsi : tüm rl sayılar kümsi R B) y ksişimi : f() 5 ksişimlri : f() (-)(+5) (,) v (-5,) C) Asimtotlar : f bir polinom olduğundan düşy vya yatay asimtot yoktur. Adım -3. f () v f () i analiz dlim : f () ( +-3) 3(-)(+3) f () (+) -, Kritik Dğrlr : -3 v f (() f () f () Adım 4. (-3,3) y f() (-,6) (-5,) (,5) (,) Örnk 3. f ( ) nin grafiğini çizlim. Adım. f() i analiz dlim. A) f nin tanım kümsi : R\{} B) y ksişimi : f ( )

4 ksişimlri : Bir ksrin sıfır olduğu yrlr, payın sıfır olduğu, ancak paydanın sıfırdan farklı olduğu yrlrdir. Dolayısıyla, -ksişimi dir. C) Yatay asimtot : lim olduğundan, y atay asimtottur. m Adım -3. ( ) ( ) f ( ) ( ) ( ) f ( ) ( ) 3 f() f () f () / / / Adım 4. y - 3 f ( )

5 Örnk 4. f ( ) + Adım. f() i analiz dlim. in grafiğini çizlim. A) f nin tanım kümsi : R B) y ksişimi : f ( ) + ksişimlri : Yok. C) Yatay asimtot : lim olduğundan, y yatay asimtottur. m + Düşy asimtot: Yok. Adım v Adım 3 ü birlikt grçklştirip bir tk tablo yapalım: ( f ( ) ( ) ( f ( ) + ) ( + ) ( + ) + ) ( + ) ( ) ( + ) ( + ) m 3 f() f () f () 3 3 3/4 3/4 / Yrl Maks. Adım 4. y f ( ) + 3 3

6 Örnk 5. f ( ) in grafiğini çizlim. Tanım kümsi : R\{} -ksişimi : yok, y-ksişimi : yok. lim, lim+ düşy asimtot. lim, lim y yatay asimtot. ( ) f ( ) ( f ( ) + ( ) ) 4 ( ) ( + ) 3 İkinci türvin asla sıfır olmadığına dikkat diyoruz. f() f () f () Yrl min. y f ( )

7 Örnk 6. f ( ) ln Tanım kümsi : in grafiğini çizlim. (, ) -ksişimi :, y-ksişimi : yok. ( ) ln lim ln lim lim ( ) lim ln f ( ) ln + ln + / f ( ) f() f () f () / -/ Yrl min. y f ( ) ln /

8 Grafik çizim stratjisini öztlylim. y f() in grafiğini çizmk için Adım. f() i analiz diniz. GRAFİK ÇİZİM STRATEJİSİ A) f nin tanım kümsini blirlyiniz (f nin tanım kümsi, f () in tanımlı olduğu tüm rl sayıların oluşturduğu kümdir.) B) Koordinat ksişimlrini bulunuz (Eğr varsa, y-ksişimi f () dır; -ksişimlri d f () ın çözümlri.) C) Asimtotları bulunuz. ( lim f ( ) m a lim m f ( ) b vya lim a + f ( ) m is, yb yatay asimtot, ) is, a düşy asimtot Adım. f () i analiz diniz. (Hazırlayacağınız bir tabloda f () in sıfır olduğu vya tanımsız olduğu yrlri, işart dğişimini göstriniz; böylc, f () in nrlrd artan, nrlrd azalan olduğunu v ayrıca yrl maksimum v minimum dğrlrini blirlyiniz.) Adım 3. f () i analiz diniz. (Hazırladığınız tabloda f () in d sıfır olduğu vya tanımsız olduğu yrlri, işart dğişimini göstriniz; böylc, f () in nrlrd aşağıya doğru, nrlrd yukarıya doğru konkav olduğunu v ayrıca varsa dönüm noktalarını blirlyiniz.) Adım 4. Grafiği çiziniz. 9. Maksimum Minimum Problmlri. f bir fonksiyon, c R olsun. Eğr tanım kümsindki hr için f() f(c) is, f(c) y f nin mutlak maksimum dğri dnir.eğr tanım kümsindki hr için f() f(c) is, f(c) y f nin mutlak minimum dğri dnir. y f(c ) : f nin mutlak maksimum dğri f(c ) : f nin mutlak minimum dğri a c c b

9 Mutlak maksimum v mutlak minimumla ilgili tml sonucu ifad diyoruz: Torm. f fonksiyonu [ a, b ] kapalı aralığında sürkli is, f nin [ a, b ] aralığı üzrind mutlak maksimum v mutlak minimum dğrlri vardır. f nin [ a, b ] aralığı üzrind mutlak maksimum v mutlak minimum dğrlrini bulmak için. f nin [ a, b ] aralığı üzrind sürkli olduğundan min olunuz.. f nin ( a, b ) aralığında kritik noktalarını bulunuz. 3. f nin kritik noktalarda aldığı dğrlri; f(a) v f(b) yi bulunuz. 4. Adım 3 t bulduğunuz dğrlrdn n büyüğü f nin mutlak maksimum dğri, n küçüğü d mutlak minimum dğridir. Örnk. F () nin aşağıdaki aralıklardan hr biri üzrind mutlak maksimum v mutlak minimum dğrlrini bulunuz: a) [-6, 4 ] b) [-4, ] c) [-, ]. f nin vriln aralıklardan hr biri üzrind sürkli olduğu açık.. f nin kritik noktalarını bulalım: f () ( + 3) -3,. -3 [-, ] olduğuna dikkat diyoruz. 3. f (-6) -6, f (-4) 3, f (-3), f (-) 5, f () -, f () -5, f (4) [-6, 4 ] için : mutlak maks. f(4) 69 ; mutlak min. f (-6) -6. [-4, ] için : mutlak maks. f (-3) ; mutlak min. f () -. [-, ] için : mutlak maks. f (-) 5 ; mutlak min. f () -.

10 Problm. Radyo ürtn bir firmanın, haftada radyo ürtmsi duru-munda toplam gidri C() 5 +, fiyat talp fonksiyonu is p (.), olarak vriliyor. (Para birimi olarak YTL alınız.) a) Haftalık maksimum gliri bulunuz. b) Haftalık maksimum kârı, bu kârın grçklşmsi için haftada ürtilmsi grkn radyo sayısını v radyo başına fiyatı bulunuz. c) Eğr firma hr bir radyo için YTL vrgi ödmk durumunda kalırsa, maksimum kâr n olur v bunun için haftada kaç radyo ürtilmlidir? Bu durumda maksimum kâr için bir radyonun satış fiyatı n olur? Çözüm. a) Glir fonksiyonu R () (. ) (.), olacağından R () (.) 5. R (), R (5) 5, R ( ). Maksimum glir : 5 YTL. b) Kâr fonksiyonu P () R () C() (.) - (5 + ) (.). P () 8 (.) 4. P () -5, P( ) -5, P(4). Maksimum kâr : YTL, 4 radyo ürtilinc grçklşir. Bir radyonun satış fiyatı : p (.)(4) 6 YTL. c) Radyo başına YTL vrgi ödninc gidr fonksiyonu C () , kâr fonksiyonu P () R() C() (.) - (5 + 4) (.). P () 6 (.) 3. P (3) 4. Maksimum kâr : 4 YTL, 3 radyo ürtilinc grçklşir. Bir radyonun satış fiyatı : p (.)(3) 7 YTL. Problm. Bir yüzm havuzu zararlı baktrilrin yok dilmsi için priyodik olarak ilaçlanıyor. İlaçlama yapıldıktan t gün sonra havuz suyunun hr cm3 ünd C(t) 3 t 4 t + 5, t 8 baktri görülüyor. Havuzdaki baktri sayısı ilaçlamadan kaç gün sonra minimum olur?

11 Çözüm. C(t) 3 t 4 t + 5, t 8 C (t) 6 t 4 t 4. C () 5, C(4), C(8) 5. Havuzdaki baktri sayısı ilaçlama yapıldıktan 4 gün sonra minimum olur v minimum sayı C (4) dir Günlük Yaşamdan Problmlr. Şimdi günlük hayatta karşılaşılabilck maksimizasyon problmlrin başka örnklr vriyoruz. Problm. Aşağıdaki şkild görüldüğü gibi, uzun bir duvarın önünd bir ta-rafı duvar v diğr üç tarafı tl-örgü il çvrili dikdörtgn biçimind bir alan oluşturulmak istniyor. Bu iş için kullanılacak tl-örgü 4 m. olduğuna gör, oluşturulacak alanın maksimum olması için dikdörtgnin boyutları n olmalıdır? Maksimum alan n olur? 4 m. 4 Problmin çözümü için dikdörtgnin duvara dik gln knarının uzunluğunu il göstrlim. O zaman duvara parall olan knarın uzunluğu 4 - olur. Dik dörtgnin alanı olacağından A () (4 - ) 4, A () A (), A (), A (6) 7 Maksimum alan için boyutlar : n 6 m, boy m. Maksimum alan : A(6) 6. 7 m. Problm. Bir cviz ürticisi, gçmiş dnyimlrindn, dönüm başına ağaç dikrs, hr bir ağacın yılda ortalama 6 kg. cviz vrcğini tahmin diyor. Dönüm başına ağaçtan

12 sonra dikilck hr ağaç, ağaç başına yıllık vrimi kg. düşürüyor. Bir dönüm n çok 45 ağaç dikilbildiğin gör, maksimum vrim için dönüm başına kaç ağaç dikilmlidir? dönümlük bir toprağa cviz kilirs alınabilck yıllık maksimum vrim n olur? Çözüm. Bir dönüm kilck ağaç sayısı: N() +, 5 Dönüm başına yıllık vrim: V() ( + ) (6 - ) +, 5 V () 4 5 V () 4 5 V(), V(5) 45, V(5) 5 Dönüm başına ağaç dikilirs yıllık vrim maksimum olur: V(5) 5 kg. dönümlük topraktan yıllık maksimum vrim :.5 5 kg. Problmlr 9. Aşağıdaki problmlrd y f () in grafiğini, grafik çizim stratjisi uygulayarak çiziniz. 3 a) f ( ) b) f ( ) c) f ( ) ( + 4)( ) ç) f ( ) 3 d) f ( ) ( 4). Aşağıdaki fonksiyonların hr birinin grafiğini grafik çizim stratjisini uygulayarak çiziniz. ln a) f ( ) ln b) f ( ) (3 ) c) f ( ) ç) f ( )

13 3. f () dnklmi il vriln fonksiyonun [-4,] kapalı aralığı üzrind mutlak maksimum v mutlak minimum dğrlrini blirlyiniz odası bulunan bir otl 4 YTL lik oda fiyatı il hr gc dolmaktadır. Otl idarsi, fiyatı yüksltrk kârını artırıp artıramayacağını blirlmk istiyor. Fiyattaki hr YTL lik artışın o gc 5 odanın boş kalmasına ndn olduğu görülüyor. Hr oda için günlük sabit gidr 5 YTL v hr dolu oda için günlük srvis gidri d YTL olduğuna gör, otl idarsi maksimum kâr için oda fiyatını kaç YTL olarak blirlmlidir? (Oda fiyatında indirim asla düşünülmmktdir.) 5. Haftada adt hsap makinsi ürtip satan bir firmanın gidr fonksiyonu v fiyat fonksiyonu C() , p() 4 ( / 4), 5 olarak vriliyor. Firmanın kârı hangi ürtim sviysind maksimum olur? 6. Şkild görüldüğü gibi, bir vin önünd dikdörtgn şklind bir alan tl örgü il çvrilcktir. Bu alanın 6 mtrlik kısmı v il kapatıldığından oraya tl örgü kullanılmayacaktır. Bu iş için kullanılmak üzr sadc 36 mtr tl örgü bulunduğuna gör maksimum alan çvirmk için dikdörtgnin boyutları n olmalıdır? EV 7. Aşağıdaki fonksiyonların hr birinin (, ) aralığında mutlak maksimum v mutlak minimum dğrlrini (varsa) bulunuz. 7 a) f ( ) 3 + b) f ( ) Bir üründn tan ürtmk için yapılan toplam gidr C( ) 6 + ln dir. Minimum ortalama gidri bulunuz. 9. Tlvizyon sti ürtn bir firmanın, ayda tlvizyon sti ürtmsi durumunda, toplam gidr fonksiyonu C() 7 + 6, fiyat talp dnklmi d p, 6 3 olarak vriliyor. Para birimi, birim para il göstrilsin. a) Maksimum gliri bulunuz. b) Maksimum kârı; bu kârın grçklşmsi için kaç adt tlvizyon sti ürtilmsi grktiğini v hr bir tlvizyon stinin kaça satılması grktiğini blirlyiniz. c) Eğr firma, ürttiği hr tlvizyon sti için 5 birim para vrgi ödrs, kârın maksimum olması için kaç adt tlvizyon sti ürtmlidir? Bu durumda maksimum kâr n olur? Hr bir tlvizyon stini kaça satmalıdır?

14 . Elktrik sobası ürtn bir firmanın, ayda lktrik sobası ürtmsi durumunda, toplam gidr fonksiyonu C() , fiyat talp dnklmi d p 5.5, olarak vriliyor. Para birimi, birim para il göstrilsin. a) Maksimum gliri bulunuz b) Maksimum kârı; bu kârın grçklşmsi için kaç adt lktrik sobası ürtilmsi grktiğini v hr bir lktrik sobasının kaça satılması grktiğini blirlyiniz. c) Eğr firma, ürttiği hr lktrik sobası için 5 birim para vrgi ödrs, kârın maksimum olması için kaç adt lktrik sobası ürtmlidir? Bu durumda maksimum kâr n olur? Hr bir lktrik sobasını kaça satmalıdır?. Bir baktri kolonisin ürmlrini arttıran bir ilaç vriliyor. İlaç vrildiktn t dakika sonra kolonidki baktri sayısı aşağıdaki ifad il vriliyor: N (t) + 36t t 3, 3. a) Kolonidki baktri sayısı hangi t dğri için maksimum olur? Maksimum sayı kaçtır? b) Kolonidki baktri sayısı hangi t dğrind n çok artmaktadır?

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = +

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Kirişli döşemeler (plaklar)

Kirişli döşemeler (plaklar) Kirişli döşmlr (plaklar) Dört tarafından kirişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşluklu döşmlr Düznsiz gomtrili döşmlr Üç tarafı kirişli bir tarafı boşta döşm Bir tarafı kirişli

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

BÖLÜM II A. YE Đ BETO ARME BĐ ALARI TASARIM ÖR EKLERĐ ÖR EK 2

BÖLÜM II A. YE Đ BETO ARME BĐ ALARI TASARIM ÖR EKLERĐ ÖR EK 2 BÖLÜ II A. YE Đ BETO ARE BĐ ALARI TASARI ÖR EKLERĐ ÖR EK SÜ EKLĐK DÜZEYĐ YÜKSEK 6 KATLI BETO ARE PERDELĐ / ÇERÇEELĐ BĐ A SĐSTEĐ Đ EŞDEĞER DEPRE YÜKÜ YÖ TEĐ ĐLE A ALĐZĐ E TASARII.1. GENEL BĐNA BĐLGĐLERĐ...II./..

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Matematik Soruları ve Çözümleri Lisans Yrlşirm Sınavı (Lys ) 8 Haziran Mamaik Soruları v Çözümlri. (,5) işlminin sonucu kaçır?, A) 5 B) C) 5 D) E) Çözüm (,5), 5 ( ) ( ) 5 ( ) ( ).( ) 5 ( ) 5 5 6 . < < olduğuna gör, aşağıdakilrdn hangisi

Detaylı

Analiz II Çalışma Soruları-3

Analiz II Çalışma Soruları-3 Analiz II Çalışma Soruları- Son güncelleme: 44 (I)( A ) Aşağıdaki fonksiyon için verilen noktaların ektremum nokta olup olmadıklarının gözlemini yapınız y y f ( ) a b c d e k r s ( B) Aşağıdaki fonksiyonların

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B 6 LYS/MAT MATEMATİK ÇÖZÜMLERİ DENEME. ( ab) ( ab) 6( ab) 6. 6 y z ( ab) ( ab) 6( ab) 6 6 6y y z 6y ( ab) 6 6( y) ( y z) ab.. olur. y v y z. 7 z y / y z k k z y z y t bulunur. 7 9y y 8y k, y k zk A) y 8,

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

Günlük Bülten. Günlük Bülten

Günlük Bülten. Günlük Bülten 0 Oak 203 Prşmb Günlük Bültn İMKB vrilri İMKB 00 8,49. Piyasa Dğri-TÜM ($m) 320,064.6 Halka Açık Piyasa Dğri-TÜM ($m) 92,060.8 Günlük İşlm Hami-TÜM ($m) 2,046.97 Yurtdışı piyasalar Borsalar Kapanış % Dğ.

Detaylı

01.04.2010. Tambur dişlisinin tambura montajı

01.04.2010. Tambur dişlisinin tambura montajı 01.04.0 TAMBURLAR Kaldırma makinalarında kullanılan tamburların yapısı aşağıdaki şkild görülmktdir. 1 4 Tambur dişlisinin tambura montajı 5 6 1 01.04.0 Tamburların yataklanma v tahrik skillri aşağıdaki

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi İTÜ Makina Fakültsi Ağırlığın Potansiyl Enrjisi W=, δh kadar yukarıya doğru yr dğiştirsin, Virtül iş, δu = Wδh= δh NOT: Eğr cisi aşağıya doğru δh yr dğişii yapıyorsa v +h aşağıya doğru is δu = Wδh= δh

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

- BANT TAŞIYICILAR -

- BANT TAŞIYICILAR - - BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

{ } { } Ters Dönüşüm Yöntemi

{ } { } Ters Dönüşüm Yöntemi KESĐKLĐ DAĞILIMLARDAN RASGELE SAYI ÜRETME Trs Dönüşüm Yöntmi F dağılım fonksiyonuna sahip bir X rasgl dğişknin dağılımından sayı ürtmk için n çok kullanılan yöntmlrdn biri, F dağılım fonksiyonunun gnllştirilmiş

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

Mühendisler İçin DİFERANSİYEL DENKLEMLER

Mühendisler İçin DİFERANSİYEL DENKLEMLER Mühndislr İçin DİFERANSİYEL DENKLEMLER Doç. Dr. Tahsin Engin Prof. Dr. Yunus A. Çngl Sakara Ünivrsitsi Makina Mühndisliği Bölümü Elül 8 SAKARYA - - Mühndislr İçin Difransil Dnklmlr İÇİNDEKİLER BÖLÜM BİRİNCİ

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

Enerji Dönüşüm Temelleri. Bölüm 3 Bir Fazlı Transformatörler

Enerji Dönüşüm Temelleri. Bölüm 3 Bir Fazlı Transformatörler Enrji Dönüşüm Tmllri Bölüm 3 Bir Fazlı Transformatörlr Birfazlı Transformatorlar GİRİŞ Transformatörlrin grçk özllik v davranışlarını daha kolay anlamak için ilk aşamada idal transformatör üzrind durulacaktır.

Detaylı

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler Kirişli döşmlr Dört tarafından irişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşlulu döşmlr Düznsiz gomtrili döşmlr bir tarafı irişli üç tarafı boşta döşm (Konsol döşm) Đi tarafı irişli ii

Detaylı

Günlük Bülten. 27 Aralık 2012. Merkez Bankası Baş Ekonomisti Hakan Kara 2012 yılının %6 civarında enflasyonla tamamlanacağını düşündüklerini söyledi

Günlük Bülten. 27 Aralık 2012. Merkez Bankası Baş Ekonomisti Hakan Kara 2012 yılının %6 civarında enflasyonla tamamlanacağını düşündüklerini söyledi 27 Aralık 2012 Prşmb Günlük Bültn İMKB vrilri İMKB 100 77,991.1 Piyasa Dğri-TÜM ($m) 304,387.4 Halka Açık Piyasa Dğri-TÜM ($m) 87,677.3 Günlük İşlm Hami-TÜM ($m) 1,243.42 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö.

Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö. Asnkron Makinanın Alan Yönlndirm Kontrolünd FPGA Kullanımı ALAN İ., AKIN Ö. ABSTRACT In this study, th fasibility of usag of fild programmabl gat arrays (FPGA) in th fild orintd control (FOC) of induction

Detaylı

SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU

SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU A. ÖZER, D.ÖZER Fırat Ünivrsitsi, Mühndislik Fakültsi, Kimya Mühndisliği Bölümü. 23279-ELAZIĞ ÖZET Bu çalışmada, sülfürik

Detaylı

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum DERS 8 Artan ve Azalan Fonksionlar, Konkavlık, Maksimum ve Minimum 8.. Artan ve Azalan Fonksionlar. Bir fonksionun vea onun grafiğinin belli bir aralık üzerinde artan vea azalan olmasının ne anlama geldiği

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ K-203 GERİ KAZANIMLI LOKAL HAVALANDIRMA SETİ

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ K-203 GERİ KAZANIMLI LOKAL HAVALANDIRMA SETİ T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ K-203 GERİ KAZANIMLI LOKAL HAVALANDIRMA SETİ HAZIRLAYAN: EFKAN ERDOĞAN KONTROL EDEN: DOÇ. DR. HÜSEYİN BULGURCU BALIKESİR-2014

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

Problemler. Yard. Doç. Dr. Mustafa Akkol

Problemler. Yard. Doç. Dr. Mustafa Akkol Problemler 1 7 parabolü = k doğrusu ile ve B noktalarında kesişior. Oluşan OB üçgenlerinden alanı en büük olanının alanı kaç br dir? 7 O B OB k 7 7 k 7 7 ' 7 0 mak 7. 18 54br 0 1 parabolü içerisine, köşeleri

Detaylı

İSTATİSTİK TERMODİNAMİK

İSTATİSTİK TERMODİNAMİK MI OpnCoursWar http://ocw.mt.du 5.60 hrmodnamk v Kntk ahar 008 u malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz İSİSİK ERMODİMİK Makroskopk trmodnamk sonuçların

Detaylı

GERİ ÖDEME TALEP FORMU T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİNE, Sort Kod : Hesap No : İmzası E-posta : Telefon Nu :

GERİ ÖDEME TALEP FORMU T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİNE, Sort Kod : Hesap No : İmzası E-posta : Telefon Nu : T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİ GERİ ÖDEME TALEP FORMU B-1 T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİNE, 1416 Sayılı Kanuna gör MEB (... Ünivrsitsi) adına rsmi burslu statüd öğrnim görmk

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN İLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖA İLKÖĞREİM MAEMAİK u tstlrin hr hakkı saklıdır. Hangi amaçla olursa olsun, tstlrin tamamının va bir kısmının İhtiaç

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek...

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek... KURALLARI. f ( )= f ( ). f ( )= Örnk... : ( + 7+ )=? 7. k. f ( ) =k. f ( ) Örnk... : sin =?. (f ( )±g ( ))= f ( )± g( ). c f ( )= f ( )+f ( ), c c< 6. (-).min(f())< f ( )=

Detaylı

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210 SAT-IF / CATV Ultra Gniş Bantlı Dağıtım Yükslticilri (UBA-Srisi) TANITIM v KULLANIM KILAVUZU Modllr UBA4234-R Vrsiyon : KK_UBA_V3.0210 1.Gnl Tanıtım UBA Srisi Dağıtım Yükslticilri, uydu (950-2150MHz) v

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ FARKLI ICAKLIKLARDAKİ GÖZEEKLİ İKİ LEVHA ARAIDA AKA AKIŞKAI İKİCİ KAU AALİZİ Fthi KAMIŞLI Fırat Ünivrsit Mühndislik Fakültsi Kimya Mühndisliği Bölümü, 39 ELAZIĞ, fkamisli@firat.du.tr Özt Farklı sıcaklıklara

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan 1 YARI İLETKENLER Enstrümantal Analiz ir yarı iltkn, iltknliği bir iltkn il bir yalıtkan arasında olan kristal bir malzmdir. Çok çşitli yarıiltkn malzm vardır, silikon v grmanyum, mtalimsi bilşiklr (silikon

Detaylı

ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ

ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ MAK-LAB012 1. DENEY DÜZENEĞİNİN TANITILMASI Düznk sas olarak dikdörtgn ksitli bir kanaldan ibarttir. 1 hp gücündki lktrik motorunun çalıştırdığı bir vantilatör il kanal içind

Detaylı

Günlük Bülten. 27 Şubat 2013. TCMB, Şubat ayı PPK toplantısı özetini yayınladı

Günlük Bülten. 27 Şubat 2013. TCMB, Şubat ayı PPK toplantısı özetini yayınladı 27 Şuat 2013 Çarşama Günlük Bültn İMKB vrilri İMKB 100 77,514.3 Piyasa Dğri-TÜM ($m) 302,886.2 Halka Açık Piyasa Dğri-TÜM ($m) 86,403.0 Günlük İşlm Hacmi-TÜM ($m) 1,629.94 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

HR.Ü.Z.F.Drgisi, 2008, 12(4):65-71 J.Agric.Fac.HR.U., 2008, 12(4):65-71 SÜNE MÜCADELESİNDE ÇİFTÇİ DAVRANIŞLARI: ADIYAMAN- DİYARBAKIR-MARDİN-ŞANLIURFA ÖRNEĞİ Mhmt DUMAN Clalttin GÖZÜAÇIK Vdat KARACA Çtin

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

IŞINIM VE DOĞAL TAŞINIM DENEYİ

IŞINIM VE DOĞAL TAŞINIM DENEYİ IŞINIM VE DOĞAL TAŞINIM DENEYİ MAK-LAB005 1. DENEY DÜZENEĞİNİN TANITILMASI Dny düznği, şkild görüldüğü gibi çlik bir basınç kabının içind yatay olarak asılı duran silindirik bir lman ihtiva dr. Elman bakırdan

Detaylı

Bu malzemelere atıfta bulunmak veya kullanım şartlarını öğrenmek için http://ocw.mit.edu/terms sitesini ziyaret ediniz

Bu malzemelere atıfta bulunmak veya kullanım şartlarını öğrenmek için http://ocw.mit.edu/terms sitesini ziyaret ediniz MIT OpnoursWar http://ocw.mt.du 5.6 Thrmodnamk v Kntk Bahar 8 Bu malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz MODEL SİSTEMLER Molkülr gçş, dönm v rşm çn

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

Çelik. Her şey hesapladığınız gibi!

Çelik. Her şey hesapladığınız gibi! Çlik Hr şy hsapladığınız gibi! idyapi Bilgisayar Dstkli Tasarım Mühndislik Danışmanlık Taahhüt A.Ş. Piyalpaşa Bulvarı Famas Plaza B-Blok No: 10 Kat: 5 Okmydanı Şişli 34384 İstanbul Tl : (0212) 220 55 00

Detaylı

Anaparaya Dönüş (Kapitalizasyon) Oranı

Anaparaya Dönüş (Kapitalizasyon) Oranı Anaparaya Dönüş (Kapitalizasyon) Oranı Glir gtirn taşınmazlar gnl olarak yatırım aracı olarak görülürlr. Alıcı, taşınmazı satın almak için kullandığı paranın karşılığında bir gtiri bklr. Bundan ötürü,

Detaylı

Günlük Bülten. 26 Aralık 2012. Merkez Bankası Erdem Başçı 2013 Yılı Para ve Kur Politikası nı açıkladı

Günlük Bülten. 26 Aralık 2012. Merkez Bankası Erdem Başçı 2013 Yılı Para ve Kur Politikası nı açıkladı 26 Aralık 2012 Çarşamba Günlük Bültn İMKB vrilri İMKB 100 77,596.2 Piyasa Dğri-TÜM ($m) 302,542.1 Halka Açık Piyasa Dğri-TÜM ($m) 87,060.7 Günlük İşlm Hami-TÜM ($m) 976.12 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı Makin Tknolojilri Elktronik Drgisi Cilt: 6, No: 2, 2009 (-8) Elctronic Journal of Machin Tchnologis Vol: 6, No: 2, 2009 (-8) TEKNOLOJİK ARAŞTIRMALAR www.tknolojikarastirmalar.com -ISSN:304-44 Makal (Articl)

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

BULANIK MANTIK KONTROLLÜ TERMOELEKTRİK BEYİN SOĞUTUCUSU

BULANIK MANTIK KONTROLLÜ TERMOELEKTRİK BEYİN SOĞUTUCUSU BULANIK MANIK KONROLLÜ ERMOELEKRİK BEYİN SOĞUUCUSU A.Hakan YAVUZ 1, Raşit AHISKA 2,Mahmut HEKİM 3 1Niksar Mslk Yükskokulu,Gaziosmanpaşa Ünivrsitsi Niksar,okat 2knik Eğitim Fakültsi,Elktronik Bilgisayar

Detaylı

B OSC2 VOD PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA. Rabman YAKAR, Etem KÖKLÜKAYA.

B OSC2 VOD PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA. Rabman YAKAR, Etem KÖKLÜKAYA. SAU Fn Bilimlri Enstitüsü Drgisi PIC16F84 Mikrodntlcisi Kullanılarak Ciaziarın Tlfon D Kontrolün Bir Uygulama PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA Rabman

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Pamukkal Ünivrsitsi Mühndislik Bilimlri Drgisi, Cilt 19, Sayı 6, 013, Sayfalar 66-74 Pamukkal Ünivrsitsi Mühndislik Bilimlri Drgisi Pamukkal Univrsity Journal of Enginring Scincs DIŞ MERKEZ ÇAPRAZLI BİR

Detaylı

JeoTes BASINÇLI KAPLAR

JeoTes BASINÇLI KAPLAR SINÇI KPR Okul, astan, spor tsislri, alışvriş mrkzlri v yüzm avuzları gibi sosyal tsislrd, askri tsislrd, yurt, lojman, apartman v toplu konutlarda, mrkzi ısıtma, soğutma v sıcak su sistmlrind, akümülasyon

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

y xy = x şeklinde bir özel çözümünü belirleyerek genel

y xy = x şeklinde bir özel çözümünü belirleyerek genel Difransil Dnklmlr I / 94 A Aşağıdaki difransil dnklmlrin çözümlrini bulunuz d d -( + ) 7 + n( ) +, () + n ( + ) 4 + - + 5 6 - ( - ) + 8 9 - - + + - ( -) d- ( + ) d + Not: Çözüm mtodu olarak: Tam difdnk

Detaylı

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ Srkan SUNU - Srhan KÜÇÜKA Dokuz Eylül Ünivrsitsi Makina Mühndisliği Bölümü -posta: srhan.kuuka@du.du.tr Özt: Bu çalışmada, komprsör,

Detaylı

- 1 - Cevap: e 2x sin 2 x. e e Cevap: Cevap: e 1. Cevap: e (e 2) Cevap: (x + 2) e 2. Cevap: e 1. Cevap: e αx sinβx. Cevap: e ax cos 2 bx.

- 1 - Cevap: e 2x sin 2 x. e e Cevap: Cevap: e 1. Cevap: e (e 2) Cevap: (x + 2) e 2. Cevap: e 1. Cevap: e αx sinβx. Cevap: e ax cos 2 bx. . Aşağıdaki fonksiyonarın türvrini buunuz. a) y=-n ( ) - - + + + + sin cos b) y= 8 c) y= arctg + d) y= n n ) y= + +n f) y= arctan g) y= n ( ) + + + + + sin + -arctan arctan h) y= i) y=(-) α n + -n αsinβ

Detaylı

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan.

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan. Mgntic Mtrils 4. Drs: Prmnytizm-2 Numn Akdoğn kdogn@gyt.du.tr Gbz Institut of Tchnology Dprtmnt of Physics Nnomgntism nd Spintronic Rsrch Cntr (NASAM) Kuntum mkniği klsik torinin özlliklrini dğiştirmdn,

Detaylı

Günlük Bülten. 06 Mart 2013. Merkez Bankası, Şubat Ayı Fiyat Gelişmelerini açıkladı. Yurtiçi otomotiv satışları Şubat ta geçen yıla göre %17 arttı

Günlük Bülten. 06 Mart 2013. Merkez Bankası, Şubat Ayı Fiyat Gelişmelerini açıkladı. Yurtiçi otomotiv satışları Şubat ta geçen yıla göre %17 arttı XU 100 US D/TRY (Sağ taraf) 06 Mart 2013 Çarşama Günlük Bültn İMKB vrilri İMKB 100 81,051.2 Piyasa Dğri-TÜM ($m) 318,088.0 Halka Açık Piyasa Dğri-TÜM ($m) 90,822.1 Günlük İşlm Hacmi-TÜM ($m) 1,695.51 Yurtdışı

Detaylı

KANUN TOHUMCULUK KANUNU. Kanun No. 5553 Kabul Tarihi : 31/10/2006 BİRİNCİ BÖLÜM. Amaç, Kapsam ve Tanımlar

KANUN TOHUMCULUK KANUNU. Kanun No. 5553 Kabul Tarihi : 31/10/2006 BİRİNCİ BÖLÜM. Amaç, Kapsam ve Tanımlar 8 Kasım 2006 ÇARŞAMBA Rsmî Gazt Sayı : 26340 KANUN TOHUMCULUK KANUNU Kanun No. 5553 Kabul Tarihi : 31/10/2006 Amaç BİRİNCİ BÖLÜM Amaç, Kapsam v Tanımlar MADDE 1 Bu Kanunun amacı; bitkisl ürtimd vrim v

Detaylı

Günlük Bülten. 05 Mart 2013. Şubat ayında TÜFE %0.30 arttı, ÜFE %0.13 azaldı. Şubat ayında elektrik tüketimi %6 düşüş gösterdi

Günlük Bülten. 05 Mart 2013. Şubat ayında TÜFE %0.30 arttı, ÜFE %0.13 azaldı. Şubat ayında elektrik tüketimi %6 düşüş gösterdi XU 100 U SD /TR Y (S ağ taraf) 05 Mart 2013 Salı Günlük Bültn İMKB vrilri İMKB 100 80,612.2 Piyasa Dğri-TÜM ($m) 315,101.9 Halka Açık Piyasa Dğri-TÜM ($m) 89,968.2 Günlük İşlm Hacmi-TÜM ($m) 1,595.93 Şuat

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

Yuvarlakada Kavşakların Kapasiteleri Üzerine Bir Tartışma *

Yuvarlakada Kavşakların Kapasiteleri Üzerine Bir Tartışma * İMO Tknik Drgi, 21 4935-4958, Yazı 323 Yuvarlakada Kavşakların Kapasitlri Üzrin Bir Tartışma * Srhan TANYEL* Nadir YAYLA** ÖZ Çalışmada, İzmir d bulunan dört kavşağa ait gözlmlrdn yararlanılarak, çok şritli

Detaylı

ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ

ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ (Dny Yürüücüsü: Arş. Gör. Doğan ERDEMİR) Dnyin Amacı v Dny Hakkında Gnl Bilgilr Dnyin amacı sı gri kazanımı (çapraz akış) sismlrind;. Sıcaklık dğişimlrinin ölçümü

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB00 Analiz I 3 Aralık 03 Final Sınavı Öğrenci Numarası: Adı Soyadı: - Taatlar: Sınav süresi 0 dakikadır. İlk 30 dakika sınav salonunu terk etmeyiniz.

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

MALİ HİZMETLER MÜDÜRLÜĞÜ-GELİR BİRİMİ

MALİ HİZMETLER MÜDÜRLÜĞÜ-GELİR BİRİMİ MALİ İZMTLR MÜDÜRLÜĞÜ-GLİR BİRİMİ DAİR İÇİ MÜDÜRLÜKLR ARASI BORCU YOKTUR İŞ AKIŞ ŞMASI İŞYRİ RUSATI ALMAK İÇİN ZABITA MÜDÜRLÜĞÜ RUSAT BÖLÜMÜN BAŞVURAN VATANDAŞLARIN BORCU YOKTUR KAŞ V İMZASI İÇİN MALİ

Detaylı

TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK. Resmi Gazete Tarihi: 08.06.2010 Resmi Gazete Sayısı: 27605

TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK. Resmi Gazete Tarihi: 08.06.2010 Resmi Gazete Sayısı: 27605 Rsmi Gazt Tarii: 08.06.2010 Rsmi Gazt Sayısı: 27605 TOPRAK KIRLILIĞININ KONTROLÜ VE NOKTASAL KAYNAKLI KIRLENMIŞ SAHALARA DAIR YÖNETMELIK BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak v Tanımlar Amaç MADDE 1 (1)

Detaylı

TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞSAHALARA DAİR YÖNETMELİK (1)

TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞSAHALARA DAİR YÖNETMELİK (1) Rsmi Gazt Tarii: 08.06.2010 Rsmi Gazt Sayısı: 27605 TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞSAHALARA DAİR YÖNETMELİK (1) BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak v Tanımlar Amaç MADDE 1 (1)

Detaylı

DERS 11. Belirsiz İntegral

DERS 11. Belirsiz İntegral DERS Blirsiz İnral.. Blirsiz İnral. B rs ürvi bilinn bir onksiyonn ynin inşasını l alacağız. Türvi bilinn bir onksiyonn ynin inşası işlmin rs ürv işlmi aniirniaion nir. v F onksiyonlar, F is, F y nin rs

Detaylı

NOKTASAL KAYNAKLI TOPRAK KİRLİLİĞİNİN KONTROLÜ YÖNETMELİĞİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

NOKTASAL KAYNAKLI TOPRAK KİRLİLİĞİNİN KONTROLÜ YÖNETMELİĞİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar NOKTASAL KAYNAKLI TOPRAK KİRLİLİĞİNİN KONTROLÜ YÖNETMELİĞİ Amaç BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak v Tanımlar MADDE 1 Bu Yöntmliğin amacı; alıcı ortam olarak toprağın kirliliktn korunması, noktasal kaynaklı

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 0 Haziran www.guvn-kua.h VİNÇTE ÇEİ ONSTRÜSİON ÖZET _09 M. Güvn UT Smbollr v anaklar için "_00_ClikonsruksionaGiris.do" a bakınız. oordina ksnlri "GENE GİRİŞ" d blirildiği gibi DIN 8800 T gör alınmışır.

Detaylı

YÖNETMELİK TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK

YÖNETMELİK TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK 8 Haziran 2010 SALI Rsmî Gazt Sayı : 27605 Çvr v Şircilik Bakanlığından: YÖNETMELİK TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak

Detaylı

İyon Kaynakları ve Uygulamaları

İyon Kaynakları ve Uygulamaları İyon Kaynakları v Uygulamaları E. RECEPOĞLU TAEK-Sarayköy Nüklr Araştırma v Eğitim Mrkzi rdal.rcpoglu rcpoglu@tak.gov.tr HPFBU-2012 2012-KARS KONULAR İyon kaynakları hakkında gnl bilgi İyon kaynaklarının

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

TLE 35128R Serisi CATV Hat Tekrarlayıcılar

TLE 35128R Serisi CATV Hat Tekrarlayıcılar TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,

Detaylı

TLE 35128R Serisi CATV Hat Tekrarlayıcılar

TLE 35128R Serisi CATV Hat Tekrarlayıcılar TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,

Detaylı

İMAR VE ŞEHİRCİLİK MÜDÜRLÜĞÜ Harita Şefliği 18. madde uygulaması(1/2) iş akış şeması

İMAR VE ŞEHİRCİLİK MÜDÜRLÜĞÜ Harita Şefliği 18. madde uygulaması(1/2) iş akış şeması İMAR V ŞİRCİLİK MÜDÜRLÜĞÜ arita Şefliği 18. madde uygulaması(1/2) iş akış şeması Gerekli Belgeler: 1-Değişiklik aritaları Yapım ve Kontrol Bilgileri 2-Pafta Ölçeğinde Kadastro Durum Planı 3-Ölçü krokisi

Detaylı

Çay Atıklarından Aktif Karbon Üretimi ve Adsorpsiyon Proseslerinde Kullanımı

Çay Atıklarından Aktif Karbon Üretimi ve Adsorpsiyon Proseslerinde Kullanımı ÖZET Çay Atıklarından Aktif Karbon Ürtimi v Adsorpsiyon Prosslrind Kullanımı Mrym OZMAK a, Işıl Gürtn b, Emin YAĞMUR b, Zki AKTAŞ b a DSİ Gn.Md. TAKK Dairsi Başkanlığı, Ankara, 61 b Ankara Ünivrsitsi Mühndislik

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

SONLU ELEMANLAR YÖNTEMİ İLE TEK FAZLI TRANSFORMATÖRÜN ÇALIŞMA NOKTASININ BELİRLENMESİ. Ali İhsan ÇANAKOĞLU

SONLU ELEMANLAR YÖNTEMİ İLE TEK FAZLI TRANSFORMATÖRÜN ÇALIŞMA NOKTASININ BELİRLENMESİ. Ali İhsan ÇANAKOĞLU Sonlu Elmanlar Yöntmi İl Tk Falı Transformatörün 7. Sayı Aralık 008 Çalışma Noktasının Blirlnmsi SONLU ELEMANLAR YÖNTEMİ İLE TEK FAZLI TRANSFORMATÖRÜN ÇALIŞMA NOKTASININ BELİRLENMESİ Ali İhsan ÇANAKOĞLU

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı