Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z."

Transkript

1 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...5 : A, B, C birbirinden fark lı doğal sayıları için, yandaki bölme işleminde B ile C nin yer değiştirm esi, sonucu değiştirmediğine göre, A en az kaç olabilir? A B C KALAN K 9 Bu bölme işleminde; ) A=B.C+K ) K < B ) K= ise A sayısı B' ye tam bölünür denir ve B A şeklinde yazılır, B böler A di ye okunur. ) K< C ise B ile C yer değiştirilebilir. Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z. A 9 n.n+ Örnek... : Yandaki bölme işlemin de bölüm ile kalanın toplam ı Örnek... : A, x, y birer doğal sayı olmak üzere, yandaki bölme işleminde y nin alabileceği değerlerin toplam ını bulunu z. b a b a 5 b a 5 A x y 78 ASAL SAYI 5 ve97 Sadece ve kendisine bölünen sayılara asal sayı denir. En küçük asal sayı tek çift asal sayı olan dir. Örnek...7 : a ve b doğal sayılar olmak üzere a b = ise a +b 85 Örnek... : Yandaki bölme işlemlerinde a, b, c sıfırdan farklı pozitif tam sayılar olmak üzere, a' nın c türünden eşiti ne dir?.c+7 Örnek... : x sayısının y ile bölümündeki bölüm ve kalan 5 tir. y sayısının z ile bölümündeki bölüm ve kalan 7 dir. x sayısının 6 ile bölüm ündeki k alan a b b c ARALARINDA ASAL SAYI Ortak pozitif tam sayı böleni s adece olan sayılara aralarında asal sayılar denir. Örneğin 6 ve 5 aralarınd a asald ır. Örnek...8 : 5, ve sayıları aralarında asal mıdır? Evet.. Sınıf Matematik Konu Anlatımı /8

2 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) ASAL ÇARPANLARA AYIRMA den büyük bir doğal sayının asal çarpanlarının çarpım ı şeklinde yazılmasına sayının asal çarpanlara ayrılması denir. x, y farklı asallar olmak üzere, A=x m.y n yazım ı A'nın asal çarpanlarına ayrılmış biçimidir. Örnek... : 6 sayısının a) k aç asal böleni vardır? b) kaç pozitif tam sayı böleni vardır? c) kaç tam sayı böleni vardır? d) asal olm a yan kaç pozitif böleni vard ır? a) b) c)8 d) Örnek...9 : 6 sa yısını asal çarpanlar ına a yır ınız?..5 Örnek... : A, x ve y tam sayılar olmak üzere, 8!= x.5 y.a ise x ve y en çok Örnek... : 9! sayısını asal çarpanlarına ayırınız? 78 ve BİLGİ Asal çarpanlara ayrılm ış biçimi A=x m.y n.z k olan A sayısının (m+).(n+).(k+) çarpımının sonucu kadar pozitif tam sayı böleni vard ır. BÖLÜNEBİLME KURALLARI ' YE 5' E VE ' A BÖLÜNEBİLME KURALLARI : Bir doğal sayının birler basamağındaki rakam çiftse, bu sayı ile kalansız (tam) sa yın ın ye bölüm ünden kalanı verir. Bir doğal sayının birler basamağı veya 5 ise, bu sayı 5 ile kalansız (tam) sayının 5 e bölümünden kalanı verir. Örnek... : 5! sayısının sondan kaç basamağı dır? Örnek... : 6.x= y eşitliğini sağlayan en küçük x ve y pozitif tam sa yılarını bulunu z? x= ve y=6 Bir doğal sayının birler basamağındaki rakam ise, bu sayı ile kalansız (tam) sayının a bölümünden kalanı verir. Örnek...5 : Dört basamaklı a7a sayısı ile kalansız bölünebildiğine göre, a kaç farklı değer alabilir? Örnek...6 : 7a rakamları farklı, dört basamaklı, ile bölündüğünde kalanı veren doğal sayıdır. a n ın alabileceği değerler çarp ım ı 5.. Sınıf Matematik Konu Anlatımı /8

3 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) Örnek...7 : abcda sayısı den büyük ve ikiye bölündüğünde kalanını veren beş basamaklı bir sayıdır. a' nın alabileceği değerlerin toplam ı Örnek... : Dört basamaklı a7b sayısının ile bölümünden kalan 7 dir. Bu sayı 9 ile k alans ız bölünebildiğine göre, a İLE BÖLÜNEBİLME KURALI : Örnek...8 : Dört basamaklı 57m sayısının 5 ile bölümünden kalan olduğuna göre, m nin alabileceği değerlerin küm esini bulunu z. {,7} ' E VE 9' A BÖLÜNEBİLME KURALLARI : Bir doğal sayının rakamlarının sayı değerlerinin toplam ı ün ( 9 un) katı ise, bu sayı ile ( 9 ile) kalansız (tam) sayının e veya 9 a bölümünden kalanı verir. Örnek...9 : 5A dört basamaklı sayısının ile kalansız bölünebilmesi için, A yerine yazılabilecek rakamların kümesini bulalım. {,5,8} Bir doğal sayının basamakları ' ler basam ağ ından başlanarak sola doğru " +,, +,, +,... " biçiminde işaretlenir. Bu işaretlerle rakam değerleri çarpılarak toplanır. Elde edilen sonuç veya in katı ise bu sayı ile kalansız bölünebilir. Eğer tam bölünmüyor ise sayının e bölüm ünden k alanı verir. Örnek... : Altı basamaklı sayısının ile bölümünden kalan Örnek... : Altı basamaklı 75a7 sayısı ile kalansız bölündüğüne göre, a kaçtır? Örnek... : A = ab57 sayısının rakamları farklı ve 9 ile bölünebilen bir sayı olduğu bilindiğine göre a.b çarpım ı kaç olabilir? 8 Örnek...5 : Rakamları farklı, üç basamaklı pozitif tam sayıların en büyüğü ve en küçüğünün çarpımlarının ile bölümünden kalan Örnek... : basamaklı sayısının 9 ile bölüm ünden k alan Örnek...6 : 87xy sayısı ve ile tam bölünebildiğine göre, x' in alacağı değerler toplam ı 6.. Sınıf Matematik Konu Anlatımı /8

4 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) İLE VE 8 İLE BÖLÜNEBİLME KURALLARI : Bir doğal sayının birler ve onlar basamağındaki rakamlarının oluşturduğu sayı ya da ün katı ise, ile kalansız sayının e bölümünden kalanı verir. Bir doğal sayının birler, onlar yüzler basamağındaki rakamlarının oluşturduğu sayı ya da 8 in katı ise, 8 ile kalansız bölünebilir. Eğer tam bölünmüyor ise sayının 8 e bölümünden kalanı verir. Örnek...7 : 5675 beş basamaklı doğal sayının ve 8 ile bölümünden kalanlar çarpımı 9 6,, 5, 8,,,, 6, 5 İLE BÖLÜNEBİLME KURALLARI : BÖLÜNEBİLMENİN TEMEL KURALI : m ile n aralarında asal iki sayı olsun, m ve n ile kalansız bölünebilen sayılar m.n çarpımı ile de kalansız bölünür. Dolayısı ile m.n' ye tam bölünebilen bir sayıda hem m' ye hem de n' ye tam bölünebilir. Bir sayı 6 ile bölünebiliyorsa hem hem de ' e tam bölünebilir. Bir sayı ile bölünebiliyorsa hem hem de 8' e tam bölünebilir. ( Ama hem 6 hem ile bölünemez.) 5 Örnek...8 : Dört basamaklı 75m sayısı, ile bölündüğünde kalan olduğuna göre, m rakamı kaç farklı değer alır? 7 İLE BÖLÜNEBİLME KURALI : şeklindeki bir sayı birler basamağından başlanarak üçlü gruplara ( yani bölük lere) ayrılarak sırasıyla "...,, +,, + " şeklinde işaretlenir. İşaretli grupların rakamları soldan sağa, ve sayılarıyla sırasıyla çarpılır ve sonuç bulunur. Bu sonuç 7 nin katı ise sayı 7 ye tam bölünür. Eğer tam bölünmüyor ise sayının 7 ye bölümünden kalanı verir. Örnek...9 : 667 sayısının 7 ile bölümünden kalan Örnek... : 567 sayısının 7 ile bölümünden kalan Örnek... : Bir sayının aşağıdaki sayılara bölünebilmesi için hangi sayılara tam olarak bölünmesi gerek ir? = 5 = 8 = = = 6 = 5 = 55 = 6 = Örnek... : Dört basamaklı 6a sayısının 6 ile kalansız bölünebilmesi için, a yerine yazılabilecek rakamlar ın toplam ı Örnek... : Dört basamaklı a7b sayısı 5 ile kalansız bölündüğüne göre, a nın alabileceği değerlerin toplam ı k açt ır? 9 Örnek... : Beş basamaklı 87AB sayısı 5 ile bölümünden kalan 6 ise A+B kaç olabilir?, 5,8,,.. Sınıf Matematik Konu Anlatımı /8

5 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) Örnek...5 : Altı basamaklı 7ab sayısı ile bölümünden 7 kalıyor ise a+b toplamı en çok kaç olabilir? 5 İki sa yının en bü yük ortak bölenini yuk arıdak i yöntemlerden farklı olarak Öklid algoritması ile de bulabiliriz. Şim di bunu öğrenelim. ÖKLİD ALGORİTMASI 6 İLE BÖLÜNEBİLME KURALI : Bir doğal sayının son dört basamağının oluşturduğu sayı ya da 6 nın katı ise, bu sayı 6 ile kalansız bölünür. Eğer tam bölünmüyor ise sayının 6 ya bölüm ünden kalan ı verir. 5 İLE BÖLÜNEBİLME KURALI : Bir doğal sayının birler ve onlar basamağının oluşturduğu iki basamaklı sayı ya da 5 in katı ise, o doğal sayı 5 ile kalansız bölünür. Eğer tam bölünmüyor ise sayının 5 e bölümünden kalanı verir. EBOB İkisi birden sıfır olmayan a ve b tam sayılarının ikisini birden bölen en büyük pozitif tam sayıya bu sayıların en bü yük ortak böleni (EBOB) denir ve EBOB( a, b) = x biçiminde gösterilir. Örnek...6 : EBOB(,6)=? EBOB(8,6)=? ve 6 A ve B sayılarının obeb' ini bulmak için Öklid algoritmasını kullanabiliriz. Bu algoritm a da Adım ) Büyük sayı küçük sayıya bölünür. Adım ) Kalan ise obeb o bölm enin bölenidir. Adım ) Kalan değilse, ilk bölmenin böleni kalanına tekrar bölünür ve kalan olana kadar böyle yapılır. Sıfır kalanına ulaşıl ın ca ad ım ) gereği ebob bulunmuş olur. Örnek...7 : Obeb( 6, 5) Öklit algoritmasına göre, olduğunda n, OBEB(6,5)=5 tir. Örnek...8 : OBEB( 6, 6) Çözüm : Öklit algoritmasına göre; Adım ) Adım ) Adım ) A K 6 5 B C EBOB ÖZELLİKLERİ ) EBOB(a,b)=EBOB(b,a)=EBOB( a,b) ) EBOB(a,b+c.a)=EBOB(a,b) ) EBOB(a,b) min{ a, b } OBEB(6,6)= dir. Örnek...9 : Obeb(,) Öklit algoritmasıyla hesapla yın ız? ) EBOB(a,b)= ise a ile b aralarında asal sayıdır... Sınıf Matematik Konu Anlatımı 5/8

6 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) Örnek... : Obeb(6,9) Öklit algoritmasıyla hesapla yın ız? 6 EKOK Sıfırdan farklı a ve b tam sayılarının katlarından en küçük olup ortak olanına bu sayıların En Küçük Ortak Katı (EKOK) denir. Örnek... : EKOK(,6)=? EKOK(8,6)=? 7 ; 8 a ve b sıfırdan farklı tam sayılar ve c tam sayı ise a.x+b.y=c denkleminde obeb(a,b), c sayısının böleniyse (x,y) tam sayı ikilisi çözümleri bulunabilir. Örnek... : x+y=6 denkleminin tam sayılar kümesinde çözüm kümesi kaç elemanlıdır? ax+by=c=obeb(a,b) denkleminde (x,y) tam sayı ikilisi çö züm leri ök lit algoritm asıyla bulunabilir. EKOK ÖZELLİKLERİ ) EKOK(a,b)=EKOK(b,a)) ) EKOK(a,b) max{ a, b } ) EBOB(a,b).EKOK(a,b)=a.b Örnek...5 : EKOK(A,B)= ve EBOB(A,B)=6 ise A+B k aç olabilir? 6 veya 5 Örnek... : 5x+y= denkleminin (x,y) biçiminde ki çözümlerinden bir tanesini, tam sayılar küm esinde öklit algoritm asıyla bulunuz. (5,) Örnek... : Ebob(8,)=x.8+ y. denkleminin tam sayılar kümesinde çözümlerinden bir tanesini öklit algoritmasıyla bulunuz. (,).. Sınıf Matematik Konu Anlatımı 6/8

7 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) DEĞERLENDİRME : 6) sayısının karesinin ' e bölümünden kalan ) Yanda verilen bölmelerde x, y, z pozitif tam sayı olduğuna göre, x+ y+z 5z oranının değeri x y 5 y z 7 5 7) x7y beş basamaklı sayısı 5 ve ile tam bölünebildiğine göre, x in değerleri çarpımı ) Yandaki bölme işleminde A sayısı en çok A 5.n+ n +n ) X sayısının 6 ile bölümünden kalan 5 ve bölüm Y dir. Y nin 5 ile bölümünden kalan ise X in 5 ile bölümünden kalan ) İkiye tam bölünebilen iki basamaklı doğal sayıların kaç tanesi beşe kalansız bölünebilir? 9 8) Dört basamaklı 5a sayısının ile kalansız bölünebilmesi için, a yerine yazılabilecek rakamların kümesini bulunuz? {,,5,7,9} 9) Dört basamaklı 58x sayısı 8 ile kalansız bölünebildiğine göre, x in alacağı değerler çarpımı 5) Beş basamaklı 57m sayısının 9 ile bölümünden kalanın 7 olması için, m kaç olmalıdır? 8 ) 56x8y altı basamaklı sayısı 6 ile tam bölünebildiğine göre, x lerin toplamı.. Sınıf Matematik Konu Anlatımı 7/8

8 MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) ) Dört basamaklı 7a5 sayısı 5 ile kalansız bölünebildiğine göre, a kaç farklı değer alır? 5) x ve y iki basamaklı tam sayılardır. 65.x+9.y=EBOB(65, 9) olduğuna göre x+y toplamının alabileceği en büyük değer 7 ) x78y altı basamaklı çift sayının 5 ile bölümünden kalan 7 olduğuna göre, x ) 78x5y altı basamaklı sayının ile bölümünden kalan 7 olduğuna göre, x lerin çarpımı 8 BİLGİ a, b ve c tam sayılar olmak üzere, a.x+b.y=c eşitliğini sağlayan (x,y) ikililerinden biri (β, θ) ise (β+b, θa) ikilisi de bu eşitliği sağlar. Yani x bileşeni y nin katsayı kadar artarken (azalırken ), y bileşeni x in katsayısı kadar azalır (artar). ) 8!+9! sayısının sondan kaç basamağı 9 dur?.. Sınıf Matematik Konu Anlatımı 8/8

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır.

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır. BÖLME, BÖLÜNEBİLME A. Bölme İşlemi A, B, C, K doğal sayılar ve B 0 olmak üzere, Bölünen A 75, bölen B 9, bölüm C 8 ve kalan K tür. Yukarıdaki bölme işlemine göre, 1. 9 yani, K B dir. işlemine bölme denir.

Detaylı

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir?

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir? SAYILAR - 3 1) (x + y) ile (y + z) aralarında asal sayılardır. 7x + 3y = 4z olduğuna göre x - z farkı kaçtır? A) -3 B) -2 C) -1 D) 0 E) 1 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

6. x ve y birer tam sayıdır. 7. a, b, c doğal sayılar olmak üzere, 8. a, b, c doğal sayılar olmak üzere, 9. x, y ve z birer tam sayı olmak üzere,

6. x ve y birer tam sayıdır. 7. a, b, c doğal sayılar olmak üzere, 8. a, b, c doğal sayılar olmak üzere, 9. x, y ve z birer tam sayı olmak üzere, İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l a s g ü n e ş İ l a s gün e ş & i l

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

0 dan matematik. Bora Arslantürk. çalışma kitabı

0 dan matematik. Bora Arslantürk. çalışma kitabı 0 dan matematik 0 dan matematik 1 çalışma kitabı Sıfırdan başlanarak matematik ile ilgili sıkıntı yaşayan herkese hitap etmesi, Akıllı renklendirme ile göz yoran değil ayrım yapmayı, istenileni bulmayı

Detaylı

ÇARPANLAR VE KATLAR BİR DOĞAL SAYININ ÇARPANLARINI BULMA. 3. Aşağıda verilen sayıların çarpanlarından asal olanları belirleyelim.

ÇARPANLAR VE KATLAR BİR DOĞAL SAYININ ÇARPANLARINI BULMA. 3. Aşağıda verilen sayıların çarpanlarından asal olanları belirleyelim. ÇARPANLAR VE KATLAR 8.1.1.1. Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade yada üslü ifadelerin çarpımı şeklinde yazar. BİR DOĞAL SAYININ ÇARPANLARINI BULMA Her doğal

Detaylı

Çözüm 1. yol 36 bölenleri 1,2,3,4,6,9,12,18,36. Örnek...1 : Obeb( 60, 15) kaçtır? Örnek...2 : OBEB( 60, 36) kaçtır? Çözüm : ÖKLİD ALGORİTMASI

Çözüm 1. yol 36 bölenleri 1,2,3,4,6,9,12,18,36. Örnek...1 : Obeb( 60, 15) kaçtır? Örnek...2 : OBEB( 60, 36) kaçtır? Çözüm : ÖKLİD ALGORİTMASI EBOB İkisi birden sıfır olmayan a ve b tam sayılarının ikisini birden bölen en büyük pozitif tam sayıya bu sayıların en bü yük ortak böleni (EBOB -eski OBEB-) denir ve EBOB(a,b)=x biçiminde gösterilir.

Detaylı

ISBN Sertifika No: 11748

ISBN Sertifika No: 11748 ISN - 978-0--- Sertifika No: 78 GENEL KOORDİNTÖR: REMZİ ŞHİN KSNKUR REDKTE: REMZİ ŞHİN KSNKUR SERDR DEMİRCİ - SRİ ŞENTÜRK SERVET SVŞ ÇETİN as m Yeri: UMUT MTCILIK - MERTER / STNUL u kitab n tüm bas m ve

Detaylı

1) Aşağıdaki şekilleri altlarındaki kesirli sayılara göre boyayınız. a) b) c) d) e)

1) Aşağıdaki şekilleri altlarındaki kesirli sayılara göre boyayınız. a) b) c) d) e) BÖLÜM KESİRLER KESİRLER TEST ) Aşağıdaki şekilleri altlarındaki kesirli sayılara göre boyayınız. a) b) c) 6 0 8 d) e) ) Aşağıdaki şekillerde, boyalı bölgelerin kesir sayısı olarak karşılıklarını yazınız.

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SMNYOLU LİSELERİ 4. İLKÖĞRETİM MTEMTİK YRIŞMSI 2008 / MRT KİTPÇIĞI BİRİNCİ BÖLÜM Çoktan seçmeli 30 Test sorusundan oluşan ün süresi 90 dakikadır. Bu bölümün bitiminde kısa bir ara verilecektir. Elinizdeki

Detaylı

İLKÖĞRETİM 1. SINIF MATEMATİK DERSİ SAYMA, TOPLAMA ve ÇIKARMA İŞLEMİ BECERİLERİ

İLKÖĞRETİM 1. SINIF MATEMATİK DERSİ SAYMA, TOPLAMA ve ÇIKARMA İŞLEMİ BECERİLERİ İLKÖĞRETİM 1. SINIF MATEMATİK DERSİ SAYMA, TOPLAMA ve ÇIKARMA İŞLEMİ BECERİLERİ 1. Rakamları okur ve yazar. 2. Nesne sayısı 10 dan az olan bir topluluktaki nesnelerin sayısını belirler ve bu sayıyı rakamla

Detaylı

SAYI BASAMAKLARI. çözüm

SAYI BASAMAKLARI. çözüm SAYI BASAMAKLARI Sayı Basamakları Günlük hayat m zda 0 luk say sistemini kullan r z. 0 luk say sistemini kullanmam z n nedeni, sayman n parmaklar m zla ba lamas ve iki elimizde toplam 0 parmak olmas olarak

Detaylı

3) x = 10 3 ise x kaçt r? Çözüm: Toplamadaki ard k terimlerin fark 5 oldu undan, A =

3) x = 10 3 ise x kaçt r? Çözüm: Toplamadaki ard k terimlerin fark 5 oldu undan, A = DO AL SAYILAR, TAMSAYILAR ) 8. 0 7 +. 0 + 4. 0 say, a dakilerden hangisidir? 8. 0 7 +. 0 + 4. 0 = 8. 0 7 + 0. 0 6 + 0. 0 + 0. 0 4 + 0. 0 + 0. 0 2 + 4. 0 + 0. 0 0 eklinde yaz labilir. Öyleyse, say 8000040

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük MATEMATİ O ON NU UA AN NL L A A T T I I ML ML I I F F A AS S İ İ Ü ÜL LS S E E T T İ İ TEMALARI NA GÖREAYRI LMI Ş FASİ ÜL. SI NI F DOĞAL SAYILAR Günlük hayatta pek çok durumda sayıları kullanırız: Saymak,

Detaylı

Kenan Osmanoğlu / Kerem Köker. KPSS Matematik Konu Anlatımlı ISBN 978-605-318-091-3. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Kenan Osmanoğlu / Kerem Köker. KPSS Matematik Konu Anlatımlı ISBN 978-605-318-091-3. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Kenan Osmanoğlu / Kerem Köker KPSS Matematik Konu Anlatımlı ISBN 97860518091 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Pegem Akademi Bu kitabın basım, yayın ve satış hakları Pegem Akademi

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı

İLKÖĞRETİM 6., 7., 8. SINIFLAR MATEMATİK DERSİ MÜFREDAT PROGRAMINDA GEÇEN CEBİR KONULARININ İNCELENMESİ MAT YL 2009 0001

İLKÖĞRETİM 6., 7., 8. SINIFLAR MATEMATİK DERSİ MÜFREDAT PROGRAMINDA GEÇEN CEBİR KONULARININ İNCELENMESİ MAT YL 2009 0001 T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİMDALI İLKÖĞRETİM 6., 7., 8. SINIFLAR MATEMATİK DERSİ MÜFREDAT PROGRAMINDA GEÇEN CEBİR KONULARININ İNCELENMESİ MAT YL 2009 0001

Detaylı

YGS Soru Bankas MATEMAT K Temel Kavramlar

YGS Soru Bankas MATEMAT K Temel Kavramlar 9. 7 = 3.3.3, 07 = 3.3.3 007 = 3.3.3, 0007 = 3.3.3,... Yukar daki örüntüye göre, afla daki say lar n hangisi 81'in kat d r? A) 00 007 B) 0 000 007 C) 000 000 007 D) 00 000 000 007 13. Ard fl k 5 pozitif

Detaylı

[ 1 i 6 2i. [ a b. Örnek...3 : Örnek...4 : 0 0 0. Örnek...5 : 1 3 2. Örnek...6 : i sanal sayı birimi olmak üzere, i. Örnek...1 : 3 4 2 8 =?

[ 1 i 6 2i. [ a b. Örnek...3 : Örnek...4 : 0 0 0. Örnek...5 : 1 3 2. Örnek...6 : i sanal sayı birimi olmak üzere, i. Örnek...1 : 3 4 2 8 =? A=[a i j] r x r bir kare matris ise bu kare matrisi reel bir sayıya eşleyen fonksiyona determinant denir. Örnek...3 : i sanal sayı birimi olmak üzere, [ 1 i 6 2i 3+i 2+2i] matrisinin determinantı kaça

Detaylı

SAYILAR - I 01. Doğal Sayılar ve Tam Sayılar Basamak Kavramı ve Taban Aritmetiği

SAYILAR - I 01. Doğal Sayılar ve Tam Sayılar Basamak Kavramı ve Taban Aritmetiği SAYILAR - I 01 Doğal Sayılar ve Tam Sayılar Basamak Kavramı ve Taban Aritmetiği 7 DOĞAL SAYILAR ve TAM SAYILAR - I 1. (6.3 ) : 1 işleminin sonucu kaçtır? 6. x 1 A) B) 1 C) 0 D) 1 E)! İşlemde öncelik sırasına

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

DOĞAL SAYILAR Üç Basamaklı Doğal Sayılar

DOĞAL SAYILAR Üç Basamaklı Doğal Sayılar 1. Fasikül DOĞAL SAYILAR Üç Basamaklı Doğal Sayılar Adı :... Soyadı :... Sınıfı :... No :... Say lar yazmak için kullan lan sembollere rakam denir. Rakamlar 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 dur. S f rdan başlay

Detaylı

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birinci Bölüm Soru Kitapçığı Türü DENEME-7 Bu sınav iki bölümden

Detaylı

12. 13. Faktöryel: 01. 02. 03.

12. 13. Faktöryel: 01. 02. 03. ĐZMĐR FEN LĐSESĐ SINIF MATEMATĐK ÇALIŞMA SORULARI: (Permütasyon-Kominasyon-Binom ve Olasılık) Çarpmanın Temel Đlkesi: 0 Faktöryel: 06. 06. 11. 1 11. 4. a. b. 5. c. 6. 7. 8. 16. 9. 17. 30. 31. Permütasyon:

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

TEŞEKKÜR Bizler anne ve babalarımıza, bize her zaman yardım eden matematik öğretmenimiz Zeliha Çetinel e, sınıf öğretmenimiz Zuhal Tek e, arkadaşımız

TEŞEKKÜR Bizler anne ve babalarımıza, bize her zaman yardım eden matematik öğretmenimiz Zeliha Çetinel e, sınıf öğretmenimiz Zuhal Tek e, arkadaşımız 1 2 TEŞEKKÜR Bizler anne ve babalarımıza, bize her zaman yardım eden matematik öğretmenimiz Zeliha Çetinel e, sınıf öğretmenimiz Zuhal Tek e, arkadaşımız Tunç Tort a ve kütüphane sorumlusu Tansu Hanım

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı

Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r?

Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r? ÖRNEK 3: x y y Bölme ifllemine göre x en az kaçt r? A) 6 B) 9 C) D) 4 E) 4 ÖRNEK 4: a, ve 6 say taban n göstermek üzere, (3) + (a) = (b) eflitli inde a 6 b kaçt r? A) 0 B) C) D) 3 E) 4 ÇÖZÜM 4: ÇÖZÜM 3

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

ıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir.

ıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir. 1-RASYONEL SAYILAR VE ÖZELLĐKLERĐ A)Rasyonel Sayılar:Birbirine denk olan kesirlerin meydana getirdiği her kümeye rasyonel sayı denir.rasyonel sayıların meydana getirdiği kümelere rasyonel sayılar kümesi

Detaylı

BÖL-1B. Fatih University- Faculty of Engineering- Electric and Electronic Dept.

BÖL-1B. Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı BÖL-1B Fatih University- Faculty of Engineering- Electric and Electronic Dept. İŞARETLİ SAYILAR Bilgisayar gibi

Detaylı

B02.8 Bölüm Değerlendirmeleri ve Özet

B02.8 Bölüm Değerlendirmeleri ve Özet B02.8 Bölüm Değerlendirmeleri ve Özet 57 Yrd. Doç. Dr. Yakup EMÜL, Bilgisayar Programlama Ders Notları (B02) Şimdiye kadar C programlama dilinin, verileri ekrana yazdırma, kullanıcıdan verileri alma, işlemler

Detaylı

kpss Önce biz sorduk 120 Soruda 83 SORU Güncellenmiş Yeni Baskı Genel Yetenek Genel Kültür MATEMATİK GEOMETRİ Tamamı Çözümlü SORU BANKASI

kpss Önce biz sorduk 120 Soruda 83 SORU Güncellenmiş Yeni Baskı Genel Yetenek Genel Kültür MATEMATİK GEOMETRİ Tamamı Çözümlü SORU BANKASI Önce biz sorduk kpss 2 0 1 8 120 Soruda 83 SORU Güncellenmiş Yeni Baskı Genel Yetenek Genel Kültür MATEMATİK GEOMETRİ Tamamı Çözümlü SORU BANKASI Editör Kenan Osmanoğlu - Kerem Köker Yazar Komisyon KPSS

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

matematik kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları sayısal akıl ve mantıksal akıl yürütme 2014 kpss de

matematik kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları sayısal akıl ve mantıksal akıl yürütme 2014 kpss de kpss 0 konu anlatımlı ayrıntılı çözümlü örnekler uyarılar pratik bilgiler çıkmış sorular ve açıklamaları ÖSYM tarzına en yakın özgün sorular ve açıklamaları matematik sayısal akıl ve mantıksal akıl yürütme

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TML MTMT K TST KKT! + u bölümde cevaplayaca n z soru say s 40 t r + u bölümdeki cevaplar n z cevap ka d ndaki "TML MTMT K TST " bölümüne iflaretleyiniz.. + : flleminin sonucu kaçt r? 4. ört do al say afla

Detaylı

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA 3. Ondalık Sayılarda İşlemler: Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama-çıkarma

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

KÜMELER A) 1 B) 2 C) 3 D) 4 E) 5 A) 1 B) 2 C) 3 D) 4 E) 5 A) 30 B) 31 C) 32 D) 33 E) 34 A) 30 B) 25 C) 21 D) 19 E) 17 A) 24 B) 26 C) 28 D) 30 E) 32

KÜMELER A) 1 B) 2 C) 3 D) 4 E) 5 A) 1 B) 2 C) 3 D) 4 E) 5 A) 30 B) 31 C) 32 D) 33 E) 34 A) 30 B) 25 C) 21 D) 19 E) 17 A) 24 B) 26 C) 28 D) 30 E) 32 TARAMA TESTİ 1 KÜMELER 1. A= x N : x 6 A B x N : x 8 B \ A aşağıdakikerden hangisidir? A)7,8 B)6,7,8 C)8 D)7 E) 2. A = x N : 2 x 7, B = x N : 2 x 5 olduğuna göre,a \ B nin eleman sayısı kaç? 3. A = x N

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır? www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne

Detaylı

Bu konuda cevap verilecek sorular?

Bu konuda cevap verilecek sorular? MANYETİK ALAN Bu konuda cevap verilecek sorular? 1. Manyetik alan nedir? 2. Maddeler manyetik özelliklerine göre nasıl sınıflandırılır? 3. Manyetik alanın varlığı nasıl anlaşılır? 4. Mıknatısın manyetik

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI

FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI Serpil GERDAN Oya YAZICI ÇAKIN Kocaeli Üniversitesi 2009 1/15 CEVAP ARANAN SORULAR

Detaylı

1 OCAK 31 ARALIK 2009 ARASI ODAMIZ FUAR TEŞVİKLERİNİN ANALİZİ

1 OCAK 31 ARALIK 2009 ARASI ODAMIZ FUAR TEŞVİKLERİNİN ANALİZİ 1 OCAK 31 ARALIK 2009 ARASI ODAMIZ FUAR TEŞVİKLERİNİN ANALİZİ 1. GİRİŞ Odamızca, 2009 yılında 63 fuara katılan 435 üyemize 423 bin TL yurtiçi fuar teşviki ödenmiştir. Ödenen teşvik rakamı, 2008 yılına

Detaylı

a) 6x6x6x6 b) 13x13x13 c) 9x9x9x9x9x9x9 tane küp olması için kaç tane daha küpe ihtiyaç vardır?

a) 6x6x6x6 b) 13x13x13 c) 9x9x9x9x9x9x9 tane küp olması için kaç tane daha küpe ihtiyaç vardır? 3BÖLÜM ÜSLÜ SAYILAR ÜSLÜ SAYILAR TEST 1 1) Aşağıdaki işlemlerin sonucunu üslü biçimde yazınız. a) 6x6x6x6 b) 13x13x13 c) 9x9x9x9x9x9x9 2) Aşağıdaki şekilde 3 3 tane küp olması için kaç tane daha küpe

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü Deney-2 /5 DENEY 2 SĐLĐNDĐR ÜZERĐNE ETKĐ EDEN SÜRÜKLEME KUVVETĐNĐN BELĐRLENMESĐ AMAÇ Bu deneyin amacı, silindir üzerindeki statik basınç dağılımını, akışkan tarafından silindir üzerine uygulanan kuvveti

Detaylı

YGS TEMEL MATEMA MA T TEMA T K KONU ANLATIMLI

YGS TEMEL MATEMA MA T TEMA T K KONU ANLATIMLI YGS TEMEL MATEMAT K KONU ANLATIMLI YGS KONU ANLATIMLI TEMEL MATEMAT K Bas m Yeri ve Y l stanbul / 0 Bask Cilt Ek Bil Matbaac l k Tel: 0 () 87 ISBN 978 60 70 6 Copyright Ayd n Bas n Yay n Matbaa Sanayi

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi FOTOGRAMETRİ I Fotogrametrik Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi Tanımlar Metrik Kameralar Mercek Kusurları

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 200 20 ÖSS-YGS - - - 2 2 / - 2/ 2/ / LYS OBEB OKEK OBEB: iki veya daha fazla sayıyı birlikte bölebilen en büyük tamsayıya bu sayıların OBEB i denir Sayılar

Detaylı

3- Kayan Filament Teorisi

3- Kayan Filament Teorisi 3- Kayan Filament Teorisi Madde 1. Giriş Bir kas hücresi kasıldığı zaman, ince filamentler kalınların üzerinden kayar ve sarkomer kısalır. Madde 2. Amaçlar İnce ve kalın filamentlerin moleküler yapı ve

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

Öğrenci Seçme Sınavı (Öss) / 14 Haziran 2009. Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 =

Öğrenci Seçme Sınavı (Öss) / 14 Haziran 2009. Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 = Öğrenci Seçme Sınavı (Öss) / 4 Haziran 009 Matematik I Soruları ve Çözümleri. ( ).( + ) işleminin sonucu kaçtır? A) 6 B) 6 C) D) 6 E) 6 Çözüm ( ).( + ) 0 ( ).( ) + ( 4 9 ). 6 36 6 36. 6 6. 0, 0,0 0,0 işleminin

Detaylı

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir.

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir. 2. Niceleme Mantığı (Yüklemler Mantığı) Önermeler mantığı önermeleri nitelik yönünden ele aldığı için önermelerin niceliğini göstermede yetersizdir. Örneğin, "Bazı hayvanlar dört ayaklıdır." ve "Bütün

Detaylı

MATEMATİK (haftalık ders sayısı 5, yıllık toplam 90 ders saati)

MATEMATİK (haftalık ders sayısı 5, yıllık toplam 90 ders saati) MATEMATİK (haftalık ders sayısı 5, yıllık toplam 90 ders saati) GİRİŞ XXI. yüzyılda matematik eğitimi yalnız doğa olaylarının araştırmasında ve teknikte değil insan oğlunun mantıklı, eleştirel ve estetik

Detaylı

Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız.

Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız. Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız. 3.2 KİMYASAL BAĞLAR Çevrenizdeki maddeleri inceleyiniz. Bu maddelerin neden bu kadar çeşitli olduğunu düşündünüz mü? Eğer bu çeşitlilik

Detaylı

MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI İLKÖĞRETİM OKULLARI ARASI MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI AÇIKLAMALAR

MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI İLKÖĞRETİM OKULLARI ARASI MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI AÇIKLAMALAR 2008 MFETY MFETY İÖĞRETİM OURI RI MFETY ÇIMR Bu sınav çoktan seçmeli 35 ve çözmeli (klasik) 5 sorudan oluşmaktadır. ınav süresi 150 dakikadır. Tavsiye edilen; test soruları için 90 dakika, çözmeli (klasik)

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KISA DÖNEMLİ AMAÇLAR (ünite-konu amaçları)

BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KISA DÖNEMLİ AMAÇLAR (ünite-konu amaçları) UZUN DÖNEMLİ AMAÇLAR (yıl sonunda) RİTMİK SAYMALAR BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KISA DÖNEMLİ AMAÇLAR (ünite-konu amaçları) 100 e kadar ikişer ritmik sayar. ÖĞRETİMSEL AMAÇLAR BAŞ. BİTİŞ (Kazanımlar)

Detaylı

KAZANIMLAR, ETKİNLİK ÖRNEKLERİ VE AÇIKLAMALAR I. DÖNEM

KAZANIMLAR, ETKİNLİK ÖRNEKLERİ VE AÇIKLAMALAR I. DÖNEM KAZANIMLAR, ETKİNLİK ÖRNEKLERİ VE AÇIKLAMALAR I. DÖNEM ÖĞRENME ALANI: SAYILAR 12. MATEMATİK VE MESLEK MATEMATİĞİ DERSİ ÖĞRETİM PROGRAMI 29 DOĞAL SAYILAR Bu ünitenin sonunda öğrenciler; 1. Doğal sayılar

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

ŞEFKAT KOLEJİ İMFO-2015 5.SINIF MATEMATİK SORULARI

ŞEFKAT KOLEJİ İMFO-2015 5.SINIF MATEMATİK SORULARI 0 K KOLJİ İMO-015 5.SINI MMİK SORULRI 1. efkat Koleji matematik öğretmenleri hazırladıkları matematik soru bankasındaki sayfaları numaralandırmak için 88 rakam kullanmışlardır. Buna göre bu soru bankası

Detaylı

ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR

ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR Bu rapor Ankara Emeklilik A.Ş Gelir Amaçlı Uluslararası Borçlanma Araçları Emeklilik Yatırım

Detaylı

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik ve Ölçme Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik kanunları temel büyüklükler(nicelikler) cinsinden ifade edilir. Mekanikte üç temel büyüklük vardır; bunlar uzunluk(l), zaman(t)

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÇÖZÜMLER. a b ve b a a b, a, b a b a b ve b c a c olduğundan a b ve c d ise a c b d olmayabilir. ve 5., ve olduğundan sonsuz çözüm vardır...9.9

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER Şekil-1: BREADBOARD Yukarıda, deneylerde kullandığımız breadboard un şekli görünmektedir. Bu board üzerinde harflerle isimlendirilen satırlar ve numaralarla

Detaylı

1.BÖLÜM ÇÖZÜM SORU. A= {a, b, {a, b}, {c}} kümesi veriliyor. Afla dakilerden kaç tanesi do rudur? I. a A II. {a, b} A III. {c} A IV. {b} A. V.

1.BÖLÜM ÇÖZÜM SORU. A= {a, b, {a, b}, {c}} kümesi veriliyor. Afla dakilerden kaç tanesi do rudur? I. a A II. {a, b} A III. {c} A IV. {b} A. V. 1.ÖLÜM MTMT K Derginin bu say s nda Kümeler konusunda çözümlü sorular yer almaktad r. u konuda, ÖSS de ç kan sorular n çözümü için gerekli temel bilgileri ve pratik yollar, sorular m z n çözümü içinde

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

ÇALIŞMA VE SOSYAL GÜVENLİK BAKANLIĞI İŞ SAĞLIĞI VE GÜVENLİĞİ GENEL MÜDÜRLÜĞÜ. İş Sağlığı ve Güvenliği Fayda-Maliyet Analizi Proje Raporu

ÇALIŞMA VE SOSYAL GÜVENLİK BAKANLIĞI İŞ SAĞLIĞI VE GÜVENLİĞİ GENEL MÜDÜRLÜĞÜ. İş Sağlığı ve Güvenliği Fayda-Maliyet Analizi Proje Raporu ÇALIŞMA VE SOSYAL GÜVENLİK BAKANLIĞI İŞ SAĞLIĞI VE GÜVENLİĞİ GENEL MÜDÜRLÜĞÜ İş Sağlığı ve Güvenliği Fayda-Maliyet Analizi Proje Raporu ANKARA, 2010 ÖZET İş kazaları ve meslek hastalıklarını önlemenin

Detaylı

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu Atom Maddelerin en küçük yapı taşlarına atom denir. Atomlar, elektron, nötron ve protonlardan oluşur. 1.Elektronlar: Çekirdek etrafında yörüngelerde bulunurlar ve ( ) yüklüdürler. Boyutları çok küçüktür.

Detaylı

İÇİNDEKİLER. 1 Projenin Amacı... 1. 2 Giriş... 1. 3 Yöntem... 1. 4 Sonuçlar ve Tartışma... 6. 5 Kaynakça... 7

İÇİNDEKİLER. 1 Projenin Amacı... 1. 2 Giriş... 1. 3 Yöntem... 1. 4 Sonuçlar ve Tartışma... 6. 5 Kaynakça... 7 İÇİNDEKİLER 1 Projenin Amacı... 1 2 Giriş... 1 3 Yöntem... 1 4 Sonuçlar ve Tartışma... 6 5 Kaynakça... 7 FARKLI ORTAMLARDA HANGİ RENK IŞIĞIN DAHA FAZLA SOĞURULDUĞUNUN ARAŞTIRILMASI Projenin Amacı : Atmosfer

Detaylı

YAŞ PROBLEMLERİ Test -1

YAŞ PROBLEMLERİ Test -1 YAŞ PROBLEMLERİ Test -1 1. Bugün 36 yaşında olan bir kişinin kaç yıl önceki yaşı, bugünkü yaşının 2 üne eşittir? 3 A) 10 B) 12 C) 14 D) 15 E) 18 5. Begüm 18, Sıla 10 yaşındadır. Buna göre, kaç yıl sonra

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

Modem ve Yerel Ağ Kullanım Kılavuzu

Modem ve Yerel Ağ Kullanım Kılavuzu Modem ve Yerel Ağ Kullanım Kılavuzu Telif Hakkı 2009 Hewlett-Packard Development Company, L.P. Bu belgede yer alan bilgiler önceden haber verilmeksizin değiştirilebilir. HP ürünleri ve hizmetlerine ilişkin

Detaylı

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ LES / İLKHR 008 İKKT! SORU KİTPÇIĞINIZIN TÜRÜNÜ "" OLRK EVP KÂĞIIN İŞRETLEMEYİ UNUTMYINIZ. SYISL ÖLÜM SYISL- TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal ğırlıklı LES Puanınızın (LES-SY)

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ 6. Hafta Oda Akustiği Sesin Oda İçerisinde Yayınımı Akustik olarak sesin odada yayınımı için, sesin dalga boyunun hacmin boyutlarına göre oldukça küçük olması gerekmektedir.

Detaylı

Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu

Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu Bu bölümde; Fizik ve Fizi in Yöntemleri, Fiziksel Nicelikler, Standartlar ve Birimler, Uluslararas Birim Sistemi (SI), Uzunluk, Kütle ve

Detaylı

Bilgisayar Uygulamaları PSİ105

Bilgisayar Uygulamaları PSİ105 Bilgisayar Uygulamaları PSİ105 Yrd.Doç.Dr. Serdar YILMAZ Kaynak: Marmara Üniversitesi Teknik Eğitim Fakültesi Bilgisayar Kursu Ders Notları, Kasım 2007 1 2 3 4 5 6 7 8 9 10 11 12 Başlat Düğmesi Bilgisayarınızı

Detaylı

SEYAHAT PERFORMANSI MENZİL

SEYAHAT PERFORMANSI MENZİL SEYAHAT PERFORMANSI MENZİL Uçakların ne kadar paralı yükü, hangi mesafeye taşıyabildikleri ve bu esnada ne kadar yakıt harcadıkları en önemli performans göstergelerinden biridir. Bir uçağın kalkış noktasından,

Detaylı