ÖNCE DAĞIT SONRA TOPLA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖNCE DAĞIT SONRA TOPLA"

Transkript

1 YA/EM 2007 Dokuz Eylül Üniversitesi, Temmuz 2007 ÖNCE DAĞIT SONRA TOPLA PROBLEMLERĐNDE ARAÇ ROTALAMA ĐÇĐN TAMSAYILI KARAR MODELLERĐ Barış KEÇECĐ Đmdat KARA Başkent Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü/ANKARA

2 Sunum Planı Problem Tanımı Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi Uygulama Alanları Problemin Bileşenleri Önerilen Karar Modelleri Sayısal Analizler Sonuç ve Öneriler Kaynaklar

3 Problem Tanımı Bir coğrafi bölgede müşteriler, Ürün Dağıtılacak Müşteriler ve Ürün Toplanacak Müşteriler olmak üzere iki alt kümeye ayrılsın. ÖNCE DAĞIT SONRA TOPLA ARAÇ ROTALAMA PROBLEMĐ Dağıtım planının, araçların önce dağıtım yapılacak müşterilere, sonrada ürün (ÖDST DST-ARP) toplanacak müşterilere uğrayarak depoya dönmeleri şeklinde yapılmak istenmesi halinde, araç rotalama probleminin özel bir türü ortaya çıkar.

4 Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi Đlk çalışma Deif ve Bodin in 1984 yılında yaptıkları ve Clarke-Wright tasarruf yönteminin uzantısı olan, sezgisel bir algoritmaya dayanmaktadır. Jordan ve Burns (1984), toplama olduğu durumların terminal yerleşimleri üzerindeki etkisini inceleyerek bir yöntem geliştirmiştir. Golden (1985) ekleme tabanlı bir sezgisel yaklaşım önermiştir.

5 Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi Goetschalckx ve Horsley (1986) boşluk dolduran eğriler kavramına dayanan bir sezgisel yaklaşım önermiştir. Casco, Golden ve Wasil (1988) in önerdikleri yaklaşım yük tabanlı bir ekleme sezgiselidir. Goetschalckx ve Jacobs-Blecha (1993), Fisher ve Jaikumar (1981) ın ARP için geliştirdikleri sezgiseli, ÖDST-ARP için de uygulamışlardır.

6 Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi Toth ve Vigo (1996) önce kümele-sonra rotala yaklaşımıyla bir sezgisel önermişlerdir. Anily (1996), dağıtım veya toplama müşterilerinden hangisinin önce ziyaret edildiği kısıtının göz ardı edildiği durum için, sezgisel bir yöntem geliştirmiştir. Potvin et al. (1996) çözüm yöntemi olarak genetik algoritma kullanmıştır.

7 Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi Gendreau, Hertz ve Laporte (1997) tek araçlı versiyonu için sezgisel bir algoritma geliştirmiştir. Duhamel et al. (1997) çözüm yöntemi olarak tabu arama sezgiseli kullanmıştır. Cheung ve Hang (2003) çözüm yöntemi olarak eşleştirme algoritması geliştirmişlerdir.

8 Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi ÖDST-ARP için geliştirilmiş ilk en iyileme yöntemi Yano (1987) un Quality Stores isimli perakendeciler zincirinde uyguladığı dal-sınır algoritmasıdır. Gelinas, Desrochers, Desrosiers ve Solomon (1995) zaman aralıklı durum için Sütun Üretimi (Column Generation) ile en iyi çözümü bulabildiklerini göstermiştir.

9 Kaynaklarda Önce Dağıt Sonra Topla Araç Rotalama Problemi Toth ve Vigo (1997) ÖDST-ARP in simetrik ve asimetrik çeşitleri için yeni bir tamsayılı programlama modeli geliştirmiştir. Mingozzi ve Giorgi (1999), en iyi çözüm için geçerli alt sınır değerleri bulan bir prosedür önermiştir.

10 Uygulama Alanları En yaygın uygulaması Market Endüstrisi dir. Supermarketler ve dükkanlar Ürün Dağıtılacak Müşteriler Mal tedarikçileri Ürün Toplanacak Müşteriler

11 Problemin Bileşenleri Karar Değişkenleri Araçlar, hangi müşterilerden hangi müşterilere geçecek. Parametreler Araç kapasitesi Araç sayısı Müşteriler arası uzaklıklar

12 Problemin Bileşenleri Kısıtlar Her araç hareketine depodan başlayıp, hareketini depoda bitirmeli. Her rotada önce dağıtım yapılacak müşterilere uğranmalı daha sonra toplama yapılacak müşterilere uğranmalı. Her araç yalnızca bir rota izlemeli. Yalnızca toplama yapılacak veya yalnızca dağıtım yapılacak müşterilerden oluşan bir rota olmamalı. Her müşteriye yalnızca bir noktadan gelinmeli ve her müşteriden yalnızca bir noktaya gidilmeli. Her araca en fazla kapasitesi kadar mal yüklenmeli.

13 Neden Yeni Karar Modelleri? Polinom büyüklükte kısıta sahip modelin olmaması. Yeni kesin çözüm yöntemlerine veya model tabanlı sezgisel yaklaşımlara ışık tutması.

14 Önerilen Karar Modelleri Tanımlar L={1,,k} B={k+1, n} {0} Depo x ij = 1, i 0, d. d d ij i,j arasındaki uzaklık q i i. düğümün arzı/talebi m Araç sayısı Q Araç kapasitesi. j

15 Modellerin Yapısı Atama Kısıtları, Alt Tur Engelleme ve Kapasite Kısıtları, altında, ENK {Kat edilen Toplam Mesafe}

16 Model-1 (Düğüm Tabanlı Model) u i Dağıtım yapılan müşterilerde, i. düğümden çıkana kadar dağıtılan yük miktarı; Toplama yapılan müşterilerde ise, i. düğümden çıkana kadar toplanan yük miktarı.

17 Model-1 (Düğüm Tabanlı Model) i x oj = m j L x io = m i B x ij = 1, j L {0} ij = 1, i j L B ij = 1, j i L B x ij = 1, i j B {0} i L j B L x L x B x ij = m Depodan araç sayısı kadar çıkış A T A M A K I S I T L A R I Depoya araç sayısı kadar giriş B Dağıtım müşterileri düğüm dereceleri Toplama müşterileri düğüm dereceleri Dağıtım Müşterilerinden Toplama Müşterilerine araç sayısı kadar geçiş

18 Model-1 (Düğüm Tabanlı Model) Alt Tur Engelleme ve Kapasite Kısıtları u i u j + Qx ij + (Q q i q j )x ji Q q j, i j, i,j Є L u i u j + Qx ij + (Q q i q j )x ji Q q j, i j, i,j Є B u i + (Q q i )x 0i Q, i Є L u i q i, i Є LUB u i u j i j q i q j

19 Model-2 (Akış Tabanlı Model) y i,j i. düğümden j. düğüme geçerse aracın (i,j) ayrıtındaki yükü; diğer durumlarda 0.

20 A T A M A K I S I T L A R I Model-2 (Akış Tabanlı Model) i x oj = m j L x io = m i B x ij = 1, j L {0} ij = 1, i j L B ij = 1, j i L B x ij = 1, i j B {0} i L j B L x L x B x ij = m Depodan araç sayısı kadar çıkış Depoya araç sayısı kadar giriş B Dağıtım müşterileri düğüm dereceleri Toplama müşterileri düğüm dereceleri Dağıtım Müşterilerinden Toplama Müşterilerine araç sayısı kadar geçiş

21 Model-2 (Akış Tabanlı Model) Alt Tur Engelleme ve Kapasite Kısıtları y ji j L {0} j L B y y ij ij ( Q q q j x ij i ) x ij y ij = q i, i, i, i L L L { 0 }, j { 0 }, j L L j i k q i ij j B {0} j L B y y y ij ij ( i L j B q Q i x y ij ij q j = 0 ) x ij y ji = q i,,, i i i B B, B, j j B B { 0 } { 0 } j i k q i

22 Sayısal Analizler Goetschalckx ın hazırlayıp literatüre kazandırdığı 68 problem in çözümü araştırıldı. Modeller, Intel Pentium 4 CPU 3.00 Ghz, 3.04 Ghz hızlarında çift işlemci ve 2.00 GB RAM bulunan bir bilgisayar sistemi ve CPLEX programıyla çözülmüştür.

23 , , , , H , , , , H , , , , H , , , , H , , , , H , , , , G , , , , G , , , , E , , , , E , , , , E , , , , D , , , , D , , , , D , , , , C , , , , C , , , , C , , , , C , , , , B , , , , B , , , , B , , , , A , , , , A , , , , A , , , , A1 LR OPT. ZAMAN LR OPT. ZAMAN m Σq B Σq L Model-2 Model-1 AKI TABANLI DÜĞÜM TABANLI PROBLEM BOYUTU PR B. SONU SONUÇLAR LAR SONU SONUÇLAR LAR

24 Sonuçlar En iyi çözüm DT: 24 AT: 27 DT modelin en iyi çözüm bulabildiği 24 problem için, AT model de en iyi çözümü bulabilmiştir. Çözülebilen en büyük problem 68 düğümlü problemdir.

25 Sonuçlar CPU Zamanları (sn) DT AT ORT 582,49 341,22 SS 1.084,70 664,06

26 Sonuçlar DP Gevşetme Değerleri DT AT ORT , ,79 SS , ,31

27 Sonuçlar Çözüm zamanı açısından AT model, DP gevşetme değerleri açısından DT model daha iyi sonuçlar vermiştir. Yapılan modellemelerin her ikisi de araştırmacılar tarafından kullanılabilir.

28 Öneriler Yalnızca toplama yapılacak veya yalnızca dağıtım yapılacak müşterilerden oluşan bir rota olmamalı. Yalnızca dağıtım yapılacak müşterilerden oluşan bir rota olmamalı kısıtı getirilerek model düzenlenebilir. Matematiksel modellere dayalı sezgisel algoritmalar kullanılarak daha büyük boyutlu problemler çözülebilir.

29 Kaynaklar Bodin ve Golden [Networks:Vol.11 (1981) ] Yano (1987) Vehicle Routing at Quality Stores, Interfaces 17: 2 March-April 1987 (pp ) Goetschalckx ve Jacobs-Balecha (1989) : Vehicle Routing Problem with Backhauls Toth ve Vigo (1997) : An Exact Algortihm for the Vehicle Routing Problems with Backhauls Goetschalckx ve Jacobs-Blecha (1998) : Vehicle Routing Problems with Backhauls, Properties and Solution Algorithms Mingozzi ve Giorgi (1999) : An Exact Method for the Vehicle Routing Problems with Backhauls Massimo Paolucci (2005) : Vehicle Routing Problems, ICCS Toth ve Vigo : Vehicle Routing Problems (Chapter 8) Extension of the Clarke and Wright Algorithm For Solving the Vehicle Routing Problem With Backhauling, Proceedings of the Babson Conference on Software Uses in Transportation and Logistics Management, A. E. Kidder, Editor, Babson Park, MA, pp

30 Teşekk ekkürler rler

ARAÇ ROTALAMA PROBLEMĐ ĐÇĐN TAMSAYILI KARAR MODELLERĐ INTEGER PROGRAMMING FORMULATIONS FOR VEHICLE ROUTING PROBLEM WITH BACKHAULS

ARAÇ ROTALAMA PROBLEMĐ ĐÇĐN TAMSAYILI KARAR MODELLERĐ INTEGER PROGRAMMING FORMULATIONS FOR VEHICLE ROUTING PROBLEM WITH BACKHAULS ÖNCE DAĞIT SONRA TOPLA ARAÇ ROTALAMA PROBLEMĐ ĐÇĐN TAMSAYILI KARAR MODELLERĐ INTEGER PROGRAMMING FORMULATIONS FOR VEHICLE ROUTING PROBLEM WITH BACKHAULS BARIŞ KEÇECĐ Başkent Üniversitesi Lisansüstü Eğitim

Detaylı

YAEM 2012 Sunumu. Atık BitkiselYağların Biyodizel Üretimi İçin i Toplanmasını Modelleyen Seçici i ve Devirli Bir Envanter Rotalama Problemi

YAEM 2012 Sunumu. Atık BitkiselYağların Biyodizel Üretimi İçin i Toplanmasını Modelleyen Seçici i ve Devirli Bir Envanter Rotalama Problemi YAEM 2012 Sunumu Atık BitkiselYağların Biyodizel Üretimi İçin i Toplanmasını Modelleyen Seçici i ve Devirli Bir Envanter Rotalama Problemi Deniz AKSEN İktisadi ve İdari Bilimler Fakültesi Onur KAYA Mühendislik

Detaylı

ÇOK KULLANIMLI VE ZAMAN PENCERELİ ARAÇ ROTALAMA PROBLEMİ İÇİN BİR MATEMATİKSEL MODEL

ÇOK KULLANIMLI VE ZAMAN PENCERELİ ARAÇ ROTALAMA PROBLEMİ İÇİN BİR MATEMATİKSEL MODEL Gazi Üniv. Müh. Mim. Fak. Der. Journal of the Faculty of Engineering and Arcchitecture of Gazi University Cilt 27, No 3, 569-576, 2012 Vol 27, No 3, 569-576, 2012 ÇOK KULLANIMLI VE ZAMAN PENCERELİ ARAÇ

Detaylı

ARAÇ ROTALAMA PROBLEMİNE AİT BİR UYGULAMA

ARAÇ ROTALAMA PROBLEMİNE AİT BİR UYGULAMA Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2001, C.6, S.1 s.139-155. ARAÇ ROTALAMA PROBLEMİNE AİT BİR UYGULAMA Mehmet ERYAVUZ * Cevriye GENCER ** ÖZET Araç Rotalama Problemi (ARP),

Detaylı

Zaman Pencereli Araç Rotalama Problemine Tasarruf Yöntemi ile Bir Uygulama

Zaman Pencereli Araç Rotalama Problemine Tasarruf Yöntemi ile Bir Uygulama Çukurova Üniversitesi İİBF Dergisi Cilt:17.Sayı:2.Aralık 2013 ss.189-205 Zaman Pencereli Araç Rotalama Problemine Tasarruf Yöntemi ile Bir Uygulama Saving Method Application for Vehicle Routing Problem

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

5. KISA MESAFE MAL NAKLİYE PLANLAMASI VE YÖNETİMİ

5. KISA MESAFE MAL NAKLİYE PLANLAMASI VE YÖNETİMİ 5. KISA MESAFE MAL NAKLİYE PLANLAMASI VE YÖNETİMİ Kısa mesafe yük taşıma Kısa mesafe yük taşıma, bir kamyon (araç) filosu kullanarak malların göreceli olarak küçük bir alanda toplanması ve dağıtımıyla

Detaylı

ARAÇ ROTALAMA SİSTEMLERİ VE TASARRUF ALGORİTMASI UYGULAMASI

ARAÇ ROTALAMA SİSTEMLERİ VE TASARRUF ALGORİTMASI UYGULAMASI İstanbul Ticaret Üniversitesi..Fen Bilimleri Dergisi Yıl: 11 Sayı: 21 Bahar 2012 s.41-51 ARAÇ ROTALAMA SİSTEMLERİ VE TASARRUF ALGORİTMASI UYGULAMASI Burak KOSİF*, İsmail EKMEKÇİ** Geliş: 18.06.2012 Kabul:

Detaylı

Heterojen Eş-Zamanlı Topla-Dağıt Rotalama Problemi: Tehlikeli Malzeme Sevkiyatı

Heterojen Eş-Zamanlı Topla-Dağıt Rotalama Problemi: Tehlikeli Malzeme Sevkiyatı 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Heterojen Eş-Zamanlı Topla-Dağıt Rotalama Problemi:

Detaylı

Solution Approach to Vehicle Routing Problem for White Ware Authorized Service At Ankara

Solution Approach to Vehicle Routing Problem for White Ware Authorized Service At Ankara Politeknik Dergisi, 2015; 18 (2) : 99-105 Journal of Polytechnic, 2015; 18 (2) : 99-105 Ankara İlinde Ürün Dağıtımı Yapan Bir Beyaz Eşya Yetkili Servisinin Araç Rotalama ne Çözüm Yaklaşımı H. Ediz ATMACA,

Detaylı

ARAÇ ROTALAMA PROBLEMİNDE TALEP NOKTASINDA BEKLEME SÜRESİNİN ALINAN TOPLAM YOLA ETKİSİ

ARAÇ ROTALAMA PROBLEMİNDE TALEP NOKTASINDA BEKLEME SÜRESİNİN ALINAN TOPLAM YOLA ETKİSİ ARAÇ ROTALAMA PROBLEMİNDE TALEP NOKTASINDA BEKLEME SÜRESİNİN ALINAN TOPLAM YOLA ETKİSİ Şahin BAYZAN 1 Sezai TOKAT 1 Önder ÇİVRİL 2 1 Bilgisayar Mühendisliği Bölümü, Mühendislik Fakültesi Pamukkale Üniversitesi,

Detaylı

Anahtar Kelimeler: Araç Rotalama Problemi, Sezgisel Algoritmalar, Optimizasyon, Turizm

Anahtar Kelimeler: Araç Rotalama Problemi, Sezgisel Algoritmalar, Optimizasyon, Turizm HAVALİMANINDAN OTELLERE TEK TİP ARAÇLARLA TURİST DAĞITIMI PROBLEMİNE ÇÖZÜM ÖNERİSİ VE ALANYA UYGULAMASI Yrd. Doç. Dr. Kenan KARAGÜL Pamukkale Üniversitesi kkaragul@pau.edu.tr Prof. Dr. İbrahim GÜNGÖR Akdeniz

Detaylı

KESİN ZAMAN PENCERELİ - EŞ ZAMANLI DAĞITIM TOPLAMALI ARAÇ ROTALAMA PROBLEMİ: Matematiksel Model

KESİN ZAMAN PENCERELİ - EŞ ZAMANLI DAĞITIM TOPLAMALI ARAÇ ROTALAMA PROBLEMİ: Matematiksel Model Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 25, No 3, 579-585, 2010 Vol 25, No 3, 579-585, 2010 KESİN ZAMAN PENCERELİ - EŞ ZAMANLI DAĞITIM TOPLAMALI ARAÇ ROTALAMA PROBLEMİ: Matematiksel

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN PENCERELİ GEZGİN SATICI PROBLEMİ İÇİN YENİ KARAR MODELLERİ ÖZGE NİMET KOÇ

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN PENCERELİ GEZGİN SATICI PROBLEMİ İÇİN YENİ KARAR MODELLERİ ÖZGE NİMET KOÇ BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN PENCERELİ GEZGİN SATICI PROBLEMİ İÇİN YENİ KARAR MODELLERİ ÖZGE NİMET KOÇ YÜKSEK LİSANS TEZİ 2012 ZAMAN PENCERELİ GEZGİN SATICI PROBLEMİ İÇİN YENİ KARAR

Detaylı

DAĞITIM AĞLARI TASARIMINDA YER SEÇİMİ VE EŞZAMANLI TOPLA-DAĞIT ARAÇ ROTALAMA PROBLEMLERİ

DAĞITIM AĞLARI TASARIMINDA YER SEÇİMİ VE EŞZAMANLI TOPLA-DAĞIT ARAÇ ROTALAMA PROBLEMLERİ DAĞITIM AĞLARI TASARIMINDA YER SEÇİMİ VE EŞZAMANLI TOPLA-DAĞIT ARAÇ ROTALAMA PROBLEMLERİ İsmail KARAOĞLAN DOKTORA TEZİ ENDÜSTRİ MÜHENDİSLİĞİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Ekim 2009 ANKARA ii

Detaylı

ARAÇ ROTALAMA PROBLEMİNDE ARAÇ ROTALARININ TESPİTİNDE EN KISA YOL YAKLAŞIMI: DENİZLİ ÖRNEĞİ

ARAÇ ROTALAMA PROBLEMİNDE ARAÇ ROTALARININ TESPİTİNDE EN KISA YOL YAKLAŞIMI: DENİZLİ ÖRNEĞİ ARAÇ ROTALAMA PROBLEMİNDE ARAÇ ROTALARININ TESPİTİNDE EN KISA YOL YAKLAŞIMI: DENİZLİ ÖRNEĞİ Şahin BAYZAN 1 Meriç ÇETİN 2 Alper UĞUR 3 1,2,3 Bilgisayar Mühendisliği Bölümü, Mühendislik Fakültesi Pamukkale

Detaylı

Heterojen Araç Filolu Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemi İçin Bir Karar Destek Sistemi

Heterojen Araç Filolu Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemi İçin Bir Karar Destek Sistemi International Journal of Research and Development, Vol.3, No.1, January 2011 11 Heteroen Araç Filolu Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemi İçin Bir Karar Destek Sistemi Suna ÇETİN, Emre ÖZKÜTÜK

Detaylı

Afet Yardım Operasyonlarında CBS Tabanlı Acil Müdahale Sistemi

Afet Yardım Operasyonlarında CBS Tabanlı Acil Müdahale Sistemi Afet Yardım Operasyonlarında CBS Tabanlı Acil Müdahale Sistemi Erdinç Bakır 1, Dr. Onur Demir 1 & Dr. Linet Ozdamar 2 1 Bilg. Müh. Bölümü 2 Sistem ve End. Müh. Bölümü Yeditepe University, Istanbul, Turkey

Detaylı

Çukurova Üniversitesi İİBF Dergisi. Araç Rotalama Problemleri ve Çözüm Yöntemleri. Vehicle Routing Problems and Solution Methods

Çukurova Üniversitesi İİBF Dergisi. Araç Rotalama Problemleri ve Çözüm Yöntemleri. Vehicle Routing Problems and Solution Methods Çukurova Üniversitesi İİBF Dergisi Cilt:13. Sayı:1.Haziran 2009 ss.68-87 Araç Rotalama Problemleri ve Çözüm Yöntemleri Vehicle Routing Problems and Solution Methods Erkut DÜZAKIN 1 Mert DEMİRCİOĞLU 2 ÖZET

Detaylı

DAĞITIM ROTALARI OPTİMİZASYONU İÇİN META SEZGİSEL BİR YAKLAŞIM

DAĞITIM ROTALARI OPTİMİZASYONU İÇİN META SEZGİSEL BİR YAKLAŞIM Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 11 / 2 (2009). 171-190 DAĞITIM ROTALARI OPTİMİZASYONU İÇİN META SEZGİSEL BİR YAKLAŞIM Selçuk ÇOLAK * ** GÜLER Hüseyin Öz: Dağıtım rotalarının

Detaylı

Kapasite Kısıtlı Araç Rotalama Probleminin Çözümü için Önce Grupla Sonra Rotala Merkezli Sezgisel Algoritma Önerisi

Kapasite Kısıtlı Araç Rotalama Probleminin Çözümü için Önce Grupla Sonra Rotala Merkezli Sezgisel Algoritma Önerisi BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 7, SAYI: 2, MAYIS 2014 29 Kapasite Kısıtlı Araç Rotalama Probleminin Çözümü için Önce Grupla Sonra Rotala Merkezli Sezgisel Algoritma Önerisi Zafer Bozyer 1, Atakan

Detaylı

ULAŞTIRMA KOMUTANLIĞI RİNG SEFERLERİNİN EŞ ZAMANLI DAĞITIM TOPLAMA KARAR DESTEK SİSTEMİ

ULAŞTIRMA KOMUTANLIĞI RİNG SEFERLERİNİN EŞ ZAMANLI DAĞITIM TOPLAMA KARAR DESTEK SİSTEMİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 22, No 3, 437-449, 2007 Vol 22, No 3, 437-449, 2007 ULAŞTIRMA KOMUTANLIĞI RİNG SEFERLERİNİN EŞ ZAMANLI DAĞITIM TOPLAMA KARAR DESTEK SİSTEMİ

Detaylı

OTOMATİK YÖNLENDİRMELİ ARAÇ SİSTEMLERİNDE AKIŞ YOL TASARIMI

OTOMATİK YÖNLENDİRMELİ ARAÇ SİSTEMLERİNDE AKIŞ YOL TASARIMI TEKNOLOJİ, Cilt 7, (2004), Sayı 1, 9-103 TEKNOLOJİ OTOMATİK YÖNLENDİRMELİ ARAÇ SİSTEMLERİNDE AKIŞ YOL TASARIMI Yüksel TUNA* Arif DORUK* Ertan GÜNER* Tamer EREN** *Gazi Üniversitesi, Endüstri Mühendisliği

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SEÇİCİ GEZGİN SATICI PROBLEMİ İÇİN YENİ MATEMATİKSEL MODELLER PAPATYA SEVGİN YALÇIN

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SEÇİCİ GEZGİN SATICI PROBLEMİ İÇİN YENİ MATEMATİKSEL MODELLER PAPATYA SEVGİN YALÇIN BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SEÇİCİ GEZGİN SATICI PROBLEMİ İÇİN YENİ MATEMATİKSEL MODELLER PAPATYA SEVGİN YALÇIN YÜKSEK LİSANS TEZİ 2014 SEÇİCİ GEZGİN SATICI PROBLEMİ İÇİN YENİ MATEMATİKSEL

Detaylı

Araç rotalama problemine tam sayılı lineer programlama modeli ve gıda sektöründe bir uygulama

Araç rotalama problemine tam sayılı lineer programlama modeli ve gıda sektöründe bir uygulama İstanbul Üniversitesi İşletme Fakültesi Dergisi Istanbul University Journal of the School of Business Cilt/Vol:43, Sayı/No:2, 2014, 251-260 ISSN: 1303-1732 - www.ifdergisi.org 2014 Araç rotalama problemine

Detaylı

ÜNİTE LOJİSTİK YÖNETİMİ. Yrd. Doç. Dr. Ufuk KULA İÇİNDEKİLER HEDEFLER ULAŞIM FAALİYETLERİNİN OPTİMİZASYONU

ÜNİTE LOJİSTİK YÖNETİMİ. Yrd. Doç. Dr. Ufuk KULA İÇİNDEKİLER HEDEFLER ULAŞIM FAALİYETLERİNİN OPTİMİZASYONU HEDEFLER İÇİDEKİLER ULAŞIM FAALİYETLERİİ OPTİMİZASYOU Giriş Matematiksel Modelleme Örneği Ulaşım Optimizasyonu Modelleri En Kısa Yol Problemi Gezgin Satıcı Problemi Araç Rotalama Problemi LOJİSTİK YÖETİMİ

Detaylı

BÜTÜNLEŞİK ÜRETİM VE DAĞITIM PROBLEMLERİ İÇİN YENİ BİR ÇÖZÜM YAKLAŞIMI: MATEMATİKSEL MODELLEME. Saadettin Erhan KESEN 1

BÜTÜNLEŞİK ÜRETİM VE DAĞITIM PROBLEMLERİ İÇİN YENİ BİR ÇÖZÜM YAKLAŞIMI: MATEMATİKSEL MODELLEME. Saadettin Erhan KESEN 1 S.Ü. Müh.-Mim. Fak. Derg., c.27, s.3, 2012 J. Fac.Eng.Arch. Selcuk Univ., v.27, n.3, 2012 ISSN: 1300-5200, ISSN: 1304-8708 (Elektronik) BÜTÜNLEŞİK ÜRETİM VE DAĞITIM PROBLEMLERİ İÇİN YENİ BİR ÇÖZÜM YAKLAŞIMI:

Detaylı

Kırıkkale de Araç Rotalama Problemi İle Tıbbi Atıkların Toplanması

Kırıkkale de Araç Rotalama Problemi İle Tıbbi Atıkların Toplanması International Journal of Engineering Research and Development, Vol.4, No.1, January 2012 41 Kırıkkale de Araç Rotalama Problemi İle Tıbbi Atıkların Toplanması Hakan GÜVEZ, Muhammet DEGE, Tamer EREN* Kırıkkale

Detaylı

SEMPOZYUM PROGRAMI. 16 Eylül 2010 Perşembe

SEMPOZYUM PROGRAMI. 16 Eylül 2010 Perşembe SEMPOZYUM PROGRAMI 16 Eylül 2010 Perşembe KAYIT 9.00 9.45 AÇILIŞ 9.45 11.00 BİLDİRİ SUNUMLARI 11.15 18.45 11.15 13.00 TEDARİK ZİNCİRİ YÖNETİMİ (1) Oturum Salonu : MS213 Oturum Başkanı : Selim ZAİM Düzenli

Detaylı

KÂRLI GEZGIN SATICI PROBLEMİ

KÂRLI GEZGIN SATICI PROBLEMİ KÂRLI GEZGIN SATICI PROBLEMİ İÇİN N SEZGİSEL SEL YÖNTEMLER Necati Aras Burak Boyacı Deniz Koşucuo ucuoğlu Boğaziçi Üniversitesi, Endüstri Mühendisliği Bölümü Deniz Aksen Koç Üniversitesi İktisadi ve İdari

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS LOJİSTİK SİSTEMLERİ PLANLAMA VE TASARIMI ESYE549 3+0 3 7

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS LOJİSTİK SİSTEMLERİ PLANLAMA VE TASARIMI ESYE549 3+0 3 7 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS LOJİSTİK SİSTEMLERİ PLANLAMA VE TASARIMI ESYE549 3+0 3 7 Ön Koşul Dersleri ISE veya eşdeğer bir optimizasyona giriş dersi Dili Seviye si Türü İngilizce

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ

BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ İÇİNDEKİLER Önsöz... v İçindekiler... vii BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ 1.1 Tedarik Zincirinin Temel Fonksiyonları... 8 1.1.1 Üretim... 8 1.1.2 Envanter Yönetimi... 16 1.1.3 Taşıma ve

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

EŞZAMANLI DAĞITIMLI VE TOPLAMALI ARAÇ ROTALAMA PROBLEMLERİNİN BAKTERİYEL BESİN ARAMA OPTİMİZASYONU ALGORİTMASI İLE ÇÖZÜMÜ.

EŞZAMANLI DAĞITIMLI VE TOPLAMALI ARAÇ ROTALAMA PROBLEMLERİNİN BAKTERİYEL BESİN ARAMA OPTİMİZASYONU ALGORİTMASI İLE ÇÖZÜMÜ. EŞZAMANLI DAĞITIMLI VE TOPLAMALI ARAÇ ROTALAMA PROBLEMLERİNİN BAKTERİYEL BESİN ARAMA OPTİMİZASYONU ALGORİTMASI İLE ÇÖZÜMÜ Seda HEZER YÜKSEK LİSANS TEZİ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI Ağustos, 2010

Detaylı

TOPLANMASI İÇİN BÜTÜNLE İK YER SEÇİMİ, FİYAT BELİRLEME VE ARAÇ ROTALAMA PROBLEMİ. 2 Temmuz 2010

TOPLANMASI İÇİN BÜTÜNLE İK YER SEÇİMİ, FİYAT BELİRLEME VE ARAÇ ROTALAMA PROBLEMİ. 2 Temmuz 2010 KULLANILMI ÜRÜNLERİN BAYİLERDEN TOPLANMASI İÇİN BÜTÜNLE İK YER SEÇİMİ, FİYAT BELİRLEME VE ARAÇ ROTALAMA PROBLEMİ Necati Aras Mehmet Tuğrul Tekin Boğaziçi Üniversitesi, Endüstri Mühendisliği Bölümü Deniz

Detaylı

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama Dr. Özgür Kabak 2016-2017 Güz } Gerçek hayattaki bir çok problem } tam sayılı değişkenlerin ve } doğrusal kısıt ve amaç fonksiyonları ile

Detaylı

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME V. Ulusal Üretim Araştırmaları Sempozyumu, İstabul Ticaret Üversitesi, 25-27 Kasım 2005 İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME Tamer EREN

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

İstanbul -Tarihi Yarımada Ve Beyoğlu Bölgelerinde Turistik Gezi Hatları Oluşturma Ve Android Yazılım İle Turistlere Rehberlik Hizmeti

İstanbul -Tarihi Yarımada Ve Beyoğlu Bölgelerinde Turistik Gezi Hatları Oluşturma Ve Android Yazılım İle Turistlere Rehberlik Hizmeti HAVA HARP OKULU KOMUTANLIĞI ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI 2014-EMÖS PROJESİ İstanbul -Tarihi Yarımada Ve Beyoğlu Bölgelerinde Turistik Gezi Hatları Oluşturma Ve Android Yazılım İle Turistlere

Detaylı

Karbon Ayak İzini Dikkate Alan Eşzamanlı Topla-Dağıt Araç Rotalama. Serhat Elbasan YÜKSEK LİSANS TEZİ. Endüstri Mühendisliği Anabilim Dalı

Karbon Ayak İzini Dikkate Alan Eşzamanlı Topla-Dağıt Araç Rotalama. Serhat Elbasan YÜKSEK LİSANS TEZİ. Endüstri Mühendisliği Anabilim Dalı Karbon Ayak İzini Dikkate Alan Eşzamanlı Topla-Dağıt Araç Rotalama Serhat Elbasan YÜKSEK LİSANS TEZİ Endüstri Mühendisliği Anabilim Dalı Haziran 2015 Vehicle Routing With Simultaneous Pickup-Delivery Considering

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

SİSTEM TASARIMI PROJE ÖZETLERİ 2014-2015

SİSTEM TASARIMI PROJE ÖZETLERİ 2014-2015 YAŞAR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ SİSTEM TASARIMI PROJE ÖZETLERİ 2014-2015 Editör: Doç. Dr. Deniz TÜRSEL ELİİYİ İZMİR 2015 1 YAŞAR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ SİSTEM TASARIMI

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN BAĞIMLI ARAÇ ROTALAMA PROBLEMİ Çağrı KOÇ YÜKSEK LİSANS TEZİ Endüstri Mühendisliği Anabilim Dalı Haziran 2012 KONYA Her Hakkı Saklıdır TEZ KABUL VE

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Tamer Eren Kırıkkale Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 71451,

Detaylı

FABRİKA İÇİ ÇEKME ESASLI TAŞIMA SİSTEMİ TASARIMI

FABRİKA İÇİ ÇEKME ESASLI TAŞIMA SİSTEMİ TASARIMI Endüstri Mühendisliði Dergisi Cilt: 18 Sayý: 3 Sayfa: (31-42) Makina Mühendisleri Odasý FABRİKA İÇİ ÇEKME ESASLI TAŞIMA SİSTEMİ TASARIMI Gözde BİLİCİ, Özcan ÇOLAK, Faruk İNALTEKİN, Tayfun Can KÜÇÜK, Selçuk

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engineering and atural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 29, 340-350, 2011 PhD Research Article / Doktora Çalışması Araştırma Makalesi A HYBRID ALGORITM WITH GEETIC ALGORITHM

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GÜNLÜK GAZETE DAĞITIM PLANLAMASI TUSAN DERYA

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GÜNLÜK GAZETE DAĞITIM PLANLAMASI TUSAN DERYA BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GÜNLÜK GAZETE DAĞITIM PLANLAMASI TUSAN DERYA YÜKSEK LİSANS TEZİ 2008 GÜNLÜK GAZETE DAĞITIM PLANLAMASI DAILY NEWSPAPER DISTRIBUTION PLANNING TUSAN DERYA Başkent

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

SOBA BORUSU AÇINIM LEVHALARININ KESİLMESİNDE MALİYETLERİN ENKÜÇÜKLENMESİ

SOBA BORUSU AÇINIM LEVHALARININ KESİLMESİNDE MALİYETLERİN ENKÜÇÜKLENMESİ SOBA BORUSU AÇINIM LEVHALARININ KESİLMESİNDE MALİYETLERİN ENKÜÇÜKLENMESİ Doğan EROL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü 1. PROBLEMİN TANIMLANMASI Şekil - 1'de 5 değişik soba borusu için açınım

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

Kapasite kısıtlı araç rotalama probleminin çözümü için yeni bir algoritma geliştirilmesi: bir süpermarket zincirinde uygulanması

Kapasite kısıtlı araç rotalama probleminin çözümü için yeni bir algoritma geliştirilmesi: bir süpermarket zincirinde uygulanması SAÜ Fen Bil Der 19. Cilt, 1. Sayı, s. 83-88, 2015 Kapasite kısıtlı araç rotalama probleminin çözümü için yeni bir algoritma geliştirilmesi: bir süpermarket zincirinde Tolga Şen 1*, Serap Ercan Cömert 2,

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE621 3+0 3 7 Ön Koşul Dersleri ISE222 veya eşdeğer bir optimizasyona giriş dersi Dersin Dili Dersin Seviyesi Dersin Türü İngilizce

Detaylı

PROF. DR. ŞAKİR ESNAF IN BİTİRME PROJESİ KONULARI

PROF. DR. ŞAKİR ESNAF IN BİTİRME PROJESİ KONULARI PROF. DR. ŞAKİR ESNAF IN TEORİK ÇALIŞMA BAŞLIKLARI Ø Coğrafi Çoklu Tesis Yeri Seçimi (Weber) Probleminin Çözümü için Sezgisel ve Metasezgisel Algoritmalar Ø Çoklu Tesis Yeri Seçimi (Pmedyan) Probleminin

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Yönsüz Çinli Postacı Problemi: Polis Devriye Araçları İçin Bir Uygulama Undırected Chınese Postman Problem: An Applıcatıon On Patrol Cars

Yönsüz Çinli Postacı Problemi: Polis Devriye Araçları İçin Bir Uygulama Undırected Chınese Postman Problem: An Applıcatıon On Patrol Cars Yönsüz Çinli Postacı Problemi: Polis Devriye Araçları İçin Bir Uygulama Undırected Chınese Postman Problem: An Applıcatıon On Patrol Cars Yrd.Doç.Dr. Gül Gökay EMEL* Uludağ Üniversitesi İ.İ.B.F., İşletme

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Stok Kontrol Önceki Derslerin Hatırlatması Ders 5 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit oranlı, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

BİRİNCİ BASIMA ÖN SÖZ

BİRİNCİ BASIMA ÖN SÖZ BİRİNCİ BASIMA ÖN SÖZ Varlıkların kendilerinde cereyan eden olayları ve varlıklar arasındaki ilişkileri inceleyerek anlamak ve bunları bilgi formuna dökmek kimya, biyoloji, fizik ve astronomi gibi temel

Detaylı

Tedarik Zinciri Yönetimi

Tedarik Zinciri Yönetimi Tedarik Zinciri Yönetimi -Tedarik Zinciri Ağı Tasarımı- Yrd. Doç. Dr. Mert TOPOYAN Ağ tasarımı, tedarik zinciri açısından üç karar düzeyini de ilgilendiren ve bu düzeylerde etkisi olan bir konudur. Zincirin

Detaylı

TALEP VE KAPASİTE KISITLI OPTİMİZASYON PROBLEMİ İÇİN YENİ BİR MELEZ ALGORİTMA

TALEP VE KAPASİTE KISITLI OPTİMİZASYON PROBLEMİ İÇİN YENİ BİR MELEZ ALGORİTMA Endüstri Mühendisliði Dergisi Cilt: 25 Sayý: 1-2 Sayfa: (16-28) Makale TALEP VE KAPASİTE KISITLI OPTİMİZASYON PROBLEMİ İÇİN YENİ BİR MELEZ ALGORİTMA Harun Reşit YAZGAN*, Serap ERCAN, Ceren ARSLAN Sakarya

Detaylı

Lojistik Bilgi Sistemleri ÖĞR. GÖR. MUSTAFA ÇETİNKAYA

Lojistik Bilgi Sistemleri ÖĞR. GÖR. MUSTAFA ÇETİNKAYA Lojistik Bilgi Sistemleri ÖĞR. GÖR. MUSTAFA ÇETİNKAYA LBS u Lojistik Bilgi Sistemleri tedarik zinciri üzerinde yer alan şirketlerin her birinin kendi planlama veya operasyonel ihtiyaçlarını karşılayan,

Detaylı

BİR OTOMOTİV YAN SANAYİ FİRMASINDA KESİCİ TAKIMLAR İÇİN ÇEKME VE MILKRUN SİSTEMİNİN UYGULANMASI

BİR OTOMOTİV YAN SANAYİ FİRMASINDA KESİCİ TAKIMLAR İÇİN ÇEKME VE MILKRUN SİSTEMİNİN UYGULANMASI Endüstri Mühendisliði Dergisi Cilt: 22 Sayý: 3 Sayfa: (71-87) Ödül Almış Çalışma BİR OTOMOTİV YAN SANAYİ FİRMASINDA KESİCİ TAKIMLAR İÇİN ÇEKME VE MILKRUN SİSTEMİNİN UYGULANMASI Seda REÇEL 1, Nurgül BALCI

Detaylı

ARAÇ ROTALAMA PROBLEMİNİN SEZGİSEL BİR YAKLAŞIM İLE ÇÖZÜMLENMESİ ÜZERİNE BİR UYGULAMA

ARAÇ ROTALAMA PROBLEMİNİN SEZGİSEL BİR YAKLAŞIM İLE ÇÖZÜMLENMESİ ÜZERİNE BİR UYGULAMA T.C. ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI ARAÇ ROTALAMA PROBLEMİNİN SEZGİSEL BİR YAKLAŞIM İLE ÇÖZÜMLENMESİ ÜZERİNE BİR UYGULAMA Mert DEMİRCİOĞLU DOKTORA TEZİ ADANA / 2009

Detaylı

EBEKE MODELLERİ. ebeke Yapısına Giriş. Konu 3

EBEKE MODELLERİ. ebeke Yapısına Giriş. Konu 3 EBEKE MODELLERİ Konu ebeke Yapısına Giriş Elektriksel yapıların bulunduğu şebekeler Ulaşım sistemi Ulaştırma modeli İstasyonlardan oluşan sistem - Televizy zyon şebekesi ebeke Problemi Bir şebeke problemi

Detaylı

ÜNİTE TAŞIMACILIK SİSTEMLERİ. Prof. Dr. Bülent SEZEN İÇİNDEKİLER HEDEFLER ROTA PLANLAMA

ÜNİTE TAŞIMACILIK SİSTEMLERİ. Prof. Dr. Bülent SEZEN İÇİNDEKİLER HEDEFLER ROTA PLANLAMA HEDEFLER İÇİNDEKİLER ROTA PLANLAMA Giriş Rota Planlama Taşıma Problemi Atama Problemi Gezgin Satıcı Problemi En Kısa Yol Problemi Rota Planlama Yazılımları TAŞIMACILIK SİSTEMLERİ Prof. Dr. Bülent SEZEN

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4903

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4903 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KESİKLİ OPTİMİZASYON MOD. VE ALGORİTMALARI Dersin Orjinal Adı: KESİKLİ OPTİMİZASYON MOD. VE ALGORİTMALARI Dersin Düzeyi:(Ön lisans, Lisans, Yüksek

Detaylı

BĐLKENT ÜNĐVERSĐTESĐ PERSONEL TAŞIMA SĐSTEMĐ ĐÇĐN ETKĐN VE EKONOMĐK ÇÖZÜM

BĐLKENT ÜNĐVERSĐTESĐ PERSONEL TAŞIMA SĐSTEMĐ ĐÇĐN ETKĐN VE EKONOMĐK ÇÖZÜM BĐLKENT ÜNĐVERSĐTESĐ PERSONEL TAŞIMA SĐSTEMĐ ĐÇĐN ETKĐN VE EKONOMĐK ÇÖZÜM V. Alptekin DĐNÇERLER, N. Engin GÜVEN, Mehmet Mustafa TANRIKULU Melih TEMEL, Mehmet YĐTMEN ve Hande YAMAN Bilkent Üniversitesi,

Detaylı

HETEROJEN EŞ-ZAMANLI TOPLA-DAĞIT ARAÇ ROTALAMA PROBLEMİ: MATEMATİKSEL MODELLER VE SEZGİSEL BİR ALGORİTMA

HETEROJEN EŞ-ZAMANLI TOPLA-DAĞIT ARAÇ ROTALAMA PROBLEMİ: MATEMATİKSEL MODELLER VE SEZGİSEL BİR ALGORİTMA Gazi Üniv. Müh. Mim. Fa. Der. Journal of the Faculty of Engineering and Architecture of Gazi University Cilt 30, No 2, 185-195, 2015 Vol 30, No 2, 185-195, 2015 HETEROJEN EŞ-ZAMANLI TOPLA-DAĞIT ARAÇ ROTALAMA

Detaylı

Tedarik Zinciri Yönetimi

Tedarik Zinciri Yönetimi Tedarik Zinciri Yönetimi -Dağıtım Planlaması- Yrd. Doç. Dr. Mert TOPOYAN Dağıtım Tedarik zinciri içerisindeki ürün akıșları incelendiğinde üç temel akıș görülmektedir: Tedarik edilen girdilerin akıșı İmalat

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

Yrd. Doç. Dr. Pınar MIZRAK ÖZFIRAT

Yrd. Doç. Dr. Pınar MIZRAK ÖZFIRAT Yrd. Doç. Dr. Pınar MIZRAK ÖZFIRAT ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Orta Doğu Teknik Üniversitesi Endüstri Mühendisliği Bölümü 996-000 Y. Lisans Dokuz Eylül Üniversitesi Endüstri

Detaylı

ÇAPRAZ SEVKİYATTA ARAÇ ROTALAMA

ÇAPRAZ SEVKİYATTA ARAÇ ROTALAMA T.C. İSTANBUL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI ÜRETİM BİLİM DALI YÜKSEK LİSANS TEZİ ÇAPRAZ SEVKİYATTA ARAÇ ROTALAMA HAZIRLAYAN Gamze Şirin 2501070837 TEZ DANIŞMANI Prof. Dr.

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

İş Sıralama ve Çizelgeleme. Gülşen Aydın Keskin

İş Sıralama ve Çizelgeleme. Gülşen Aydın Keskin İş Sıralama ve Çizelgeleme Gülşen Aydın Keskin 1. Tabu arama 2. Tavlama benzetimi 3. Genetik algoritmalar (GA) 4. Karınca kolonileri 5. Yapay sinir ağları (YSA) 6. Yapay bağışıklık sistemleri 7. Aç gözlü

Detaylı

etailer Kit TAB 2 A Lenovo Kurum İçi. Tüm hakları saklıdır.

etailer Kit TAB 2 A Lenovo Kurum İçi. Tüm hakları saklıdır. etailer Kit TAB 2 A7-30 TAB 2 A7-30 etailer Kit'e Dahil Edilenler PPT Önerilen nüsha (Özet, Genel Bakış, Temel Özellikler) Fotoğraf Kılavuzu 3 boyutlu model bağlantısı Örnek düzen (Amazon, Flipkart) 2

Detaylı

Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions)

Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions) Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions) Öğr. Üyesi: Öznur Özdemir Kaynak: Waters, D. (2009). Supply Chain Management: An Introduction to Logistics, Palgrave Macmillan, New York

Detaylı

BİR KARGO ŞİRKETİNDE ARAÇ ROTALAMA PROBLEMİ VE UYGULAMASI VEHICLE ROUTING PROBLEM IN A CARGO COMPANY AND AN APPLICATION

BİR KARGO ŞİRKETİNDE ARAÇ ROTALAMA PROBLEMİ VE UYGULAMASI VEHICLE ROUTING PROBLEM IN A CARGO COMPANY AND AN APPLICATION Yıl: 2012, Cilt:5, Sayı:2, Sayfa: 12-27 TÜBAV BİLİM DERGİSİ BİR KARGO ŞİRKETİNDE ARAÇ ROTALAMA PROBLEMİ VE UYGULAMASI Ediz Atmaca Gazi Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü,

Detaylı

İNCELENMESİ. Ulaş ÖZEN Mustafa K. DOĞRU

İNCELENMESİ. Ulaş ÖZEN Mustafa K. DOĞRU H.Ü. İktisadi ve İdari Bilimler Fakültesi Dergisi, Cilt 30, Sayı 1, 2012, s. 121-146 DOLDURMA SERVİS KISITLI DİNAMİK ÖBEK BÜYÜKLÜĞÜ BELİRLEME PROBLEMİNİN STATİK- DİNAMİK BELİRSİZLİK STRATEJİSİ ALTINDA

Detaylı

GEZGİN SATICI PROBLEMİNİN ALT TUR ENGELLEME KISITLARININ OLUŞTURULMASI VE UZANTILARI. Tolga Bektaş

GEZGİN SATICI PROBLEMİNİN ALT TUR ENGELLEME KISITLARININ OLUŞTURULMASI VE UZANTILARI. Tolga Bektaş öz GEZGİN SATICI PROBLEMİNİN ALT TUR ENGELLEME KISITLARININ OLUŞTURULMASI VE UZANTILARI Tolga Bektaş ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS TEZİ Ankara, 2000 Kombinatoryel optimizasyon alanının

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

EŞZAMANLI DAĞITIMLI VE TOPLAMALI ARAÇ ROTALAMA PROBLEMLERİNİN ÇÖZÜMÜ İÇİN BAKTERİYEL BESİN ARAMA OPTİMİZASYONU TABANLI BİR ALGORİTMA

EŞZAMANLI DAĞITIMLI VE TOPLAMALI ARAÇ ROTALAMA PROBLEMLERİNİN ÇÖZÜMÜ İÇİN BAKTERİYEL BESİN ARAMA OPTİMİZASYONU TABANLI BİR ALGORİTMA Gazi Üniv. Müh. Mim. Fak. Der. Journal of the Faculty of Engineering and Architecture of Gazi University Cilt 28, No 2, 373-382, 2013 Vol 28, No 2, 373-382, 2013 EŞZAMANLI DAĞITIMLI VE TOPLAMALI ARAÇ ROTALAMA

Detaylı

TAŞIMACILIK SİSTEMLERİ Prof. Dr. Bülent SEZEN

TAŞIMACILIK SİSTEMLERİ Prof. Dr. Bülent SEZEN ROTA PLANLAMA İÇİNDEKİLER Giriş Rota Planlama Taşıma Problemi Atama Problemi Gezgin Satıcı Problemi En Kısa Yol Problemi Rota Planlama Yazılımları TAŞIMACILIK SİSTEMLERİ Prof. Dr. Bülent SEZEN HEDEFLER

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

etailer Kit IdeaCentre Y Lenovo Kurum İçi. Tüm hakları saklıdır.

etailer Kit IdeaCentre Y Lenovo Kurum İçi. Tüm hakları saklıdır. etailer Kit IdeaCentre Y900 Ideacentre Y900 etailer Kit'e dahil edilenler Önerilen nüsha (Özet, Genel Bakış, Temel Özellikler) Fotoğraf Kılavuzu 3 Boyutlu model 2 Önerilen nüsha Özet Ürünü hızlıca tanıtmak

Detaylı

Laboratuvar Çalışması Veri Depolama Kapasitesini Belirleme

Laboratuvar Çalışması Veri Depolama Kapasitesini Belirleme Laboratuvar Çalışması 1.3.2 Veri Depolama Kapasitesini Belirleme Hedefler PC'deki RAM miktarını (MB cinsinden) belirleme. PC de takılı olan sabit diskin boyutunu (GB cinsinden) belirleme. Sabit diskteki

Detaylı

İNSANSIZ HAVA ARAÇLARININ GENETİK ALGORİTMA YÖNTEMİYLE ÇOKLU HEDEFLERE PLANLANMASI

İNSANSIZ HAVA ARAÇLARININ GENETİK ALGORİTMA YÖNTEMİYLE ÇOKLU HEDEFLERE PLANLANMASI HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 2010 CİLT 4 SAYI 3 (77-84) İNSANSIZ HAVA ARAÇLARININ GENETİK ALGORİTMA YÖNTEMİYLE ÇOKLU HEDEFLERE PLANLANMASI Hv.Plt.Yzb. Baha PAKKAN* HHO Havacılık ve Uzay

Detaylı

ZERO-ONE PROGRAMMING MODEL FOR SCHEDULING PROBLEMS OF ORGANIZATIONS THAT HAVE LABOURS WORKING THREE DAYS AWEEK AND HAVE MULTIPLE SHIFTS

ZERO-ONE PROGRAMMING MODEL FOR SCHEDULING PROBLEMS OF ORGANIZATIONS THAT HAVE LABOURS WORKING THREE DAYS AWEEK AND HAVE MULTIPLE SHIFTS 188 HAFTADA ÜÇ GÜN ÇALIŞAN İŞGÖRENLERİ VE ÇOKLU VARDİYALARI OLAN ORGANİZASYONLARIN ÇİZELGELEME PROBLEMLERİ İÇİN SIFIR BİR PROGRAMLAMA MODELİ ÖZ Banu SUNGUR * Hızlandırılmış çalışma haftası işgörenlerin

Detaylı

Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)

Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği) Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)

Detaylı

FARKLI GELİŞ ZAMANLI ÖĞRENME ETKİLİ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

FARKLI GELİŞ ZAMANLI ÖĞRENME ETKİLİ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 28 CİLT 3 SAYI 4 (37-46) FARKLI GELİŞ ZAMANLI ÖĞRENME ETKİLİ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Tamer Kırıkkale Üniversitesi, Mühendislik Fakültesi Endüstri

Detaylı

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ ÖZGEÇMİŞ 1. Adı Soyadı: İPEK EKER 2. Doğum Tarihi: 31.01.1980 3. Ünvanı: ÖĞRETİM GÖREVLİSİ 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans ENDÜSTRİ İSTANBUL KÜLTÜR 2003 MÜHENDİSLİĞİ ÜNİVERSİTESİ Y.Lisans

Detaylı

TEDARİK ZİNCİRİ YÖNETİMİ

TEDARİK ZİNCİRİ YÖNETİMİ Ömer Faruk GÖRÇÜN Kadir Has Üniversitesi Örnek Olay ve Uygulamalarla TEDARİK ZİNCİRİ YÖNETİMİ II Yayın No : 2874 İşletme-Ekonomi Dizisi : 573 1. Baskı - Ekim 2010 - İSTANBUL 2. Baskı - Mart 2013 - İSTANBUL

Detaylı