CENG 201 Veri Yapıları 10: Çizge Algoritmaları(Graph Algorithms)

Save this PDF as:
Ebat: px
Şu sayfadan göstermeyi başlat:

Download "CENG 201 Veri Yapıları 10: Çizge Algoritmaları(Graph Algorithms)"

Transkript

1 CENG Veri Yapıları : Çizge Algoritmaları(Graph Algorithms) Öğr.Gör. Şevket Umut ÇAKIR Pamukkale Üniversitesi Hafta /

2 Anahat Minimum Kapsayan Ağaçlar Kruskal ın MST Algoritması Prim in MST Algoritması En Kısa Yol Dijkstra nın Algoritması 3 Renklendirme /

3 Ağırlıklı Çizgeler/Weighted Graphs Tanım Kenarları üzerinde ağırlık değerleri bulunan çizgelere ağırlıklı çizge(weighted graphs) adı verilir. Buldan Sarayköy Babadağ 3 3 Güney Çal 3 3 Honaz 3 Pamukkale 33 9 Serinhisar 33 Merkezefendi Tavas 3 /

4 Minimum Kapsayan Ağaçlar/Minimum Spanning Trees Tanım Kapsayan ağaçlar bağlı ve yönsüz bir çizgede bütün düğümleri birbirine bağlayan ağaç yapısındaki bir alt çizgedir. Minimum kapsayan ağaç(minimum spanning tree, MST) kapsayan ağaçlar içinde toplam ağırlığı en az olan ağaçtır. Buldan Sarayköy Babadağ 3 3 Güney Çal 3 3 Honaz 3 Pamukkale 33 9 Serinhisar 33 Merkezefendi Tavas /

5 Minimum Kapsayan Ağaçlar/Minimum Spanning Trees Tanım Kapsayan ağaçlar bağlı ve yönsüz bir çizgede bütün düğümleri birbirine bağlayan ağaç yapısındaki bir alt çizgedir. Minimum kapsayan ağaç(minimum spanning tree, MST) kapsayan ağaçlar içinde toplam ağırlığı en az olan ağaçtır. Buldan Sarayköy Babadağ 3 3 Güney Çal 3 3 Honaz 3 Pamukkale 33 9 Serinhisar 33 Merkezefendi Tavas /

6 Minimum Kapsayan Ağaçlar/Minimum Spanning Trees Minimum kapsayan ağaçları bulmak için çeşitli yöntemler mevcuttur En bilinenleri Prim in ve Kruskal ın algoritmalarıdır. Minimum kapsayan ağaç V tane kenar içerir /

7 Kruskal ın MST Algoritması Kruskal ın MST Algoritması Kenarları ağırlıklarına göre artan sırada sırala En küçük kenarı ele al. Eğer mevcut seçilen kenarlarla bir döngü/çevrim(cycle) içermiyrsa kenarı seç, aksi takdirde kenarı bırak 3 Kapsayan ağaçta V tane düğüm olana kadar Adım yi tekrarla Figure: Kruskal ın MST Algoritması /

8 Kruskal ın MST Algoritması Kruskal Örnek 3 9 /

9 Kruskal ın MST Algoritması Kruskal Örnek 3 9 Ağırlık Hedef Kaynak /

10 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

11 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

12 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

13 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

14 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

15 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

16 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

17 Kruskal ın MST Algoritması Kruskal Örnek 3 Ağırlık Hedef Kaynak /

18 Kruskal ın MST Algoritması Kruskal Örnek 3 9 Ağırlık Hedef Kaynak /

19 Kruskal ın MST Algoritması Kruskal Soru Aşağıdaki çizgenin Kruskal algoritmasına göre minimum kapsayan ağacını bulunuz. Buldan 3 3 Güney Çal 3 Sarayköy 3 Pamukkale 9 3 Honaz 33 Serinhisar Babadağ 33 Merkezefendi Tavas 9 /

20 Kruskal ın MST Algoritması Kruskal Soru Aşağıdaki çizgenin Kruskal algoritmasına göre minimum kapsayan ağacını bulunuz. Buldan 3 3 Güney Çal 3 Sarayköy 3 Pamukkale 9 3 Honaz 33 Serinhisar Babadağ 33 Merkezefendi Tavas 9 /

21 Prim in MST Algoritması Prim in MST Algoritması MST içindeki düğümleri tutacak S kümesini oluştur Başlangıç düğümüne, diğer düğümlere anahtar değeri verilir 3 Bütün düğümler S kümesinde olmadığı sürece a) S kümesinden minimum anahtar değerine sahip u düğümünü al b) u yu S kümesine ekle c) u nun komşu düğümlerinin anahtar değerini güncelle: u nun komşusu v için eğer u-v kenarının ağırlığı v nin anahtar değerinden küçükse u-v kenarının değeri ile güncelle /

22 Prim in MST Algoritması Prim Örnek /

23 Prim in MST Algoritması Prim Örnek /

24 Prim in MST Algoritması Prim Örnek /

25 Prim in MST Algoritması Prim Örnek /

26 Prim in MST Algoritması Prim Örnek 3 /

27 Prim in MST Algoritması Prim Örnek 3 /

28 Prim in MST Algoritması Prim Örnek 3 /

29 Prim in MST Algoritması Prim Örnek /

30 Prim in MST Algoritması Prim Örnek /

31 Prim in MST Algoritması Prim Soru Aşağıdaki çizgenin Prim algoritmasına göre minimum kapsayan ağacını bulunuz. Buldan 3 3 Güney Çal 3 Sarayköy 3 Pamukkale 9 3 Honaz 33 Serinhisar Babadağ 33 Merkezefendi Tavas /

32 Prim in MST Algoritması Prim Soru Aşağıdaki çizgenin Prim algoritmasına göre minimum kapsayan ağacını bulunuz. Buldan 3 3 Güney Çal 3 Sarayköy 3 Pamukkale 9 3 Honaz 33 Serinhisar Babadağ 33 Merkezefendi Tavas /

33 Dijkstra nın Algoritması Dijkstra nın Algoritması Seçilen bir düğümden diğer bütün düğümlere olan en kısa yolu bulur. Prim in algoritmasına benzer şekilde çalışır. Başlangıçta boş bir küme il başlanır ve her seferinde kümeye komşu düğümlerden ağırlığı en küçük olan seçilir ve güncellemeler yapılır. Eğer seçilen elemanın komşularında daha kısa bir yol varsa uzunluk ve yol güncellenir. 3 /

34 Dijkstra nın Algoritması Dijkstra nın Algoritması /

35 Dijkstra nın Algoritması Dijkstra Örnek It T U. Y. U.3 Y.3 U. Y. U. Y. U. Y.

36 Dijkstra nın Algoritması Dijkstra Örnek It T U. Y. U.3 Y.3 U. Y. U. Y. U. Y

37 Dijkstra nın Algoritması Dijkstra Örnek It T U. Y. U.3 Y.3 U. Y. U. Y. U. Y ,

38 Dijkstra nın Algoritması Dijkstra Örnek It T U. Y. U.3 Y.3 U. Y. U. Y. U. Y , ,,

39 Dijkstra nın Algoritması Dijkstra Örnek It T U. Y. U.3 Y.3 U. Y. U. Y. U. Y , ,, ,,,

40 Dijkstra nın Algoritması Dijkstra Örnek It T U. Y. U.3 Y.3 U. Y. U. Y. U. Y , ,, ,,, ,,,, /

41 xkcd /

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST)

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) 1 10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) Kapsayan ağaç Spanning Tree (ST) Bir Kapsayan Ağaç (ST); G, grafındaki bir alt graftır ve aşağıdaki özelliklere sahiptir. G grafındaki tüm

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok 8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)

Detaylı

GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi VERİ YAPILARI. Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1

GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi VERİ YAPILARI. Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

Manisa Celal Bayar Üniversitesi Yazılım Mühendisliği Bölümü YZM Veri Yapıları Dersi. Proje#2

Manisa Celal Bayar Üniversitesi Yazılım Mühendisliği Bölümü YZM Veri Yapıları Dersi. Proje#2 Manisa Celal Bayar Üniversitesi Yazılım Mühendisliği Bölümü YZM 2116- Veri Yapıları Dersi Proje#2 İkili Arama Ağacı, Heap, Hash Tabloları ve Çizgeler Veriliş Tarihi: 24.04.2018 Son Teslim Tarihi: 25.05.2018

Detaylı

Azalt ve Fethet Algoritmaları

Azalt ve Fethet Algoritmaları Azalt ve Fethet Algoritmaları Problemi daha küçük bir örneğine çevir: Küçük örneği çöz Çözümü asıl probleme genişlet 3 tipi vardır: Bir sabitle azalt (Genellikle 1) Eklemeli Sıralama (Insertion Sort) Topolojik

Detaylı

BMB204. Veri Yapıları Ders 11. Çizgeler (Graph) Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

BMB204. Veri Yapıları Ders 11. Çizgeler (Graph) Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü BMB204. Veri Yapıları Ders 11. Çizgeler (Graph) Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Çizgeler Çizge Tanım Çeşitleri Çizge Üzerinde Arama Önce derinliğine

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ Azalt ve Fethet Algoritmaları Problemi daha küçük bir örneğine çevir: Küçük örneği çöz Çözümü asıl probleme genişlet 3 tipi vardır:

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Graph (Çizge) Yük. Müh. Köksal GÜNDOĞDU 2 Graph (Çizge) Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan

Detaylı

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem

Detaylı

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk Listesi Çizge Üzerinde

Detaylı

Denizli TEOG boş kontenjanlar Teog taban puanlar

Denizli TEOG boş kontenjanlar Teog taban puanlar On5yirmi5.com Denizli TEOG boş kontenjanlar Teog taban puanlar 2015-2016 yılı Denizli Teog hangi liselerde boş kontenjan var, e-okul için taban puanları, toplam kontenjları ve TEOG okul türleri işte bu

Detaylı

köşe (vertex) kenar (edg d e)

köşe (vertex) kenar (edg d e) BÖLÜM 7 köşe (vertex) kenar (edge) Esk den Ank ya bir yol (path) Tanım 7.1.1: Bir G çizgesi (ya da yönsüz çizgesi) köşelerden oluşan bir V kümesinden ve kenarlardan oluşan bir E kümesinden oluşur. Herbir

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 11 Bu bölümde, Graph (Çizge - Graf) Terminoloji Çizge Kullanım

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Toplum Yararına Program Katılımcı Duyurusu

Toplum Yararına Program Katılımcı Duyurusu DENİZLİ ORMAN FİDANLIK MÜDÜRLÜĞÜ 100(YÜZ) KARAHASANLI FİDANLIĞI Seçim Başlangıç Tarihi ve Saati 24/03/2015 09:30 Seçim Bitiş Tarihi ve Saati 24/03/2015 15:30 (Değişik: 15/04/2014 tarihli ve 14003 sayılı

Detaylı

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 GÜZ Çizgeler Yollar ve Çevrimler Çizge Olarak Modelleme Çizge Olarak Modelleme Yönlü Çizge Kenar - Köşe 2 / 90 Çizgeler Yollar ve Çevrimler Çizge Olarak

Detaylı

9.Hafta Veri sıkıştırma ve Aç gözlü algoritmalar

9.Hafta Veri sıkıştırma ve Aç gözlü algoritmalar 1 9.Hafta Veri sıkıştırma ve Aç gözlü algoritmalar 2 Veri Sıkıştırma (Compression) Kayıplı-Kayıpsız Veri Sıkıştırma Sabit ve Değişken Genişlikli Kodlama Huffman Algortiması (Greedy Algoithms) Veri Sıkıştırma

Detaylı

DENİZ HARP OKULU BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS Veri Yapıları ve Algoritmalar BİM-221 2/II 2+0+2 3 3,5 Dersin Dili

Detaylı

Lisans. Ayrık Matematik Çizgeler. Konular. Tanım çizge: G = (V, E) Tanım. c T. Uyar, A. Yayımlı, E. Harmancı

Lisans. Ayrık Matematik Çizgeler. Konular. Tanım çizge: G = (V, E) Tanım. c T. Uyar, A. Yayımlı, E. Harmancı Lisans Ayrık Matematik Çizgeler H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2013 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c 2001-2013 T.

Detaylı

Teori/Saat Uygulama/Saat Laboratuar/Saat AKTS BLM Dersin Amacı

Teori/Saat Uygulama/Saat Laboratuar/Saat AKTS BLM Dersin Amacı Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bölüm/Program Dersi Ders Tanım Bilgileri Adı Programlama Laboratuvarı - I İngilizce Programming Lab - I Adı Kodu Teori/Saat Uygulama/Saat Laboratuar/Saat

Detaylı

İMAR VE PLANLAMA ŞUBE MÜDÜRLÜĞÜ

İMAR VE PLANLAMA ŞUBE MÜDÜRLÜĞÜ İMAR VE PLANLAMA ŞUBE MÜDÜRLÜĞÜ İmar planı işleri yürütülmüştür: 191 ADET Belediye Adı Kurum Görüşü verilmesi İmar planı incelemesi Büyükşehir 18 26 Acıpayam 4 2 Babadağ 1 - Baklan 5 - Bekilli - - Beyağaç

Detaylı

Genel Graf Üzerinde Mutlak 1-merkez

Genel Graf Üzerinde Mutlak 1-merkez Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri BLM2881 2015-1 DR. GÖKSEL Bİ R İ C İ K goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 16.09.2015 Tanışma, Ders Planı, Kriterler, Kaynaklar, Giriş Latex

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) YÖNEYLEM ARAŞTIRMA İÇİN ALGORİTMALAR EN-312 3/I 3+0+0 3 5 Dersin Dili : Türkçe Dersin

Detaylı

BLM 210 PROGRAMLAMA LABORATUVARI II PROJELERİ

BLM 210 PROGRAMLAMA LABORATUVARI II PROJELERİ 1 BLM 210 PROGRAMLAMA LABORATUVARI II PROJELERİ 1. Programlama Laboratuvarı II dersinde aşağıdaki takvimde belirtilen konularda projeler gerçekleştirilecektir. Proje takviminin telafisi olmayacaktır. Proje

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2014-2015 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 2. Ara Sınav 09.04.2015 Sınav Süresi: 90 dakika

Detaylı

YZM YAPAY ZEKA DERS#4: BİLGİSİZ ARAMA YÖNTEMLERİ

YZM YAPAY ZEKA DERS#4: BİLGİSİZ ARAMA YÖNTEMLERİ YZM 327 - YAPAY ZEKA DERS#4: BİLGİSİZ ARAMA YÖNTEMLERİ Bilgisiz Arama Stratejisi Sadece problem formülasyonundaki mevcut bilgiyi kullanır Durum bilgisinden yararlanmazlar Çözüme ulaşmak için hiçbir bilgi

Detaylı

BMB204. Veri Yapıları Ders 9. B+ Ağacı, Hash, Heap. Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

BMB204. Veri Yapıları Ders 9. B+ Ağacı, Hash, Heap. Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü BMB204. Veri Yapıları Ders 9. B+ Ağacı, Hash, Heap Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı B+ Tree Temel bir veritabanı çalışma kodu Hash (Karma) Heap Ağaçlar

Detaylı

Ağaç (Tree) Veri Modeli

Ağaç (Tree) Veri Modeli Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu

Detaylı

LİSANSSIZ ÜRETİM BAŞVURULARINA İLİŞKİN BAĞLANTI KAPASİTESİ DURUM TABLOSU YAYINLANMA TARİHİ: 24.04.2015

LİSANSSIZ ÜRETİM BAŞVURULARINA İLİŞKİN BAĞLANTI KAPASİTESİ DURUM TABLOSU YAYINLANMA TARİHİ: 24.04.2015 ADIGÜZEL HES TM Gücü () 13MW Darıveren Güney Köyler Serinhisar Bekilli Çal Çakırlar- Ortaköy Kök Gözler Güney İM Güneş 5 4130 0 0 5 4130 0 0 Güneş 8 6560 0 0 8 6560 0 0 Güneş 3 1960 0 0 3 1960 0 0 Güneş

Detaylı

İTÜ Bilgisayar Mühendisliği Bölümü, BLG433-Bilgisayar Haberleşmesi ders notları, Dr. Sema Oktuğ

İTÜ Bilgisayar Mühendisliği Bölümü, BLG433-Bilgisayar Haberleşmesi ders notları, Dr. Sema Oktuğ Bölüm 7: ÇOĞAGÖNDERİM YÖNLENDİRMESİ, GEZGİN DÜĞÜMLER İÇİN YÖNLENDİRME, ve YAPISIZ AĞLARDA YÖNLENDİRME Türkçe (İngilizce) karşılıklar Çoğagönderim (multicast) Yayın, Tümegönderim (broadcast) Kapsayan ağaç

Detaylı

İL/İlçe Okul Adı Kont Taban Puanı. DENİZLİ MERKEZEFENDİ Erbakır Fen Lisesi ,358. DENİZLİ MERKEZEFENDİ AYDEM Fen lisesi ,263

İL/İlçe Okul Adı Kont Taban Puanı. DENİZLİ MERKEZEFENDİ Erbakır Fen Lisesi ,358. DENİZLİ MERKEZEFENDİ AYDEM Fen lisesi ,263 İL/İlçe Okul Adı Kont Taban Puanı Erbakır Fen Lisesi 120 492,358 AYDEM Fen lisesi 150 488,263 Denizli Fen Lisesi 150 483,683 Lütfi Ege Anadolu Lisesi 170 478,528 Türk Eğitim Vakfı Anadolu Lisesi 204 471,943

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

DENİZLİ İLİNDEKİ HER BİR LİSENİN 2016 YGS ORTALAMA, PUAN, SIRA BİLGİSİ VE İL - TÜRKİYE SIRALAMALARI

DENİZLİ İLİNDEKİ HER BİR LİSENİN 2016 YGS ORTALAMA, PUAN, SIRA BİLGİSİ VE İL - TÜRKİYE SIRALAMALARI DENİZLİ İLİNDEKİ HER BİR LİSENİN 2016 YGS ORTALAMA, PUAN, SIRA BİLGİSİ VE İL - TÜRKİYE SIRALAMALARI DENİZLİ ADAY SAYILARI TEMEL YGS PUANLARI FEN BİLİMLERİ TÜRKÇE SOSYAL BİLİMLER MATEMATİK YGS'ye Giren

Detaylı

11.Hafta En kısa yollar I-II-III Devam. Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme

11.Hafta En kısa yollar I-II-III Devam. Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme 11.Hafta En kısa yollar I-II-III Devam Negatif Ağırlıklı En Kısa Yollar Doğruluk Çözümleme 1 En Kısa Yollar II Bellman-Ford algoritması 2 3 Negatif Maliyetli Çember Eğer graf negatif maliyetli çember içeriyorsa,

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 S6 S7 Toplam HACETTEPE ÜNİVERSİTESİ 2012-2013 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 25.04.2013 Sınav Süresi:

Detaylı

İL GENELİ PUAN SIRALI OKULLAR BAŞARI LİSTESİ

İL GENELİ PUAN SIRALI OKULLAR BAŞARI LİSTESİ GENELİ LI OKULLAR BAŞARI LİSTESİ DENİZLİ SINIF 9 RAPOR TÜRÜ Ders LAMA ALANI SINAV SAYFA 27.2.202 DENİZLİ ARALIK 202 BTS 9.SINIF YGS- FİZİK KİMYA BİYOLOJİ GENEL MERKEZ Denizli Erbakır Fen Lisesi.88 29.30

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J Ders 17 En kısa yollar I En kısa yolların özellikleri Dijkstra algoritması Doğruluk Çözümleme Enine arama Prof. Erik Demaine November 14, 005 Copyright 001-5 by Erik

Detaylı

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =? Ayrık Hesaplama Yapıları A GRUBU 0.0.01 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Teori/Saat Uygulama/Saat Laboratuar/Saat AKTS BLM Dersin Amacı

Teori/Saat Uygulama/Saat Laboratuar/Saat AKTS BLM Dersin Amacı Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bölüm/Program Dersi Ders Tanım Bilgileri Adı Programlama Laboratuvarı II İngilizce Programming Lab -II Adı Kodu Teori/Saat Uygulama/Saat Laboratuar/Saat

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KENDİNİ KLONLAYAN KARINCA KOLONİSİ YAKLAŞIMIYLA OPTİMAL YOLUN BULUNMASI

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KENDİNİ KLONLAYAN KARINCA KOLONİSİ YAKLAŞIMIYLA OPTİMAL YOLUN BULUNMASI T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KENDİNİ KLONLAYAN KARINCA KOLONİSİ YAKLAŞIMIYLA OPTİMAL YOLUN BULUNMASI Şenol Zafer ERDOĞAN Doktora Tezi Bilgisayar Mühendisliği Anabilim Dalı Danışman:

Detaylı

ET VE SÜT KURUMU GENEL MÜDÜRLÜĞÜ DENİZLİ ET KOMBİNASI MÜDÜRL

ET VE SÜT KURUMU GENEL MÜDÜRLÜĞÜ DENİZLİ ET KOMBİNASI MÜDÜRL İşgücü İstemi (00002736318) Bu ilana Kişisel Durumu "Normal" olanlarla birlikte "TMY (Terorle Mücadelede Yaralanan)" olanlar da başvurabilir. Bu işgücü istemi, İŞKUR'un DENİZLİ ÇALIŞMA VE İŞ KURUMU İL

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 8 Problem Tanımı Arama Ağaçları İkili Arama

Detaylı

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü Çanakkale Onsekiz Mart Üniversitesi Bilgisayar Mühendisliği Bölümü Skip List(Atlamalı Liste) Veri Yapısı Seminer-30.03.2007/SkipList 1 Temel İhtiyaçlar Nelerdir? 1. Bilgisayarda verileri belirli yapıda

Detaylı

Çizge Teorisi (Graph Theory)

Çizge Teorisi (Graph Theory) Sadi Evren SEKER, Çizge Teorisi (Graph Theory), YBS Ansiklopedi, v.2, is.2, pp. 17-29, 2015 17 YBS Ansiklopedi www.ybsansiklopedi.com Cilt 2, Sayı 2, Haziran 2015 Çizge Teorisi (Graph Theory) Sadi Evren

Detaylı

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur?

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur? Ayrık Hesaplama Yapıları A GRUBU.0.05 Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız.

Detaylı

İnternet Servis Sağlayıcılarının Maliyet Optimizasyonu

İnternet Servis Sağlayıcılarının Maliyet Optimizasyonu İnternet Servis Sağlayıcılarının Maliyet Optimizasyonu Mehmet Emin KARAKAŞ Bilgisayar Mühendisliği Bölümü TOBB Ekonomi ve Teknoloji Üniversitesi Ankara, TÜRKİYE mekarakas@etu.edu.tr Özetçe Hızlı, güvenilir

Detaylı

BIL222 Veri Yapıları ve Algoritmalar

BIL222 Veri Yapıları ve Algoritmalar BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

Çok Yollu Ağaçlar: B*-Trees B*-Trees

Çok Yollu Ağaçlar: B*-Trees B*-Trees Çok Yollu Ağaçlar: B*-Trees B*-Trees B-tree lerde bir node dolunca bölme işlemi yapılmaktadır Bölme sonucunda oluşan iki node da yarı yarıya doludur B*-tree lerde bölme işlemi geciktirilerek node ların

Detaylı

İşletim Sistemlerine Giriş

İşletim Sistemlerine Giriş İşletim Sistemlerine Giriş Ölümcül Kilitlenme (Deadlock) İşletim Sistemlerine Giriş - Ders06 1 Ölümcül Kilitlenme (Deadlock) Bilgisayar sistemleri, bir anda sadece tek bir kullanıcı tarafından kullanılabilecek

Detaylı

EBEKE MODELLERİ. ebeke Yapısına Giriş. Konu 3

EBEKE MODELLERİ. ebeke Yapısına Giriş. Konu 3 EBEKE MODELLERİ Konu ebeke Yapısına Giriş Elektriksel yapıların bulunduğu şebekeler Ulaşım sistemi Ulaştırma modeli İstasyonlardan oluşan sistem - Televizy zyon şebekesi ebeke Problemi Bir şebeke problemi

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/.40J DERS Veri Yapılarının Genişletilmesi Dinamik Seviye İstatistikleri Metodoloji Aralık Ağaçları Prof. Charles E. Leiserson Dinamik Seviye İstatistikleri OS-SEÇ(i,S) : dinamik

Detaylı

Telsiz Duyarga Ağları için Enerji Etkin Dağıtık Öz Kararlı Maksimal Bağımsız Küme Algoritmaları

Telsiz Duyarga Ağları için Enerji Etkin Dağıtık Öz Kararlı Maksimal Bağımsız Küme Algoritmaları Telsiz Duyarga Ağları için Enerji Etkin Dağıtık Öz Kararlı Maksimal Bağımsız Küme Algoritmaları Özkan Arapoğlu, Orhan Dağdeviren Ege Üniversitesi, Uluslararası Bilgisayar Enstitüsü, İzmir ozkanarapoglu@hotmail.com,

Detaylı

Final Sınavı Soruları Bahar 2018

Final Sınavı Soruları Bahar 2018 Sayfa#1 Manisa Celal Bayar Üniversitesi Yazılım Mühendisliği Bölümü YZM 2116 Veri Yapıları Dersi Final Sınavı Soruları Bahar 2018 Süre: 70 Dakika Adı ve Soyadı YANIT ANAHTARI Öğrenci Numarası Grubu İmza

Detaylı

ARAÇ ROTALARININ EN KISA YOL ALGORİTMALARI KULLANILARAK BELİRLENMESİ VE.NET ORTAMINDA SİMÜLASYONU

ARAÇ ROTALARININ EN KISA YOL ALGORİTMALARI KULLANILARAK BELİRLENMESİ VE.NET ORTAMINDA SİMÜLASYONU T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ARAÇ ROTALARININ EN KISA YOL ALGORİTMALARI KULLANILARAK BELİRLENMESİ VE.NET ORTAMINDA SİMÜLASYONU Şahin BAYZAN Yüksek Lisans Tezi DENİZLİ 005 ARAÇ ROTALARININ

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ağaç Yapıları Sunum planı Genel kavramlar İkili ağaç İkili arama ağacı AVL Tree B-Tree Genel Kavramlar Bir ağaç yapısı

Detaylı

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160 A GRUBU.. Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 12 Atlama Listeleri Veri Yapısı Rastgele Araya Yerleştirme Yüksek olasılıkla" sınırı Analiz (Çözümleme) Yazı Tura Atma Prof. Erik D. Demaine Atlama Listeleri Basit

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

ÇİZGİ KÜMELERİ (GRAPHS)

ÇİZGİ KÜMELERİ (GRAPHS) ÇİZGİ KÜMELERİ (GRAPHS) 1 2 GRAFLAR Tanım Yönlendirilmiş ve yönlendirilmemiş graflar Ağırlıklı graflar Gösterim Komşuluk Matrisi Komşuluk Listesi Dolaşma Algoritmaları BFS (Breath First Search) DFS (Depth-First

Detaylı

BLM-431 YAPAY ZEKA. Ders-4 Bilgisiz Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-4 Bilgisiz Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-4 Bilgisiz Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Dersin Hedefleri Aşağıda verilen arama stratejilerini anlamak

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından

Detaylı

BLM-431 YAPAY ZEKA. Ders-3 Durum Uzayında Arama. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-3 Durum Uzayında Arama. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-3 Durum Uzayında Arama Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Dersin Hedefleri Durum uzayı temsilini öğrenmek ve durum uzayında

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 7 Ağaç (Tree) Veri Yapısı Giriş Ağaç VY Temel

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek

Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek BÖLÜM 8 Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek birbasit yol vardır. Bir kkl köklü ağaçğ ise,

Detaylı

YZM YAPAY ZEKA DERS#6: REKABET ORTAMINDA ARAMA

YZM YAPAY ZEKA DERS#6: REKABET ORTAMINDA ARAMA YZM 3217- YAPAY ZEKA DERS#6: REKABET ORTAMINDA ARAMA Oyun Oynama Çoklu vekil ortamı-her bir vekil karar verirken diğer vekillerin de hareketlerini dikkate almalı ve bu vekillerin onun durumunu nasıl etkileyeceğini

Detaylı

İçerik: Graflar. Tanım. Gösterim. Dolaşma Algoritmaları. Yönlü ve yönsüz graflar Ağırlıklı graflar. Komşuluk Matrisi Komşuluk Listesi

İçerik: Graflar. Tanım. Gösterim. Dolaşma Algoritmaları. Yönlü ve yönsüz graflar Ağırlıklı graflar. Komşuluk Matrisi Komşuluk Listesi Tanım Yönlü ve yönsüz graflar ğırlıklı graflar İçerik: Graflar Gösterim Komşuluk Matrisi Komşuluk Listesi olaşma lgoritmaları BS (Breath irst Search) S (epth-irst Search) 1 Graflar Graf, matematiksel anlamda,

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir

Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir sınıflandırma: temel kavramlar, karar ağaçları ve model değerlendirme Sınıflandırma : Tanım Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir Eğitim setindeki her kayıt

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Elektrik Devre Temelleri 3

Elektrik Devre Temelleri 3 Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II AĞ MODELLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II AĞ MODELLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II AĞ MODELLERİ DERS NOTLARI Konular Ağ / Şebeke/Network Modelleri En Kısa Yol Problemi Dijkstra Algoritması Floyd Algoritması Maksimum Akış

Detaylı

YAPI MALZEMELERİ ŞUBE MÜDÜRLÜĞÜNÜN OCAK-MAYIS 2015 YILINA AİT YAPTIĞI İŞLER NİSAN-MAYIS-HAZİRAN TEMMUZ-AGUSTOS- EKİM-KASIM-ARALIK

YAPI MALZEMELERİ ŞUBE MÜDÜRLÜĞÜNÜN OCAK-MAYIS 2015 YILINA AİT YAPTIĞI İŞLER NİSAN-MAYIS-HAZİRAN TEMMUZ-AGUSTOS- EKİM-KASIM-ARALIK YAPI MALZEMELERİ ŞUBE MÜDÜRLÜĞÜNÜN Denizli takip denetimleri (2015 programı) OCAK-MAYIS 2015 YILINA AİT YAPTIĞI İŞLER NİSAN-MAYIS-HAZİRAN TEMMUZ-AGUSTOS- EKİM-KASIM-ARALIK EYLÜL HAZIR BETON- AGREGA Dogaltaş

Detaylı

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır?

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır? Ayrık Hesaplama Yapıları A GRUBU 0.06.01 Numarası :. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) ŞEBEKE MODELLERİ EN-413 4/I 3+0+0 3 5 Dersin Dili : İngilizce Dersin Seviyesi : Lisans

Detaylı

İleri Algoritma (COMPE 574) Ders Detayları

İleri Algoritma (COMPE 574) Ders Detayları İleri Algoritma (COMPE 574) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS İleri Algoritma COMPE 574 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

b) Algoritmanızın en kötü durumda işlem zamanını asimptotik olarak bulunuz

b) Algoritmanızın en kötü durumda işlem zamanını asimptotik olarak bulunuz 2014 Soru 1. (15 puan) 5,2,4,1,15,8,11,13,7,6 dizisinin elemanlarından maksimum özellikli bir yığın(heap) oluşturulmasını adım adım yazınız. Heapsort algoritmasının yardımıyla yapılacak sıralamayı anlatınız.

Detaylı

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara Veri Madenciliğine Genel Bir Bakış Veri Madenciliğinin Görevleri Sınıflama Seri Sınıflama Algoritmaları Paralel Sınıflama

Detaylı

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme Algoritmalar DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme October 19, 2005 Copyright 2001-5 by Erik D. Demaine and

Detaylı

İlker Özdemir 1 Osman Aytekin 2 Hakan Kuşan 3 NWSA-ENGINEERING SCIENCES Eskisehir Osmangazi University 1-2 Received: 2010 Dumlupinar University 3

İlker Özdemir 1 Osman Aytekin 2 Hakan Kuşan 3 NWSA-ENGINEERING SCIENCES Eskisehir Osmangazi University 1-2 Received: 2010 Dumlupinar University 3 ISSN:1306-3111 e-journal of New World Sciences Academy 2012, Volume: 7, Number: 2, Article Number: 1A0310 İlker Özdemir 1 Osman Aytekin 2 Hakan Kuşan 3 NWSA-ENGINEERING SCIENCES Eskisehir Osmangazi University

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 9 Hatırlatmalar Tam İkili Ağaç Eksiksiz İkili

Detaylı

Max - Min Heap Tree (Max ve Min Yığıt Ağaçları) Veri Yapıları ve Algoritmalar 2 - Mustafa EGE Ders Notları

Max - Min Heap Tree (Max ve Min Yığıt Ağaçları) Veri Yapıları ve Algoritmalar 2 - Mustafa EGE Ders Notları Max - Min Heap Tree (Max ve Min Yığıt Ağaçları) Veri Yapıları ve Algoritmalar 2 - Mustafa EGE Ders Notları Max - Min Heap Öncelikli kuyruk konusunu hatırlayın. Kuyruğa sonradan eklenmesine rağmen öncelik

Detaylı

Çizge Teorisi, Dağıtık Algoritmalar ve Telsiz Duyarga Ağları

Çizge Teorisi, Dağıtık Algoritmalar ve Telsiz Duyarga Ağları Çizge Teorisi, Dağıtık Algoritmalar ve Telsiz Duyarga Ağları Ayşegül Alaybeyoğlu 1, Aylin Kantarcı 1, Kayhan Erciyes 2 1 Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü, İzmir 2 İzmir Üniversitesi, Bilgisayar

Detaylı

1. ÜNİTE:SAYILAR VE İŞLEMLER

1. ÜNİTE:SAYILAR VE İŞLEMLER 1. ÜNİTE:SAYILAR VE İŞLEMLER 2 DERS SAATİ:Verilen iki doğal sayının aralarında asal olup olmadığını belirler. ASAL SAYILAR 1 ve kendisinden başka hiçbir sayma sayısı ile bölünemeyen 1 den büyük doğal sayılara

Detaylı