Araç Devrilme Dinamiğinin için Model Öngörülü Kontrol

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Araç Devrilme Dinamiğinin için Model Öngörülü Kontrol"

Transkript

1 TOK 214 Bildiri Kitab Eylül 214, Kocaeli Araç Devrilme Dinamiğinin için Model Öngörülü Kontrol Zafer ÖCAL 1, Emre SERT 1, Zafer BİNGÜL 2 1 Anadolu Isuzu Otomotiv San.Tic. A.Ş. Kocaeli 2 Mekatronik Mühendisliği Bölümü Kocaeli Üniversitesi, Kocaeli Özetçe Bu çalışmada öncelikle doğrusal olmayan dört izli taşıt modeli ve devrilme dinamiği modelleri oluşturulmuştur. Sistemin devrilme kontrolü için Model Öngörülü Kontrol (MÖK) (Model Predictive Control) tasarlanmıştır. Bu çalışmada, direksiyon yönlendirme açısı kontrol girişi olarak ve dinamik yük transfer oranı da sistem çıkışı olarak seçilmiştir. Tasarlanan kontrolcü farklı başlangıç senaryoları için test edilmiş ve başarımı incelenmiştir. MÖK ün araç devrilme dinamiğini başarılı bir şekilde kontrol ettiği gözlenmiştir. 1. Giriş Aracın devrilme karakteristiği aracın dinamik davranışı içerisindeki en önemli parametrelerden biridir. Özellikle ağırlık merkezinin daha yukarıda olduğu otobüs, kamyon, tır ve ticari araçlarda kazaların ve yaralanmaların çoğu devrilme sonucu oluşmaktadır [1]. Meydana gelen kaza oranlarına bakıldığında Almanya da araç kazalarının %5 i devrilme ile sonuçlanmıştır [2]. İngiltere de yapılan araştırmalarda ise kazaların %13 ü devrilme ile sonuçlandığı belirlenmiştir [3]. ABD de yapılan araştırmalara göre 21 yılında meydana gelen ve devrilmeyle sonuçlanan kazalarda toplam kazaların %21 ini oluşturmaktadır ve 8842 kişi hayatını kaybetmiştir [4]. Aracın devrilmesine etki eden hareketler ve etmenlerin başında şerit değiştirme, viraj dönme ve bozuk geometrik engeller gelmektedir. Bahsedilen durumlarda özellikle yanal ivme ve kuvvetler oluşturarak aracın devrilme eşiğini geçip geçmediğini belirlemektedir. Devrilmeyi önleme esnasında sürücünün tek başına müdahalesi yeterli olmamaktadır. Bu nedenle yardımcı sistemler oluşturulmuştur. Yardımcı sistemlerden bazıları devrilmeyi doğrudan etkilerken bazıları da dolaylı yoldan etkilemekte ve devrilmeye engel olmaktadır. Yapılan çalışmalar incelendiğinde; en fazla kabul edilen ve uygulanan kriter " Devrilme Zamanıdır". Bu tanıma göre tekerleklerin yerden kesildiği zaman devrilme anı olarak kabul edilmektedir [5,6]. Diferansiyel frenleme ile aracın ön tekerleklerine uygulanarak lastiklere gelen yanal kuvvetleri azaltır. Bu konuda yapılan çalışmada diferansiyel frenlemenin aracın yalpa kararlılığını geliştirdiği sonucuna varılmıştır [7]. Diğer yandan aktif süspansiyon sistemlerinde devrilme momentini azaltacak dikey kuvvetler elektro hidrolik damperler ile oluşturularak devrilme açısını hep belli oranda tutmayı amaçlamaktadır [8,9]. Bu çalışmada, 735 mm uzunluğunda ve 2282 mm genişliğindeki yedi metrelik Isuzu marka otobüsün matematik denklemlerinden yola çıkarak dört izli taşıt alt modelinden referans ile araç yalpa modeli çıkartılmıştır. Yalpa modelinden elde edilen yalpa değişim oranı ve yanal hız parametreleri kullanılarak araç devrilme dinamiği modeli elde edilerek Simulink ortamında oluşturulmuştur. Araç giriş parametreleri araç hızı ve direksiyon açısıdır. Aracın devrilmesine neden olacak şekilde araç hızı ve direksiyon açısı belirlenerek J-Turn testi uygulanmıştır [4]. Bu şekilde modelin fiziksel sınırları devrilme durumunu öne çıkarmak suretiyle incelenmiştir. Literatürde anlatılan Dinamik Yük Transfer Oranı () [1] sistemin cevabı olarak seçilerek aracın devrilmesini sağlayacak ölçüde araç hızı ve direksiyon açısı ile J-Turn testi doğrulanan Simulink modeline uygulanmış ve (>1) koşulunun gerçekleşmesi sağlanmıştır. birin altına çekmek ve böylelikle aracın devrilmesini engellemek için MÖK tasarlanarak direksiyon açısı kontrol edilmiştir. 2. Araç Yalpa Modeli Yalpa dinamiği devrilme dinamiğine geçmeden önce çıkartılması gereken bir alt sistemdir. Dört izli taşıt modelinden elde edilen yanal kuvvet (Fy) ve yalpa eksenindeki moment (Mz) değerleri araç yalpa modelinde kullanılarak yanal hız ve yalpa değişim oranı sistem çıktısı olarak elde edilecektir. Böylece hem yanal kayma açıları hem de devrilme açısı hesaplanacaktır. Şekil 1 de dört izli taşıt modelinin üstten görünüşü şeklinde yalpa modeli yer almaktadır. Tekerleklerin hem önden hem de arkadan yönlendirilebilir olduğu varsayımı ile tekerleklere yanal ve uzlamsal yönde etki eden kuvvetler gösterilmektedir. Ayrıca araç koordinat ekseni ile yalpa değişim oranı ağırlık merkezinde gösterilmiştir. Ağırlık merkezinin ön ve arka tekerleklere uzaklıkları ile tekerlek açıları da modelde yer almaktadır. Denklemlerde kullanılan araç parametrelerinin açıklaması Tablo 1 de paylaşılmaktadır. 392

2 Tablo 1: Araç Parametreleri Parametreler Açıklamalar Değerler m Araç Ağırlığı 1154 kg Ağırlık Merkezinin Arka Aksa Uzaklığı m Ağırlık Merkezinin Ön Aksa Uzaklığı m Araç Yanal Hızı - Araç Doğrusal Hızı 85 km/s Süspansiyon Dönme Atalet Momenti 41 kgm 2 r Araç Yalpa Oranı - k Yay Sertliği 25e6 kgm 2 /s 2 c Süspansiyon Sönümleme Katsayısı 12e6 N/rad Devrilme Açısı - Devrilme Oranı - ö Ön Aks Yönlendirme Açısı - Arka Aks Yönlendirme Açısı rad Ön Tekerlek Sertlik Katsayısı 8 kgm 2 /s Arka Tekerlek Sertlik Katsayısı 1 kgm 2 /s ö Ön Tekerlek Yanal Kayma Açısı - Arka Tekerlek Yanal Kayma Açısı - Araç Gövde Ağırlığı 9 kg Süspansiyon Dönme Merkezinin Araç Ağırlık Merkezine Mesafesi 559 m Yalpa Eksenindeki Denklemler, Ele alınan otobüste arka tekerlekte yönlendirme olmadığından dolayı, ve olacaktır. Newtonun ikinci kuralına göre düzenleme yapılırsa denklem (3) ve (4) elde edilir. F y =ma y =m[v y+v x r] (3) (4) Aracın tekerlek açılarının küçük olduğu varsayımı ile, ö ve ö ö kabul edilebilir. Buna göre denklem (5) ve (6) elde edilir. m+v x r=f xö,sol +F xö,sag δ ö +F yö,sol +F yö,sag +F ya,sol +F ya,sag (5) rj zz =l ö F xö,sol +F xö,sag δ ö +l ö F yö,sol +F yö,sag -l a F ya,sol +F ya,sag (6) 2.1 Doğrusal Kayma Oranı İvmelenme anındaki kayma oranı denklem (7) de ki gibi ifade edilebilir. Burada geometrik yarıçap, lastik açısal hızı ve doğrusal araç hızını ifade eder. Uzlamsal kuvvetler tekerlek uzlamsal kayma oranlarıyla doğru orantılı değişecek şekilde modellenmiştir. Ön lastiklere etki eden sağ ve sol uzlamsal kuvvetler denklem (8) ile ifade edilmektedir. Burada ön tekerlekteki nominal yuvarlanma sertliği ve arka tekerlekteki nominal yuvarlanma sertliğidir. s i = v x-r g w w v x (7) ö (8) ö 2.2 Yanal Kayma Açısı Tekerlek modeline göre ön tekerlek yanal kayma açısı denklem (9) da ve arka tekerlek yanal kayma açısı ise denklem (1) daki gibidir. (2) α ö =δ ö -tan -1 v öy v öx =δ ö - v y+rl ö v x (9) α a =δ a -tan -1 v ya v xa =δ a - v y-rl a v x (1) Şekil 1: Dört İzli Taşıt Modeli [11] Newton-Euler denklemlerine göre boylamsal ve yanal kuvvetler ile yalpa eksenindeki moment denklem (1) ve denklem (2) de verilmiştir. Yanal Kuvvetler, ö ö ö ö ö ö (1) Burada; ön tekerlekteki nominal dönüş sertliği ve rka tekerlekteki nominal dönüş sertliği olarak ifade edilir.yanal kuvvetler tekerlek yana kayma açılarıyla doğru orantılı değişecek şekilde modellenmiştir. Buna göre ön ve arka tekerlekteki yanal kuvvetlerin değeri denklem (11) ve (12) ile ifade edilir. F yö,sol =F yö,sag =F yö =C ö α ö (11) (12) 3. Araç Devrilme Dinamiği Modeli Şekil 2 de gösterilen aracın iz genişliği ve etkiyen yanal ivmenin hesaba katılması ile bu modelde araç yaylanan kütle ve yaylanmayan kütle olarak iki kısımdan olustugu kabul 393

3 edilmekte ve bu iki kütle birbirlerine amartisör ve yay ile bağlanmaktadır. Araç eksenleri SAE standartlarında belirtilen eksen takımı seçilmiştir. 3.2 Sistem Giriş Parametresi J-Turn testi; aracın devrilmeye karşı eğiliminin belirlenmesi amacıyla yapılan ve ilk olarak Nissan ve Honda tarafından önerilen ve NHTSA tarafından 1997 yılından beri uluslararası değerlendirme testlerinde uygulanan bir testtir [4]. Yapılan çalışmalarda aracı devrilmeye zorlayacak şekilde J-Turn testindeki direksiyon çevrim süreleri belirlenerek aracın test sonuna kadar istikrarlı kalması sağlanmıştır [13]. Sisteme giriş parametresi olarak Şekil 3 ve 4 de direksiyon açısı paylaşılan J-Turn testi uygulanmıştır. Şekil 2: Araç Devrilme Dinamiği Modeli [13] Aracın devrilme modeli çıkartılırken yalpa modelinden elde edilen yanal hız ve yalpa oranı devrilme modeline giriş parametresi olarak alınmıştır ve araç yaylanan kütle ve yaylanmayan kütle olarak iki bölüme ayrılarak devrilme modeli çıkartılmıştır [12]. Ağırlık merkezinin atalet momenti denklem (13), yaylanmayan kütle tarafından üretilen yalpa momenti denklem (14) ve denklem (13) ve (14) denklemleri düzenlenir ise denklem (15) elde edilir. (13) (14) (15) Aracın yuvarlanma açılarının çok küçük olduğu varsayımı ile ve kabul edilebilir ve denklem (16) elde edilir. (16) 3.1 Dinamik Yük Transfer Oranı Devrilme dinamiği ve aracın ağırlık merkezinin yüksekliği arasındaki ilişkiyi belirtebilmek için araç modelindeki devrilme eksenine dayanan Yük Transfer Oranı parametresi tanımlanır [1]. Araca etki eden kuvvetlere düzenlenerek denklem (18) elde edilir. (17) (18) değeri [1,-1] arasında değişmektedir. Eğer bir taraftaki tekerleğin yoldan teması kesildiğinde bu parametre değeri -1 yâda 1 olmaktadır ve parametre değeri ise aracın kararlı durumda olduğunu gösterir. 'nun devrilme uyarısı yada devrilme kontrolünde kullanılması için ölçülmesi ya da tahmin edilmesi gerekmektedir. Şekil 3: J-Turn Testi Araç Manevrası T :2 sn. T1 :4 sn. T2 :2 sn. A : 248 derece Detayları belirtilen J-Turn testi ön tekerleklere sistem giriş parametresi olarak uygulanmaktadır. Arka tekerleklerde yönlendirme olmadığından dolayı arka tekerlek yönlendirme açısı olmaktadır. Direksiyon açısı Simulink modeli Şekil 4 te gösterildiği gibi modellenmiştir. Şekil 4: Sistem Direksiyon Açısı Gösterimi Araç yalpa ve devrilme modelinden oluşturulan tam araç modelinde J-Turn testini içeren direksiyon açısı ile araç hızı 85 (km/saat) olacak şekilde giriş parametresi olarak uygulanmaktadır. Buna göre sistem çıkışı olarak ifade edilen Şekil 6 da gösterildiği gibi 1,132 elde edilmektedir. Aracın çıkış parametresine göre devrileceği söylenebilir bu nedenle geri beslemeli kontrolör tasarımı yapılarak çıkış parametresi eşik değerin altına çekilerek <1 şartı sağlanacaktır Zaman (s) Şekil 6: Açık Çevrim Cevabı 394

4 4.1 MÖK Teori 4. Model Öngörülü Kontrol katsayısı ve ise giriş sinyalindeki değişikliklerin bağıl ağırlık yükünü ifade eder. Genelleştirilmiş MÖK çalışma yapısı Şekil 7 de verilmiştir. MÖK kontrolörü 3 temel fonksiyon bloğundan oluşmaktadır bunlar: en iyileyici, kısıtlar ve maliyet fonksiyonu ve durum kestiricisidir. En iyileyici, sisteme en küçük maliyeti J verecek şekilde en uygun giriş sinyalini u(t) uygular. Tabi ki bu en iyileştirme kısıtlamalar ve maliyet fonksiyonu uyarınca gerçekleşir. Durum kestirimcisi ise sistemden henüz ölçülememiş durumları (t) öngörmek için kullanılır. MÖK; çıkışı sonlu bir ufuk boyunca yinelemeli bir şekilde optimize eder (Şekil 8). Adım süresini T kabul edilirse. Zaman adımın k da mevcut sistem durumu örneklenir ve en iyileyici sınırlı bir gelecek zaman için en küçük maliyete göre bir giriş sinyali hesaplar k=t + T, t + 1T,..., t + pt burada p öngörü ufku boyunca kaç adım ileri bakıldığını ifade eder. Kusurlu sistem modeli ve çevresel gürültüler sebebiyle pratikte optimal kontrol adımlarının tamamı uygulanamaz bu da tahmin edilen ve gerçekleşen çıkış arasında hatalara sebep olur. Öngörü ve durum hesabı için sadece matematiksel model kullanılmış olsaydı kontrolde hata birikimi ortaya çıkardı. Ancak her adımda sistemin çıkış sinyali ölçülerek denklemlere başlangıç koşulu olarak girilir böylelikle hata birikiminin önüne geçilmiş olur. Ayrıca bu geri besleme ölçümü kontrol sistemine gürbüzlük katar. Sistem durumu her adımda tekrar ölçülerek öngörü penceresi her adımda kayar. Bu durum kayan ufuk olarak tanımlanır. Şekil 8: Model öngörülü kontrol blok diyagramı [11] 4.2 Durum-Uzay Matrisi Denklem (5), (6) ve (16) düzenlenir ise denklem (22) ve (23) te verilen durum uzayı denklemleri elde edilir. ö ö ö ö ö Çıkış denklemi olarak ise alınır ise, (22) Şekil 7: Model öngörülü kontrol blok diyagramı [11] (23) (19) Sistemin genel öngörü modeli denklem (19) daki gibidir. Denklemde x(t) durum vektörünü, u(t) giriş vektörünü, y(t) ölçülen çıkış vektörünü, (t + k t) ise t anında t+k anı için öngörülen çıkış değerlerini göstermektedir. Bu gösterimin en önemli avantajı, çok giriş çok çıkışlı sistemlere kolayca adapte edilebilmesidir. (2) Maliyet fonksiyonları denklem (2) deki gibi verilmiştir. Denklemde x kontrol edilen değişken, r referans değeri, u değiştirilmiş giriş değeri, çıkıştaki değişimin bağıl ağırlık 4.3 Sistemin Model Öngörülü Kontrolü Bir önceki bölümde elde edilen durum uzayı denklemleri Simulink MÖK araç kutusuna girdi olarak verilir. Örnekleme zamanı.1sn, öngörü ufku 1 birim ve kontrol ufku ise 2 birim olarak seçilir. Bu değişkenlere göre tasarlanan kontrol sisteminin Simulink modeli Şekil 9 da verilmiştir. Şekil 9: Model öngörülü kontrol blok diyagramı Sisteme sırasıyla Şekil 1, Şekil 12 ve Şekil 14 teki referans girişleri uygulanır. 395

5 4.3.1 Kontrolörün J-turn cevabı 85 km hızda araca uygulan J-turn girişinin açık döngü cevabı Şekil 6 da verilmiştir. Şekilden aracın nun birin üzerine çıktığı kolaylıkla görülebilir. Ancak MÖK kontrolünden sonra araç bir değerine yaklaşmak bir yana çok küçük hata oranı ile referans sinyalini izler Kontrolörün pozitif negatif basamak cevabı Pozitiften negatife ani değer değişiminin incelendiği ö ve olacak şekilde uygulanan referans sinyali Şekil 12 de verilmiştir. Aracın bu girişe verdiği açık döngü cevabı ise Şekil 13 te verilmiştir. Sinyal incelendiğinde aracın bir kritik değerini aştığı görülmektedir. MÖK cevabı ise Şekil 14 teki gibidir. Cevap incelenecek olursa referans sinyalini çok küçük hatalar ile takip etmekte ve araç devrilme durumuna yaklaşmamaktadır Kontrolörün sinüzoidal cevabı Araca uygulanan Sinüzoidal referans giriş ö ve Şekil 15 te verilmiştir. Aracın bu girişe verdiği açık döngü cevabı ise Şekil 16 da ki gibidir. Açık döngü cevap incelendiğinde nun daha önceki referans değerlerine nazaran kritik bir değerini daha az geçtiği gözlenebilir. Bunun en büyük sebebi diğer referanslardan farkı olarak direksiyon yönlendirme açısının diğer referanslara göre daha yavaş değişmesidir. Yine de araç devrilme sınırını aşmıştır. Ancak MÖK cevabının yer aldığı Şekil 17 incelenecek olursa sistemin ilk iki saniyede referanstan biraz farklı, ilerleyen saniyelerde birebir referans sinyalini izlediği görülebilir. 5.Sonuçlar Bu çalışma kapsamında Isuzu marka Novo aracının yalpa ve devrilme dinamiğinin doğrusal olmayan modelleri oluşturulmuştur. Bu modeller durum uzayı formuna dönüştürülmüştür. Elde edilen durum uzayı denklemleri kullanılarak ise sisteme model öngörülü kontrol uygulanmıştır. Açık döngü cevaplarında nun 1 in üzerinde olduğu gözlemlenmiştir. Devrilme ile sonuçlanacak j-turn manevrasında kontrolör kullanılarak cevabının sistem giriş parametresi olan direksiyon giriş değerlerini çok düşük hata oranları ile izlediği ve devrilme durumunun engellendiği sonucuna ulaşılmıştır. Yönlendirme Açisi Şekil 11: J-turn girişe MÖK kontrollü çıkışı Zaman (s) Şekil 12: MÖK referans girişi ve kontrol sinyali Şekil 13: Aracın açık döngü cevabı Referans Girisi Kontrol Girisi Zaman (s).3 Yönlendirme Açisi Referans Girisi Kontrol Girisi Şekil 1:MÖK J-turn girişi ve kontrol sinyali Şekil 14: MÖK kontrollü çıkışı 396

6 Yönlendirme Açisi Şekil 15: Sinüzoidal MÖK referans girişi ve kontrol sinyali Referans Girisi Kontrol Girisi Şekil 16: Aracın sinüzoidal girişe ve açık döngü cevabı.3 [7] Van Zanten, Anton T., Evolution of electronic control systems for improving the vehicle dynamic behavior, Symposium on Advanced Vehicle Control, 22, pp.1-9. [8] Hanlong Y. and Louis Y. L. A Robust Active Suspension Controller with Rollover Prevention, Society of Automotive Engineer International, Paper No , 23. [9] Roebuck, R. L. Cebon D. and Dale S. G. Optimal Control of Semi-active Tri-axle lorry suspension, Vehicle System Dynamics, Vol. 44, Supplement, 26, pp [1] Solmaz S., Topics in Automotive Rollover Prevention: Robust and Adaptive Switching Strategies for Estimation and Control, Thesis (PhD), Hamilton Institute, Maynooth, 27, 893. [11] Beal C., Applications of Model Predictive Control to Vehicle Dynamics for Active Safety and Stability, Thesis (PhD), Stanford University, California, 211. [12] Sert E., " Hafif Ticari Kamyonetin Devrilme Kontrolünde Farklı Kontrol sistemi Uygulamaları ", ISITES 214, Haziran , Karabük. [13] Sert E., Ağır Taşıtlarda Devrilme Dinamiğinin Eniyilemesi ve Kontrol Sistemi Tasarımı, Yüksek Lisans Tezi, İTÜ, İstanbul, 214. [14] M. Awais Abbas, Non-Linear Model Predıctıve Control For Autonomous Vehıcles, Thesis (MSc), University of Ontario Institute Of Technology, Ontario, Şekil 17: Sinüzoidal girişe MÖK kontrollü çıkışı Kaynakça [1] Trafik Kaza İstatistikleri 211, Emniyet Müdürlüğü, 211. [2] Friedewald, K. Insassenschutz bei Fahrzeug Überschlägen ATZ, Vol. 96, Germany, [3] Parenteau, C. Thomas, P. Lenard, J. US and UK Field Rollover Characteristics, SAE , 21. [4] NHTSA: Traffic Safety Facts 21 - Overview, DOT HS , 22. [5] Chen, B.C. and Peng, Huei, Rollover Warning for Articulated Heavy Vehicles Based on a Time-to- Rollover Metric, Transactions of the ASME, Vol. 127, September 25, pp [6] Chen, B. C. and Peng, Huei, A Real-time Rollover Threat Index for Sports Utility Vehicle, Proceedings of the American Control Conference, San Diego, California, June 1999, pp

HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI

HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI Emre SERT Anadolu Isuzu Otomotiv A.Ş 1. Giriş Özet Ticari araç kazalarının çoğu devrilme ile sonuçlanmaktadır bu nedenle devrilme

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 5 1.3 TAŞITLARIN SINIFLANDIRILMASI... 8 1.4 TAŞITA ETKİYEN KUVVETLER... 9 1.5 TAŞIT

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 11 1.3 TAŞITLARIN SINIFLANDIRILMASI... 14 1.4 TAŞITA ETKİYEN KUVVETLER... 15 1.5

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç Kayma Kipli Kontrol Yöntemi İle Dört Rotorlu Hava Aracının Kontrolü a.arisoy@hho.edu.tr TOK 1 11-13 Ekim, Niğde M. Kemal BAYRAKÇEKEN k.bayrakceken@hho.edu.tr Hava Harp Okulu Elektronik Mühendisliği Bölümü

Detaylı

MAK 4004 BİTİRME ÖDEVİ DERSİ PROJE ÖNERİSİ

MAK 4004 BİTİRME ÖDEVİ DERSİ PROJE ÖNERİSİ - ULUDAĞ ÜNİVERSİTESİ Form BTP-01 (1/) BAHAR 007-008 4/01/008 Taşıt Hareket Denklemlerinin Bilgisayar Yardımıyla Çözümü 1. Taşıta etkiyen kuvvetlerin belirlenmesi. Düz harekette taşıt hareket denklemlerinin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ 3.1 DC MOTOR MODELİ Şekil 3.1 DC motor eşdeğer devresi DC motor eşdeğer devresinin elektrik şeması Şekil 3.1 de verilmiştir. İlk olarak motorun elektriksel kısmını

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde 1. Direnç a. Aerodinamik b. Dinamik, yuvarlanma c. Yokuş 2. Tekerlek tahrik

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

YORULMA ANALİZLERİNDE ARAÇ DİNAMİĞİ MODELLERİNİN KULLANIMI

YORULMA ANALİZLERİNDE ARAÇ DİNAMİĞİ MODELLERİNİN KULLANIMI OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran 2010, BURSA YORULMA ANALİZLERİNDE ARAÇ DİNAMİĞİ MODELLERİNİN KULLANIMI Anıl Yılmaz, Namık Kılıç Otokar Otomotiv ve Savunma Sanayi A.Ş., SAKARYA

Detaylı

TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI

TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI Baki Orçun ORGÜL, Mustafa Latif KOYUNCU, Sertaç DĠLEROĞLU, Harun GÖKÇE Hexagon Studio Araç Mühendisliği Bölümü OTEKON

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

G( q ) yer çekimi matrisi;

G( q ) yer çekimi matrisi; RPR (DÖNEL PRİZATİK DÖNEL) EKLE YAPISINA SAHİP BİR ROBOTUN DİNAİK DENKLELERİNİN VEKTÖR-ATRİS FORDA TÜRETİLESİ Aytaç ALTAN Osmancık Ömer Derindere eslek Yüksekokulu Hitit Üniversitesi aytacaltan@hitit.edu.tr

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

DETERMINING BRAKE PERFORMANCE BY ANALYZING BRAKE PRESSURE DATA IN VEHICLES WITH ABS

DETERMINING BRAKE PERFORMANCE BY ANALYZING BRAKE PRESSURE DATA IN VEHICLES WITH ABS 5. Uluslar arası İleri Teknolojiler Sempozyumu (İATS 09), 13-15 Mayıs 2009, Karabük, Türkiye ABS (ANTİ-LOCK BRAKE SYSTEM) KULLANILAN TAŞITLARDA FREN BASINÇ VERİ ANALİZİ YAPILARAK FREN PERFORMANSININ BELİRLENMESİ

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması

Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması Hidrolik Fren Sistemi Sürtünmeli Frenler Doğrudan doğruya

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Otomatik Kontrol. Kontrol Sistemlerin Temel Özellikleri

Otomatik Kontrol. Kontrol Sistemlerin Temel Özellikleri Otomatik Kontrol Kontrol Sistemlerin Temel Özellikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Açık Çevrim Kontrol Kontrol Edilecek Sistem () Açık Çevrim Kontrolcü () () () () C : kontrol edilecek

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Adaptif Sürüş Kontrol Sistemi Tasarımı ve Gerçeklemesi Bölüm 2: Araç Modeli

Adaptif Sürüş Kontrol Sistemi Tasarımı ve Gerçeklemesi Bölüm 2: Araç Modeli Adaptif Sürüş Kontrol Sistemi Tasarımı ve Gerçeklemesi Bölüm : Araç Modeli A. Emre Çetin 1, Şafak Balcı, M. Arif Adlı 3, Duygun Erol Barkana 4, Haluk Küçük 5 1 Kale Altınay Robotik ve Otomasyon, İstanbul

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

1.3.15 00 Moment ve açısal momentum

1.3.15 00 Moment ve açısal momentum Mekanik Dinamik 1.3.15 00 Moment ve açısal momentum Ne öğrenebilirsiniz Dairesel hareket Açısal hız Açısal hızlanma Atalet momenti Newton kanunları Rotasyon Prensip: Rotasyon açısı ve açısal hız; sürtünme

Detaylı

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI Baki Orçun ORGÜL, Mustafa Latif KOYUNCU, Sertaç DİLEROĞLU, Harun GÖKÇE Hexagon Studio Araç Mühendisliği Bölümü OTEKON

Detaylı

ABS Fren Dinamiğine Yönelik Çoklu Model Geçişli Kontrol Algoritmalarının Tasarımı

ABS Fren Dinamiğine Yönelik Çoklu Model Geçişli Kontrol Algoritmalarının Tasarımı ABS Fren Dinamiğine Yönelik Çoklu Model Geçişli Kontrol Algoritmalarının Tasarımı Morteza Dousti 1, S.Çağlar Başlamışlı 1, Teoman Onder 1, Selim Solmaz 2 1 Makina Mühendisliği Bölümü Hacettepe Üniversitesi,

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU FRENLER MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU Frenler 2 / 20 Frenler, sürtünme yüzeyli kavramalarla benzer prensiplere göre çalışan bir makine elemanı grubunu oluştururlar. Şu şekilde

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

PNÖMATİK LASTİK TEKERLEĞİN TAŞIT GÖVDESİNE BAĞLANMASI

PNÖMATİK LASTİK TEKERLEĞİN TAŞIT GÖVDESİNE BAĞLANMASI PNÖMATİK LASTİK TEKERLEĞİN TAŞIT GÖVDESİNE BAĞLANMASI Motorlu Taşıtlar Temel Eğitimi, Uygulama Çalışması ANİ DÖNME MERKEZİ ve YALPA MERKEZİ Hareketi esnasında bir mekanizmanın çeşitli elemanları üzerinde

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü Otomatik Kontrol I Dinamik Sistemlerin Matematik Modellenmesi Yard.Doç.Dr. Vasfi Emre Ömürlü Mekanik Sistemlerin Modellenmesi Elektriksel Sistemlerin Modellenmesi Örnekler 2 3 Giriş Karmaşık sistemlerin

Detaylı

DİŞLİ ÇARKLAR I: GİRİŞ

DİŞLİ ÇARKLAR I: GİRİŞ DİŞLİ ÇARKLAR I: GİRİŞ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Dişli Çarklar Bu bölüm sonunda öğreneceğiniz konular: Güç ve Hareket İletim Elemanları Basit Dişli Dizileri

Detaylı

KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ

KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ 1. AMAÇ: Endüstride kullanılan direnç, kapasite ve indüktans tipi konum (yerdeğiştirme) algılama transdüserlerinin temel ilkelerini açıklayıp kapalı döngü denetim

Detaylı

H1 - Otomatik Kontrol Kavramı ve Örnek Devreler. Yrd. Doç. Dr. Aytaç Gören

H1 - Otomatik Kontrol Kavramı ve Örnek Devreler. Yrd. Doç. Dr. Aytaç Gören H1 - Otomatik Kontrol Kavramı ve Örnek Devreler MAK 3026 - Ders Kapsamı H01 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri beslemenin önemi H04

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Hasan Esen ZKÜ FEN BİL. ENST. MAKİNE EĞT.BL. ÖĞRENCİSİ 2000 0281 07 007

Hasan Esen ZKÜ FEN BİL. ENST. MAKİNE EĞT.BL. ÖĞRENCİSİ 2000 0281 07 007 Hasan Esen ZKÜ FEN BİL. ENST. MAKİNE EĞT.BL. ÖĞRENCİSİ 2000 0281 07 007 I.GİRİŞ Motorlu araç frenleri alanındaki gelişme, taşıtları değişik sürüş koşullarında mümkün olan en iyi şekilde frenleyebilen verimli,

Detaylı

Manyetostatik algılayıcılar Manyetostatik algılayıcılar DC manyetik alan ölçüm prensibine göre çalışırlar. Bu tip algılayıcılar Manyetik endüktif

Manyetostatik algılayıcılar Manyetostatik algılayıcılar DC manyetik alan ölçüm prensibine göre çalışırlar. Bu tip algılayıcılar Manyetik endüktif Manyetostatik algılayıcılar Manyetostatik algılayıcılar DC manyetik alan ölçüm prensibine göre çalışırlar. Bu tip algılayıcılar Manyetik endüktif sensörlerin (Bobin) aksine minyatürizasyon için çok daha

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ADAMS CHASSIS PROGRAMI İLE SUV ARAÇ MODELLENMESİ VE EŞ ZAMANLI SİMÜLASYON YARDIMI İLE AKTİF GÜVENLİK SİSTEMLERİ TASARIMI YÜKSEK LİSANS TEZİ Mehmet Eren

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM MAK4061 BİLGİSAYAR DESTEKLİ TASARIM (Shell Mesh, Bearing Load,, Elastic Support, Tasarım Senaryosunda Link Value Kullanımı, Remote Load, Restraint/Reference Geometry) Shell Mesh ve Analiz: Kalınlığı az

Detaylı

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Sistemin İşlevsel Kalitesi Kapalı Çevrim Kontrol Sistemin İşlevsel

Detaylı

Otomatik Kontrol. Otomatik kontrol sistemleri ve sınıflandırılması

Otomatik Kontrol. Otomatik kontrol sistemleri ve sınıflandırılması Otomatik Kontrol Otomatik kontrol sistemleri ve sınıflandırılması H a z ı r l aya n : D r. N u r d a n B i l g i n Temel Kontrol Çeşitleri 1. Açık Çevrim (Open Loop) Kontrol Trafik Işıkları Çamaşır makinası,

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015 Musa DEMİRCİ KTO Karatay Üniversitesi Konya - 2015 1/46 ANA HATLAR Temel Kavramlar Titreşim Çalışmalarının Önemi Otomatik Taşıma Sistemi Model İyileştirme Süreci Modal Analiz Deneysel Modal Analiz Sayısal

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

ABS fren sistemine yönelik çoklu model geçişli kontrolcüler tasarlanması ve test edilmesi

ABS fren sistemine yönelik çoklu model geçişli kontrolcüler tasarlanması ve test edilmesi OK 214 Bildiri Kitabı 11-13 Eylül 214, Kocaeli ABS fren sistemine yönelik çoklu model geçişli kontrolcüler tasarlanması ve test edilmesi Morteza Dousti, S.Çağlar Başlamışlı Makina Mühendisliği Bölümü Hacettepe

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

DENEY 2 Sistem Benzetimi

DENEY 2 Sistem Benzetimi DENEY Sistem Benzetimi DENEYİN AMACI. Diferansiyel denklem kullanarak, fiziksel bir sistemin nasıl tanımlanacağını öğrenmek.. Fiziksel sistemlerin karakteristiklerini anlamak amacıyla diferansiyel denklem

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

MAK669 LINEER ROBUST KONTROL

MAK669 LINEER ROBUST KONTROL MAK669 LINEER ROBUS KONROL s.selim@gyte.edu.tr 14.11.014 1 State Feedback H Control x Ax B w B u 1 z C x D w D u 1 11 1 (I) w Gs () u y x K z z (full state feedback) 1 J ( u, w) ( ) z z w w dt t0 (II)

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

ÇOKLU MODEL GEÇİŞ TABANLI ABS TASARIMI: 1. KISIM KONTROLCÜ TASARIMI

ÇOKLU MODEL GEÇİŞ TABANLI ABS TASARIMI: 1. KISIM KONTROLCÜ TASARIMI OTEKON 1 7. Otomotiv Teknolojileri Kongresi 2 27 Mayıs 21, BURSA ÇOKLU MODEL GEÇİŞ TABANLI ABS TASARIMI: 1. KISIM KONTROLCÜ TASARIMI Morteza Dousti, S.Çağlar Başlamışlı Hacettepe Üniversitesi, Mühendislik

Detaylı

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları Contents Doğrusal sistemler için kontrol tasarım yaklaşımları DC motor modelinin matematiksel temelleri DC motor modelinin durum uzayı olarak gerçeklenmesi Kontrolcü tasarımı ve değerlendirilmesi Oransal

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

Fizik 101: Ders 7 Ajanda

Fizik 101: Ders 7 Ajanda Fizik 101: Ders 7 Ajanda Sürtünme edir? asıl nitelendirebiliriz? Sürtünme modeli Statik & Kinetik sürtünme Sürtünmeli problemler Sürtünme ne yapar? Yeni Konu: Sürtünme Rölatif harekete karşıdır. Öğrendiklerimiz

Detaylı

Bir Binek Araç için Dört-Tekerlekten Yönlendirme Sisteminin Geliştirilmesi

Bir Binek Araç için Dört-Tekerlekten Yönlendirme Sisteminin Geliştirilmesi OTEKON 14 7. Otomotiv Teknolojileri Kongresi 26 27 Mayıs 2014, BURSA Bir Binek Araç için Dört-Tekerlekten Yönlendirme Sisteminin Geliştirilmesi Burak Ulaş Hexagon Studio A.Ş., Şasi ve Güç Aktarma Sistemleri

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

Şekil. Tasarlanacak mekanizmanın şematik gösterimi

Şekil. Tasarlanacak mekanizmanın şematik gösterimi Örnek : Düz dişli alın çarkları: Bir kaldırma mekanizmasının P=30 kw güç ileten ve çevrim oranı i=500 (d/dak)/ 300 (d/dak) olan evolvent profilli standard düz dişli mekanizmasının (redüktör) tasarlanması

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

Kalibrasyon için iki yöntem vardır, 1. Hesaplama yöntemi

Kalibrasyon için iki yöntem vardır, 1. Hesaplama yöntemi Kalibrasyon Bir eksendeki hareket miktarının standart ünitelerden biri veya spesifik bir öğe uyum sağlaması işlemine kalibrasyon denir. Endüstriyel makinelerde en çok görülen üniteler, kullanım şekillerine

Detaylı