Matematik Mühendisliği - Mesleki İngilizce

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Matematik Mühendisliği - Mesleki İngilizce"

Transkript

1 Matematik Mühendisliği - Mesleki İngilizce Tanım - Definition Tanım nasıl verilmelidir? Tanım tanımlanan ismi veya sıfatı yeterince açıklamalı, gereğinden fazla detaya girmemeli ve açık olmalıdır. Bir ismin tanımı genellikle İsim is/are. biçiminde verilir. A function f from X to Y is a subset of the Cartesian product X Y subject to the following condition: every element of X is the first component of one and only one ordered pair in the subset. Bir sıfatın tanımı genellikle called ve ya said to be kalıpları kullanılarak aşağıdaki gibi verilir: 1) (isim) is/are said to be sıfat if (isim) (sahip olunan özellik). 2) (isim) (sahip olunan özellik) is/are called sıfat. 3) If (isim) (sahip olunan özellik), then (isim) is/are called sıfat Örnek: Three or more points,,,..., are said to be collinear if they lie on a single straight line. If a set of points all lie in a straight line, they are called 'collinear'. The points lying on the same line are called Collinear Points. A set of points lying in a straight line is said to be collinear. Kullanım - Usage Tanım verildikten sonra gerekli ise kullanım şekli açıklanır. We say that "point Q is collinear with points P, R and S". Or put another way, "the points P, Q, R and S are collinear". Teorem ve Önerme Teorem ve önermelerde ön kabüllerde suppose ve let kullanılır. Daha sonra genelde If (hipotez), then (hüküm) şeklinde teoremler verilir. İspat kısmında varsayımda bulunulacaksa assume kullanılır. İspat Sıklıkla Kullanılan Kalıplar İngilizce It follows from A that B We deduce from A that B Conversely, A implies that B Equality (1) holds, by Proposition 2. By definition,... The following statements are equivalent. From A, the properties B and C of D are equivalent to each other. A has the following properties. Theorem 1 holds unconditionally. Türkçe Karşılığı A nın sonucu olarak B gelir. A dan B yi çıkartırız. Tersine A, B yi gerektirir. Eşitlik 1, Önerme 2 den dolayı sağlanır. Tanımdan Aşağıdaki ifadeler denktir A sayesinde D nin B ve C özellikleri birbirine denktir. A aşağıdaki özelliklere sahiptir. Teorem 1 koşulsuz olarak sağlanır.

2 This result is conditional on Axiom A. A is an immediate consequence of theorem Note that A is well-defined, since B. As A satisfies B, formula (1) can be simplified as follows. We conclude (the argument) by combining inequalities (2) and (3). (Let us) denote by B the set of all A s Let B be the set of all A s It is enough to show that A We use induction on n to show that A Bu sonuç Aksiyom A ya bağlıdır A teoremin dolaysız bir sonucudur. B den dolayı A nın iyi tanımlı olduğuna dikkat edelim. A, B yi sağladığından formül (1) aşağıdaki gibi sadeleştirilebilir. Eşitsizlik (2) ve (3) birleştirerek sonuca varırız (kanıtı sonuçlandırırırız). Tüm A ların kümesini B ile gösterelim B tüm A ların kümesi olsun. A yı göstermek yeterlidir A yı göstermek için n üzerinde tümevarım kullanırız.. Sıklıkla Kullanılan Terimler İngilizce argument assume assumption axiom case special case claim v. (the following) claim concept conclude conclusion condition a necessary and sufficient condition conjecture consequence consider contradict contradiction conversely corollary deduce define well-defined definition equivalent establish example Türkçe Karşılığı argument, argüman, tartışma, kanıt Kabul etmek; farz etmek, varsaymak Kabul, varsayım Aksiyom Durum özel durum iddia etmek Iddia konsept, kavram sonuca varmak Sonuç, sonuç kısmı şart, koşul gerekli ve yeterli şart tahmin, varsayım Sonuç, netice düşünmek, göz önüne almak Çelişmek Çelişki tersine, aksine diğer taraftan Sonuç Çıkarmak Tanımlamak iyi tanımlı Tanım Denk Oluşturmak Örnek

3 exercise explain explanation false formal hand on one hand on the other hand iff [= if and only if ] imply induction lemma proof property satisfy property proposition reasoning reduce to remark require result s.t. = such that statement t.f.a.e. = the following are equivalent theorem true truth wlog = without loss of generality word in other words Alıştırma Açıklamak Açıklama Yanlış Formal Taraf bir tarafta diğer tarafta ancak ve ancak anlamına gelmek, gerektirmek Tümevarım lemma, önerme ispat, kanıt Özellik özelliği sağlamak Önerme Usavurma Indirgemek uyarı, dikkat Gerektirmek Sonuç öyle ki cümle, ifade aşağıdakiler denktir Teorem Doğru Doğruluk genellik bozulmadan Kelime diğer bir deyişle Latince Kısaltmalar Abbreviation Latin term English translation i.e. id est that is e.g. exempli gratia for example cf. confer compare n.b. nota bene note well (or just note) q.v. quod vide which see viz. videlicet namely et al. et alii and others

4 Semboller Yunan Harfleri Sayılar Aritmetik İşlemler

5 Cebirsel İfadeler İndisler

6 Fonksiyonlar

7 Limit Süreklilik Türev

8 Riemann İntegrali

9

Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet

Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet ÖNEMLİ BAĞLAÇLAR Bu liste YDS için Önemli özellikle seçilmiş bağlaçları içerir. 88 adet P. Phrase 6 adet Toplam 94 adet Bu doküman, YDS ye hazırlananlar için dinamik olarak oluşturulmuştur. 1. although

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ 2015.11.10 MAT461 Fonksiyonel Analiz I Arasınav N. Course Adi: Soyadi: Öğrenc i No: İmza: Ö R N E K T İ R S A M P L E

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ 03.11.2011 MAT 461 Fonksiyonel Analiz I Ara Sınav N. Course ADI SOYADI ÖĞRENCİ NO İMZA Do not open

Detaylı

CmpE 320 Spring 2008 Project #2 Evaluation Criteria

CmpE 320 Spring 2008 Project #2 Evaluation Criteria CmpE 320 Spring 2008 Project #2 Evaluation Criteria General The project was evaluated in terms of the following criteria: Correctness (55 points) See Correctness Evaluation below. Document (15 points)

Detaylı

Discrete Mathematics (Ayrık Matematik)

Discrete Mathematics (Ayrık Matematik) Discrete Mathematics (Ayrık Matematik) Doç.Dr.Banu DĐRĐ e-mail: banu@ce.yildiz.edu.tr http://www.ce.yildiz.edu.tr/myindex.php?id=9 Kaynaklar Discrete Mathematics and Its Applications Kenneth H.Rosen, McGraw

Detaylı

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 FINITE AUTOMATA Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 Protocol for e-commerce using e-money Allowed events: P The customer can pay the store (=send the money- File to the store) C The

Detaylı

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr 1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi DIVIDED DIFFERENCE INTERPOLATION Forward Divided Differences

Detaylı

Help Turkish -> English

Help Turkish -> English Help Turkish -> English Günümüzde matematik makalelerinin çok önemli bir kısmı İngilizce yazılıyor. Türkçe düşünmeye alışmış olanlarımız için bu pek de kolay olmayabilir. Bir yazıda elbette İngilizce öğretmek

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4 1 4 The price of a book is first raised by 20 TL, and then by another 30 TL. In both cases, the rate of increment is the same. What is the final price of the book? 60 80 90 110 120 2 3 5 Tim ate four more

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

We test validity of a claim or a conjecture (hypothesis) about a population parameter by using a sample data

We test validity of a claim or a conjecture (hypothesis) about a population parameter by using a sample data CHAPTER 10: HYPOTHESIS TESTS OF A SINGLE POP- ULATION Concepts of Hypothesis Testing We test validity of a claim or a conjecture (hypothesis) about a population parameter by using a sample data 1 Null

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

AİLE İRŞAT VE REHBERLİK BÜROLARINDA YAPILAN DİNİ DANIŞMANLIK - ÇORUM ÖRNEĞİ -

AİLE İRŞAT VE REHBERLİK BÜROLARINDA YAPILAN DİNİ DANIŞMANLIK - ÇORUM ÖRNEĞİ - T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Felsefe ve Din Bilimleri Anabilim Dalı AİLE İRŞAT VE REHBERLİK BÜROLARINDA YAPILAN DİNİ DANIŞMANLIK - ÇORUM ÖRNEĞİ - Necla YILMAZ Yüksek Lisans Tezi Çorum

Detaylı

Present continous tense

Present continous tense Present continous tense This tense is mainly used for talking about what is happening now. In English, the verb would be changed by adding the suffix ing, and using it in conjunction with the correct form

Detaylı

Dilbilgisi ve Diller

Dilbilgisi ve Diller Dilbilgisi ve Diller Doç.Dr.Banu Diri 1. Her biçimsel dil belirli bir alfabe üzerinde tanımlanır. 2. Alfabe sonlu sayıda simgelerden oluşan bir kümedir. 3. Alfabedeki simgelerin arka arkaya getirilmesi

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

Algoritmalara Giriş 6.046J/18.401J DERS 2

Algoritmalara Giriş 6.046J/18.401J DERS 2 Algoritmalara Giriş 6.046J/18.401J DERS 2 Asimptotik Simgelem O-, Ω-, ve Θ-simgelemi Yinelemeler Yerine koyma metodu Yineleme döngüleri Özyineleme ağacı Ana Metot (Master metod) Prof. Erik Demaine September

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

GebzeYüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli

GebzeYüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli GebzeYüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli TM # : [Boş Bõrakõn] Başlõk : Rapor Başlõğõ Teknik Rapor! Seminer Raporu! Anahtar Kelimeler : Yazarlar : A. Çokçalõşkan,

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi

Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi Bölüm Özeti Kümeler Kümelerin Dili Küme İşlemleri Küme Özdeşlikleri Fonksiyonlar Fonksiyon Tipleri Fonksiyonlar Üzerindeki İşlemler Hesaplanabilirlik Diziler ve Toplamlar Dizilerin Tipleri Toplamları Formülleştirme

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

Industrial pollution is not only a problem for Europe and North America Industrial: Endüstriyel Pollution: Kirlilik Only: Sadece

Industrial pollution is not only a problem for Europe and North America Industrial: Endüstriyel Pollution: Kirlilik Only: Sadece INDUSTRIAL POLLUTION Industrial pollution is not only a problem for Europe and North America Industrial: Endüstriyel Pollution: Kirlilik Only: Sadece Problem: Sorun North: Kuzey Endüstriyel kirlilik yalnızca

Detaylı

D-Link DSL 500G için ayarları

D-Link DSL 500G için ayarları Celotex 4016 YAZILIM 80-8080-8081 İLDVR HARDWARE YAZILIM 80-4500-4600 DVR2000 25 FPS YAZILIM 5050-5555-1999-80 EX-3004 YAZILIM 5555 DVR 8008--9808 YAZILIM 80-9000-9001-9002 TE-203 VE TE-20316 SVDVR YAZILIM

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Fıstıkçı Şahap d t c ç

Fıstıkçı Şahap d t c ç To and from We have already seen the suffıx used for expressing the location of an object whether it s in, on or at something else: de. This suffix indicates that there is no movement and that the object

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

YİBO Öğretmenleri (Fen ve Teknoloji, Fizik, Kimya, Biyoloji ve Matematik) Proje Danışmanlığı Eğitimi Çalıştayı YİBO-3 (Çalıştay )

YİBO Öğretmenleri (Fen ve Teknoloji, Fizik, Kimya, Biyoloji ve Matematik) Proje Danışmanlığı Eğitimi Çalıştayı YİBO-3 (Çalıştay ) YİBO Öğretmenleri (Fen ve Teknoloji, Fizik, Kimya, Biyoloji ve Matematik) Proje Danışmanlığı Eğitimi Çalıştayı YİBO-3 (Çalıştay 2010-1) Prof. Dr. Hüseyin ÇAKALLI Matematik Danışmanı Maltepe Üniversitesi

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

Nesbitt Eşitsizliğine Farklı Bir Bakış

Nesbitt Eşitsizliğine Farklı Bir Bakış ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI Nesbitt Eşitsizliğine Farklı Bir Bakış Muhammed Osman Çorbalı Danışman Öğretmen: Yüksel Demir PROJE RAPORU 2014 PROJENİN AMACI:

Detaylı

INTRODUCTION TO JAVASCRIPT JAVASCRIPT JavaScript is used in millions of Web pages to improve the design, validate forms, detect browsers, create cookies, and much more. JavaScript is the most popular scripting

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÖZET. SOYU Esra. İkiz Açık ve Türkiye Uygulaması ( ), Yüksek Lisans Tezi, Çorum, 2012.

ÖZET. SOYU Esra. İkiz Açık ve Türkiye Uygulaması ( ), Yüksek Lisans Tezi, Çorum, 2012. ÖZET SOYU Esra. İkiz Açık ve Türkiye Uygulaması (1995-2010), Yüksek Lisans Tezi, Çorum, 2012. Ödemeler bilançosunun ilk başlığı cari işlemler hesabıdır. Bu hesap içinde en önemli alt başlık da ticaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Derse Genel Bakış Dersin Web Sayfası http://www.mehmetsimsek.net/bm202.htm Ders kaynakları Ödevler, duyurular, notlandırma İletişim bilgileri Akademik

Detaylı

Çoklu Kordinat Sistemi

Çoklu Kordinat Sistemi Çoklu Kordinat Sistemi Uçak pistte durduğu zaman burnunun kuleye göre kordinatı: (50, 5, 0), buna karşın uçağın kordinatlarına göre pozisyonu ise:(0,0,0). Benzer bir biçimde, kulenin tabanı kule kordinat

Detaylı

1 MATEMATİKSEL MANTIK

1 MATEMATİKSEL MANTIK 1 MATEMATİKSEL MANTIK Bu bölümde ilk olarak önerne tanımıverilip ispatlarda kullanılan düşünce biçimi incelenecektir. Tanım 1 Bir hüküm bildiren ve hakkında doğru veya yanlış denilmesi anlamlı olan ifadelere

Detaylı

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 1 I S L 8 0 5 U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 2 0 1 2 CEVAPLAR 1. Tekelci bir firmanın sabit bir ortalama ve marjinal maliyet ( = =$5) ile ürettiğini ve =53 şeklinde

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

Exercise 2 Dialogue(Diyalog)

Exercise 2 Dialogue(Diyalog) Going Home 02: At a Duty-free Shop Hi! How are you today? Today s lesson is about At a Duty-free Shop. Let s make learning English fun! Eve Dönüş 02: Duty-free Satış Mağazasında Exercise 1 Vocabulary and

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

UBE Machine Learning. Kaya Oguz

UBE Machine Learning. Kaya Oguz UBE 521 - Machine Learning Kaya Oguz Support Vector Machines How to divide up the space with decision boundaries? 1990s - new compared to other methods. How to make the decision rule to use with this boundary?

Detaylı

Yaz okulunda (2014 3) açılacak olan 2360120 (Calculus of Fun. of Sev. Var.) dersine kayıtlar aşağıdaki kurallara göre yapılacaktır:

Yaz okulunda (2014 3) açılacak olan 2360120 (Calculus of Fun. of Sev. Var.) dersine kayıtlar aşağıdaki kurallara göre yapılacaktır: Yaz okulunda (2014 3) açılacak olan 2360120 (Calculus of Fun. of Sev. Var.) dersine kayıtlar aşağıdaki kurallara göre yapılacaktır: Her bir sınıf kontenjanı YALNIZCA aşağıdaki koşullara uyan öğrenciler

Detaylı

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni. iii T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE AYDIN Matematik Anabilim Dalı Yüksek Lisans Programı öğrencisi Koray KARATAŞ tarafından hazırlanan Genel Lineer Grupların Sylow

Detaylı

Ardunio ve Bluetooth ile RC araba kontrolü

Ardunio ve Bluetooth ile RC araba kontrolü Ardunio ve Bluetooth ile RC araba kontrolü Gerekli Malzemeler: 1) Arduino (herhangi bir model); bizim kullandığımız : Arduino/Geniuno uno 2) Bluetooth modül (herhangi biri); bizim kullandığımız: Hc-05

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Lisans. Ayrık Matematik Tanıtlama. Kaba Kuvvet Yöntemi. Konular. Temel Kurallar

Lisans. Ayrık Matematik Tanıtlama. Kaba Kuvvet Yöntemi. Konular. Temel Kurallar Lisans Ayrık Matematik Tanıtlama H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 001-013 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c 001-013 T. Uyar,

Detaylı

a, ı ı o, u u e, i i ö, ü ü

a, ı ı o, u u e, i i ö, ü ü Possessive Endings In English, the possession of an object is described by adding an s at the end of the possessor word separated by an apostrophe. If we are talking about a pen belonging to Hakan we would

Detaylı

Önermeler mantığındaki biçimsel kanıtlar

Önermeler mantığındaki biçimsel kanıtlar Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)

Detaylı

Turkish and Kurdish influences in the Arabic Dialects of Anatolia. Otto Jastrow (Tallinn)

Turkish and Kurdish influences in the Arabic Dialects of Anatolia. Otto Jastrow (Tallinn) Türk Dilleri Araştırmaları, 21.1 (2011): 83-94 Turkish and Kurdish influences in the Arabic Dialects of Anatolia Otto Jastrow (Tallinn) Özet: Anadolu Arapçası, ayrı lehçeler (Sprachinseln) biçiminde ortaya

Detaylı

Gelir Dağılımı ve Yoksulluk

Gelir Dağılımı ve Yoksulluk 19 Decembre 2014 Gini-coefficient of inequality: This is the most commonly used measure of inequality. The coefficient varies between 0, which reflects complete equality and 1, which indicates complete

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University Eco 338 Economic Policy Week 4 Fiscal Policy- I Prof. Dr. Murat Yulek Istanbul Ticaret University Aggregate Demand Aggregate (domestic) demand (or domestic absorption) is the sum of consumption, investment

Detaylı

SATURN RAF TEKNOLOJİSİNDE YENİ DEVRİM

SATURN RAF TEKNOLOJİSİNDE YENİ DEVRİM 1 SATURN RAF TEKNOLOJİSİNDE YENİ DEVRİM Saturn, adına ilham olan oval açılı formları sayesinde farklı mekanlara uyum göstererek, birim alanda maksimum fayda sağlar. Kolonların ve diğer geometrik duvar

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Virtualmin'e Yeni Web Sitesi Host Etmek - Domain Eklemek

Virtualmin'e Yeni Web Sitesi Host Etmek - Domain Eklemek Yeni bir web sitesi tanımlamak, FTP ve Email ayarlarını ayarlamak için yapılması gerekenler Öncelikle Sol Menüden Create Virtual Server(Burdaki Virtual server ifadesi sizi yanıltmasın Reseller gibi düşünün

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

PASCAL PROGRAMLAMA DİLİ YAPISI

PASCAL PROGRAMLAMA DİLİ YAPISI BÖLÜM 3 PASCAL PROGRAMLAMA DİLİ YAPISI 3.1. Giriş Bir Pascal programı en genel anlamda üç ayrı kısımdan oluşmuştur. Bu kısımlar bulunmaları gereken sıraya göre aşağıda verilmiştir. Program Başlığı; Tanımlama

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Lesson 22: Why. Ders 22: Neden

Lesson 22: Why. Ders 22: Neden Lesson 22: Why Ders 22: Neden Reading (Okuma) Why are you tired? (Neden yorgunsun?) Why is your boss angry? (Patronun neden sinirli?) Why was he late? (Neden geç kaldı?) Why did she go there? (Neden oraya

Detaylı

MB1001 ANALİZ I. Ders Notları. Yrd. Doç. Dr. Emel YAVUZ DUMAN. İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

MB1001 ANALİZ I. Ders Notları. Yrd. Doç. Dr. Emel YAVUZ DUMAN. İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü MB1001 ANALİZ I Ders Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü c 2013, Emel Yavuz Duman Tüm hakkı saklıdır. Bu notlar Örgün Öğretimde Uzaktan Öğretim

Detaylı

CNC MACH breakout board user manual V8 type

CNC MACH breakout board user manual V8 type CNC MACH breakout board user manual V8 type 1 Catalogue CNC Router breakout board V8 type user manual... Hata! Yer işareti tanımlanmamış. 1) Brief introduction:...3 2) Breakout board drawing:...4 3) Wiring:...5

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

From the Sabiha Gokçen Airport to the Zubeydehanim Ogretmenevi, there are two means of transportation.

From the Sabiha Gokçen Airport to the Zubeydehanim Ogretmenevi, there are two means of transportation. 1: To Zübeyde Hanım Öğretmenevi (Teacher s House) ---- from Sabiha Gökçen Airport Zübeyde Hanım Öğretmen Evi Sabiha Gökçen Airport From the Sabiha Gokçen Airport to the Zubeydehanim Ogretmenevi, there

Detaylı

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ YÜKSEK LİSANS TEZİ Hakan TEMİZ Danışman Doç. Dr. Mustafa Kemal YILDIZ MATEMATİK ANABİLİM DALI Haziran, 2014 AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

Bölüm 4: İş Parçacıkları. Operating System Concepts with Java 8 th Edition

Bölüm 4: İş Parçacıkları. Operating System Concepts with Java 8 th Edition Bölüm 4: İş Parçacıkları 14.1 Silberschatz, Galvin and Gagne 2009 Bölüm 4: İş Parçacıkları Genel Bakış Çoklu İş Parçacığı Modelleri İş Parçacığı Kütüphaneleri İş Parçacıkları ile İlgili Meseleler İşletim

Detaylı

Civil-Military Relations and Coup Risk in the 21st Century: A Comparative Analysis of Turkey and Thailand's Bumpy Roads to Democracy

Civil-Military Relations and Coup Risk in the 21st Century: A Comparative Analysis of Turkey and Thailand's Bumpy Roads to Democracy See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/279948007 Civil-Military Relations and Coup Risk in the 21st Century: A Comparative Analysis

Detaylı

ÜNİTE 3 TO BE FORM YABANCI DİL I BATURAY ERDAL İÇİNDEKİLER HEDEFLER

ÜNİTE 3 TO BE FORM YABANCI DİL I BATURAY ERDAL İÇİNDEKİLER HEDEFLER TO BE FORM İÇİNDEKİLER To Be Form (am, is, are) Positive Statements (Olumlu Cümleler) Negative Statements (Olumsuz Cümleler) Question Form ( Soru Biçimi) Usage ( To Be Kullanımı) BAYBURT ÜNİVERSİTESİ UZAKTAN

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

ANALİZ IV. Mert Çağlar

ANALİZ IV. Mert Çağlar ANALİ IV Mert Çağlar Bu notlar Örgün Öğretimde Uzaktan Öğretim Desteği (UDS) lisansı altındadır. Ders notlarına erişim için: http://udes.iku.edu.tr CC $\ BY: Mert Çağlar C Matematik-Bilgisayar Bölümü İstanbul

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER ANKARA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ HALKLA İLİŞKİLER VE TANITIM ANA BİLİM DALI İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER BİR ÖRNEK OLAY İNCELEMESİ: SHERATON ANKARA HOTEL & TOWERS

Detaylı

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50 Modül Teori Modüller Prof. Dr. Neşet AYDIN ÇOMÜ - Matematik Bölümü [01/07] Mart 2012 Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart 2012 1 / 50 Giriş M bir toplamsal değişmeli

Detaylı

Lisans. Cebirsel Yapı

Lisans. Cebirsel Yapı Lisans Ayrık Matematik Cebirsel Yapılar H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2012 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c 2001-2012

Detaylı

BBS 514 YAPISAL PROGRAMLAMA (STRUCTURED PROGRAMMING)

BBS 514 YAPISAL PROGRAMLAMA (STRUCTURED PROGRAMMING) 1 BBS 514 YAPISAL PROGRAMLAMA (STRUCTURED PROGRAMMING) LECTURE 3: ASSIGNMENT OPERATOR Lecturer: Burcu Can BBS 514 - Yapısal Programlama (Structured Programming) 2 Lexical Elements (Sözcüksel Elemanlar)

Detaylı

Ramazan Cengiz Derdiman

Ramazan Cengiz Derdiman 103 Volume:2 Number:3 June 2013 Relationship Between Democracy And Economic Performance Lamiha Gün Analizi Sok Udom Deth, Serkan Bulut Ramazan Cengiz Derdiman Volume:2 Number:3 June 2013 Volume: 2 Number:

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 2 Önermeler Yük. Müh. Köksal GÜNDOĞDU 3 Önermeler Önermeler Mantığı, basit ifadelerden mantıksal bağlaçları

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri 7.DERS AKADEMİ K RAPORLARDA DENKLEM VE ALGORİ TMA KULLANIMLARI Gündem Matematik Yazımı Teoremler Notasyon Yazım Kuralları Algoritmalar Sunum Detay seviyesi

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

ÖNEMLİ PREPOSİTİONAL PHRASES

ÖNEMLİ PREPOSİTİONAL PHRASES ÖNEMLİ PREPOSİTİONAL PHRASES Bu liste YDS için Önemli özellikle seçilmiş prepositional phrase leri içerir. 74 adet Toplam 74 adet İngilizce Türkçe Tür 1. with the help -ın yardımıyla with the aid -ın yardımıyla

Detaylı

1. PL/SQL de kontrol yapıları

1. PL/SQL de kontrol yapıları 1. PL/SQL de kontrol yapıları PL/SQL de kontrol yapıları genel olarak IF, CASE LOOP, WHILE, FOR ile gerçekleştirilir. Tabi bu deyimlerinde kendi içinde alt basamakları bulunmaktadır. Şimdi sırası ile bu

Detaylı

BASICS OF ENGLISH SENTENCE STRUCTURE

BASICS OF ENGLISH SENTENCE STRUCTURE BASICS OF ENGLISH SENTENCE STRUCTURE What must we remember? (Neyi hatırlamalıyız?) 1. Sentence Structure / Word Order Cümle Yapısı / Sözcük Sırası Bilindiği gibi İngilizce Cümleler Türkçe gibi yazılmamaktadır.

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

A LANGUAGE TEACHER'S PERSONAL OPINION

A LANGUAGE TEACHER'S PERSONAL OPINION 1. Çeviri Metni - 9 Ekim 2014 A LANGUAGE TEACHER'S PERSONAL OPINION Why is English such an important language today? There are several reasons. Why: Neden, niçin Such: gibi Important: Önemli Language:

Detaylı