{ 1 3 5} { 2 4 6} OLASILIK HESABI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "{ 1 3 5} { 2 4 6} OLASILIK HESABI"

Transkript

1 OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,..., i ) p i Aşağıdaki gibi taımlaa, i P : U R A P( A) pi ωi A foksiyou bir olasılık ölçüsüdür. p p p olduğuda, ( A) P( A) ( Ω) olacaktır. Örek: { ω, ω, ω, ω, ω, ω} Ω Ω, U ve Ω ı elemalarıa karşılık getirile sayılar sırasıyla, p 0., p 0., p 3 0.3, p 4 0., p 5 0., p 6 0. olsu. Bu sayılara dayalı olarak taımlaa, Olasılık Ölçüsüe göre, P( ω ) 0. P : U { 6 } { 3 5} { 4 6} olur. A { ω, ω3, ω5} ve B { ω5, ω6} P( A) P( { ω, ω3, ω5} ) 0.5 P( B) P( { ω5, ω6} ) 0. P( A B) P( { ω 5 }) 0. P A B P{ ωω3ω5ω6} P( A B) P( { ω} ) 0. R A P( A) pi P( ω, ω, ω ) P( ω, ω, ω ) olayları içi ( ) (,,, 0.6 P( A B) P( A / B) 0.5 P( B) 6 ωi A

2 Böyle bir Olasılık Uzayı hagi deeyi modellemeside (hagi deeyi alamaalatımıda) kullaılabilir? Öreği, içide beyaz, siyah, 3 mavi, yeşil, sarı, kırmızı top bulua bir torbada bir top çekilmesi ve regii gözlemesi deeyide, ya da 0 beyaz, 0 siyah, 30 mavi, 0 yeşil, 0 sarı, 0 kırmızı top bulua bir torbada bir top çekilmesi ve regii gözlemesi deeyide kullaılabilir. Bir torbada bilimeye oralarda altı farklı rekte top bulusa, bir top çekilmesi ve regii gözlemesi deeyi içi bir Olasılık Uzayı asıl oluşturulabilir? Aşağıdaki olasılık uzayı hagi deeyleri modellemeside kullaılabilir? Ω ω, ω, ω, ω, ω, ω { } Ω U p, p, p 3, p 4, p 5, p P : U R ( A) A P( A) pi 6 ωi A Bu olasılık uzayı düzgü bir tavla zarıı atılması deeyide kullaılabilir mi? Ω ω, ω, ω, ω, ω, ω üzeride kaç tae olasılık uzayı oluşturulabilir? Ω ı elemalarıa, { } ) p 0, i,,3, 4,5,6 i 6 ) p i i olmak üzere, sosuz farklı şekilde p, p, p3, p4, p5, p 6 sayıları karşılık getirilebilir. Bu sosuz tae Olasılık Uzayıda hagisi elimizdeki tavla zarıı modellemektedir? Zarı maddesel olarak homoje olduğuu düşüürsek, p, p, p 3, p 4, p 5, p 6 alıması uygu görümektedir. Yüzeylerdeki oktalar içi açıla kuyular göz öüe 6 alıırsa, p 0.64, p 0.65, p , p , p , p öerilebilir. Buda sora, tavla zarları (hilesiz) içi, Ω ω, ω, ω, ω, ω, ω { } Ω U p, p, p 3, p 4, p 5, p P : U R ( A) A P( A) pi 6 ωi A Olasılık Uzayıı kullaacağız. Atış sırasıda zar tutmayı aklııza getirmeyi.

3 .. Ω { ω, ω,, ω, } olsu. Sayılabilir sosuz elemaa sahip ola Ω ı her ω i elemaıa aşağıdaki özellikleri sağlaya bir p i sayısı karşılık getirilsi. ) p 0, i,, Ω U olmak üzere, i ) p i foksiyou bir olasılık ölçüsüdür. Örek: { ω, ω, ω,...} 3 i P : U R A P( A) pi ωi A Ω Ω, U ve Ω ı elemalarıa karşılık getirile sayılar sırasıyla, p, p, p, olsu. Bu sayılara dayalı olarak taımlaa, P : U R olasılık ölçüsüe göre, P( ω ) 0.5 { } p A P( A) i ω i A 5 P( { ω, ω3, ω 5} ) P( { ω3, ω4, ω5,... }) P( { ω, ω} ) 0.5 ω, ω, ω,... B ω, ω olayları içi olur. A { } ve { } P( A) P( { ω, ω3, ω5,... }) P( B) P( { ω5, ω6} ) P( A B) P( { ω 5 }) P( A B) P( A) + P( B) P( A B) P( A B) P( { ω 6 }) 6 64

4 P( A B) / 3 P( A / B) P( B) 3/ 64 3 Böyle bir Olasılık Uzayı hagi deeyi modellemeside (hagi deeyi alamaalatımıda) kullaılabilir? Öreği, düzgü bir paraı tura geliceye kadar atılması ve üste gele yüzeyi gözlemesi deeyide kullaılabilir. Bu durumda Örek Uzay, Ω Y, YT, YYT, YYYYT, YYYYT,... { } olup, yukarıdaki A olayı, turaı tek sayılı atışlarda gelmesi olayı olacaktır. 3. Ω R (veya Ω R ) olsu. Ölçme souçları geellikle sayı olarak ifade edildiğide bu e çok karşılaşıla bir durumdur. Böyle bir Ω Örek Uzayıdaki olaylar (altkümeler) içide bizi e çok ilgiledireler aralık türüde olalar R, reel sayıları kümeside ( a, b) { x R : a < x < b} olmak uzere U {( a, b) : a < b, a, b R} [ a, b] { x R : a x b} olmak uzere U {[ a, b] : a b, a, b R} ( a, b] { x R : a < x b} olmak uzere U {( a, b] : a < b, a, b R} 3 4 { R} [ a, b) { x R : a x < b} olmak uzere U [ a, b) : a < b, a, b (, a) { x R : x < a} olmak uzere U5 {(, a) : a R} (, a] [ x R : x a} olmak uzere U {(, a] : a R} 6 ( a, ) { x R : x > a} olmak uzere U {( a, ) : a R} 7 [ a, ) { x R : x a} olmak uzere U {[ a, ) : a R} 8 Ω sııfları birer σ -cebir değildir. U kuvvet kümesi bu sııfları her birii kapsamakta Ω U kuvvet kümesi bir σ -cebirdir. Acak, bu σ -cebir üzeride Olasılık Ölçüsü taımlamak matematik teorisi açısıda sıkıtılı olmakta Buu ileride kavrayabilecek düzeye geleceksiiz. Örek Uzayımız reel sayılar olduğuda, σ -cebir olarak tüm aralıklar ile bular üzeride,, / işlemlerii solu veya sayılabilir sosuz kez uygulamasıyla ortaya çıka kümelerde oluşa ve adıa Borel Cebiri dee σ -cebir kullaılacaktır. Borel Cebiri geellikle B harfi ile gösterilmektedir. P Olasılık Ölçüsüü B de taımlı olduğuu düşüeceğiz. P : B R A P( A) ve P ( R ) olup, bir birim olasılık R üzerie dağılmış olacaktır. R üzerideki bir P olasılık ölçüsüe olasılık dağılımı da demektedir.

5 Taım: P reel sayılardaki Borel Cebiri üzeride bir Olasılık Ölçüsü olmak üzere, F : R [0, ] x F( x) P((, x]) foksiyoua P olasılık ölçüsüe karşılık gele dağılım foksiyou veya kısaca dağılım foksiyou deir. Teorem: P olasılık ölçüsüe karşılık gele dağılım foksiyou, F( x) P((, x]), x R olmak üzere, a) F azalmaya ( x < x F( x ) F( x)), Đspat: b) F sağda sürekli (lim F( x + h) F( x)), + h 0 c) lim F( x) 0, lim F( x) x x + x < x, x, x P(, x ) P(, x ) F( x ) F( x ) a) ( ] ( ] ( ] ( ] b) A, x +,,,3,... içi A A A lim P( A ) P( A ) lim P, x + P, x P, x + lim F( x + ) F( x) (( ]) A,,,,3,... içi c) ( ] A A A lim P( A ) P( A ) lim P ((, ] ) P (, ] P( ) 0 lim F( ) 0 lim F( x) 0 x

6 ( ] A,,,,3,... içi A A A lim P( A ) P( A ) lim P ((, ] ) P (, ] P( Ω ) lim F( ) lim F( x) 0 x Bir P olasılık ölçüsüe karşılık gele F dağılım foksiyou azalmaya, sağda sürekli, eksi sosuzda limiti sıfır ve artı sosuzda limiti bir ola bir foksiyodur. Tersie, böyle bir F foksiyou yardımıyla, P((, b]) F( b), (, b] B olacak şekilde bir olasılık ölçüsü taımlaabilir. a < b, a, b R içi P(( a, b]) F( b) F( a) P(( a, )) F( a) P({ a}) F( a) lim F( a h) F( a) F( a ) + h 0 olduğu kolayca gösterilebilir. Örek 3: 0, x < 0 F( x) x, 0 x <, x foksiyou, azalmaya, sürekli ve lim F( x) 0, lim F( x) ola bir foksiyo olup, x dağılım foksiyou olma özelliklerii sağlamakta x + F(x) x

7 Bu dağılım foksiyoua karşılık gele P olasılık ölçüsüü göz öüe alalım. ({ }) ( ) ( ) ({ }) ( ) ( ) 0, P 0.5 F 0.5 F P a F a F a a R P((, / ]) F(/ ) F( ) / P((/ 3, / ]) F(/ ) F(/ 3) / / 3 / 6 P([ / 3, 3]) F(3) lim F( h) h 0 3 / / P((/ 3, )) F(/ 3) / 3 / 3 Dağılım foksiyouda olasılık hesabı yapmak, Fizik dersleride gördüğüüz yolzama grafiğide yol miktarıı hesaplamaya bezemektedir. Hatırlatma: Bir hareketi yol-zama ve hız-zama grafikleri aşağıdaki gibi olsu. Yol-zama grafiğide t aıda t aıa kadar geçe zama aralığıdaki yol miktarı y t ) y( ) farkıa eşittir. Bu yol miktarı hız-zama grafiğide v ( t) dt alaıa eşittir. t t ( t Yol-zama grafiği ya da hız-zama grafiği tek başıa hareketi alatmakta Biride diğerie türev-itegral alarak geçilmektedir. Bular hareketi birer matematiksel modelidir (alatımıdır). Bu grafikler dik atış içidir. Modelde, cismi e kadar bir yüksekliğe çıkabileceği, e kadar bir zama sora yere düşeceği, yere düştüğü adaki hızı, belli bir ada buluduğu koumu ve hızı gibi hareket ile ilgili souçlar elde edilebilir. Modeli verdikleri ile gerçek düyada olup biteleri tamamıyla ayı olduğu söyleemez. Öreği, başlagıç aıda modeli alattığıa göre hız aide v 0 değerie ulaşmakta Bu gerçek düya ile ilgili gözlemlerimize ters düşmektedir. Gerçek düyada eler olmaktadır? Buları modeldeki yeri e olabilir?

8 Yukarıdaki F dağılım foksiyou x 0 ve x oktaları dışıda türevleebilir. Bu iki okta dışıda, türev foksiyou, 0, < x< 0 df( x) f ( x), 0< x< dx 0, < x< olmak üzere, / / P((/ 3, / ]) F(/ ) F(/ 3) f ( x) dx. dx / / 3 / 6 /3 /3 ({ }) ( ) ( ) ( ) 0, P a F a F a f x dx a R a a Bir F dağılım foksiyouu türevi ola f foksiyoua, heme aşağıda, olasılık yoğuluk foksiyou diyeceğiz. Olasılık yoğuluk foksiyolarıda olasılık hesabı, hızzama grafiğide yol hesabıa bezemektedir. Hız-zama grafiğide belli bir zama aralığıda alıa yol miktarı bir alaa karşılık geldiği gibi, olasılık yoğuluk foksiyouda da bir aralığı olasılığı bir alaa karşılık gelmektedir. Yalız, olasılık yoğuluk foksiyoları hiçbir zama egatif değer almamakta Bir P olasılık ölçüsüe (olasılık dağılımıa) karşılık gele F : R [0,] dağılım foksiyou, ) f ( x) 0, x R ) f ( x) dx özelliklerie sahip bir f foksiyou yardımıyla, x F( x) f ( x) dx, x R biçimide yazılabiliyorsa, olasılık dağılımıa sürekli dağılım ve f foksiyoua bu dağılımı olasılık yoğuluk foksiyou demektedir. Sürekli bir dağılımı F dağılım foksiyou sürekli bir foksiyodur. Ayrıca, a < b, a, b R içi b P(( a, b]) F( b) F( a) f ( x) dx P({ a}) F( a) lim F( a h) F( a) F( a ) 0 + h 0 Örek 4: Bir olasılık dağılımıı olasılık yoğuluk foksiyou, x e, x 0 f ( x) 0, x< 0 olsu. Bu dağılımı dağılım foksiyou, a

9 F : R [0,] 0, x< 0 x x 0, x 0 x < x x F( x) e dx t t e x e dt, x 0 e, x 0 0 t 0 f(x) F(x) 4 5 x x Bu olasılık dağılımıda birim olasılık (0, ) aralığı üzerie dağılmıştır. Ayı uzuluklu ola (, ) ile (4,5) aralıklarıda ilkii olasılığı daha büyüktür. 5 x x e dx F() F() > e dx F(5) F(4) 4 x-ekseide sağa doğru gittikçe aralıkları (ayı uzuluklu) olasılıkları azalmaktadır, başka bir ifade ile x-ekseide sağa doğru gittikçe yoğuluk azalmakta Örek 5: Olasılık yoğuluk foksiyouu grafiği aşağıdaki gibi ola bir dağılımda, olasılık sıfır etrafıda yoğulaşmış olup, ( 3,3) aralığıı dışıda olasılık heme heme sıfır Olasılık yoğuluk foksiyou sıfıra göre simetriktir. Olasılığı %50 si sıfırı sağıda Grafiği ça eğrisi ismii de taşıya bu olasılık yoğuluk foksiyou,

10 x f ( x) e, < x< π Örek 6: Aşağıdaki foksiyo da dağılım foksiyou özelliklerii taşımaktadır (azalmaya, sağda sürekli, lim F( x) 0, lim F( x) ). x x + 0, x < F( x), x < +,,, + F(x) 3 4 x Bu dağılım foksiyoua karşılık gele P olasılık ölçüsüü göz öüe alalım. A B, A (, ) içi P( A ) 0 A { },,, 3, içi, P ({ }) F ( ) lim F ( h ) + h 0 + ( + ) Üstelik, + P( Z ) P( { }) ( + ) olup, bir birim olasılık pozitif tamsayılara karşılık gele oktalara dağılmıştır.

11 Dağılım foksiyou basamak foksiyou biçimide ola dağılımlarda bir birim olasılık bazı oktalara (sıçrama oktalarıa) dağılmakta Bu tür dağılımlara kesikli olasılık dağılımları demektedir. Dağılım foksiyouu sıçrama oktaları x,,3,... olmak üzere, f ( x ) F ( x ) F ( x ),,,3,... x( x) x + foksiyoua bu dağılımı olasılık foksiyou deir. Bu derste göreceğimiz olasılık dağılımları ya sürekli, ya da kesikli olacaktır. Örek7: Aşağıdaki foksiyo dağılım foksiyou özelliklerii (azalmaya, sağda sürekli, lim F( x) 0, lim F( x) ) taşımakta x x + 0, x < 0 F( x), 0 x <, x F(x) x Bu dağılım foksiyoua karşılık gele olasılık ölçüsü P olsu. P({0}) F(0) F(0 ) P({}) F() F( ) ve x {0, } içi P({ x }) 0 Bir birim olasılık 0 ile oktasıdadır ve eşit miktarda A {0, } içi P( A ) 0

12 4. Geometrik Olasılık. Ω, herhagi bir küme, U, Ω da bir σ -cebir ve { } m : U R A m( A) foksiyou içi : ) m( A) 0, A U ) m( ) 0 3) ( A ) U da ayrık kumeleri dizisi ike m( A ) m( A ), özellikleri sağladığıda m ye U da bir ölçü deir. Ölçü kavramı Matematiği bir kavramıuzuluk, ala, hacim ölçüleri bua birer örektir. Bir m ölçüsü içi, m( Ω ) < (solu) olduğuda, P : U R m( A) A P( A) m( Ω) olarak taımlaa P foksiyou U da bir olasılık ölçüsüdür. Herhagi bir m ölçüsü içi B U ve m( B ) < olsu. U B { A : A B C, C U} olmak üzere, P : U R A m( A) PB ( A) m( B) foksiyou U B de bir olasılık ölçüsüdür. B B Şimdi geometrik olasılık diye bilie ve uzuluk, ala, hacim yardımıyla taımlaa olasılık ölçülerie değielim. N, M R, N < M içi Ω [ N, M ] aralığıı göz öüe alalım. A Ω bir aralık olduğuda, A ı aralık uzuluğu P( A ) Ω ı aralık uzuluğu ve diğer A Ω altkümeleri (aralıkları birleşimi, kesişimi, tümlemesi türüde olalar) içi " A ı uzuluk ölçüsü" P( A ) Ω ı aralık uzuluğu olarak taımlaabilir. Buradaki Ω ı bir olasılık deeyii Örek Uzayı olduğuu göz öüde kaçırmayı.

13 ve Ω R, solu alalı bir küme olmak üzere A ı ala ölçüsü P( A) Ω ı ala ölçüsü 3 Ω R, solu hacimli bir küme olmak üzere, A ı hacim ölçüsü P( A) Ω ı hacim ölçüsü olarak taımlaabilir. Bu olasılık ölçüleri, bir birim olasılığı Ω üzeride düzgü olarak dağıldığı durumlar içi kullaışlı Örek 8: Ω,, + {( x y) : ( x y) R, x y 9} olmak üzere, A ı ala ölçüsü P( A) Ω ı ala ölçüsü 4 A {( x, y) : 0 x, y } içi P( A) 9π B x y x y P B {(, ) : + } içi ( ) 9 C {( x, y) : ( x, y) Ω, x y} içi P( C) 0 Örek 9: Yarıçapı birim ola dairesel ice madei bir pul, taba yarıçapı 3 birim ola bir silidiri içie atıldığıda tabaı merkezii örtmesi olasılığı edir? a) Pulu, tabaı merkez oktasıı örtmesi içi, pulu merkezi ile tabaı merkez oktası arasıdaki uzaklığı birimde küçük olması gerekir. Pulu merkezi ile tabaı merkezi arasıdaki uzaklık d olmak üzere 0 d dir. Deeyi souçlarıı kümesi Ω { d :0 d } ve " A ı uzuluk ölçüsü" P ( A ) Ω ı aralık uzuluğu olmak üzere, pulu taba merkezii örtmesi olayı içi, A d :0 d elde edilir. { } P ( A )

14 b) Silidiri tabaıda, başlagıç oktası silidiri merkezi ile çakışa bir dik koordiat sistemi ele alalım. Bu koordiat sistemie göre pulu merkez oktasıı koordiatlarıı ( x, y) ile gösterelim. Deeyi souçlarıı kümesi ve { x y x + y } Ω (, ) : 4 A ı ala ölçüsü P( A) Ω ı ala ölçüsü olmak üzere, pulu taba merkezii örtmesi olayı içi elde edilir. {(, ) : } A x y x + y π P ( A) π 4 Görüldüğü gibi modeller farklı souçlar vermektedir. Bu deey içi başka modeller de oluşturulabilir. Bu modellerde hagisi deeyimize "uygudur"? Pulu çok defa attığımızda olaya uygu souçları sayısıı atış sayısıa oraı bize yardımcı olabilir. Acak her atışta sora oraı bir öcekie göre değişmesi, belli sayıda atış yeide yapıldığıda ayı oraı elde edilmemesi gibi sorular ortaya çıkacaktır. Bu tür soruları daha ileri düzeyde Đstatistik bilgiside sora açıklığa kavuşacağıı yeide hatırlatalım. Şimdilik amacımız, olasılık uzayı yai model verildiğide, olasılık hesabı yapabilmektir. Beli bir ( Ω, U, P) olasılık uzayı bir olasılık deeyii modeli olarak kullaıldığıda U σ -cebirideki kümeler deey ile ilgili olaylara karşılık gelecektir. Bu σ -cebir her zama kuvvet kümesi olmak zoruda değildir. Öreği bir olasılık deeyide sadece beli bir A olayıı gerçekleip gerçeklemediği ile ilgileiyorsak σ -cebir olarak { Ω,, A, A} yı almamız yeterlidir. Eğer bir olasılık deeyide tüm olaylar ile ilgileiyorsak σ -cebir olarak Ω ı kuvvet kümesii almalıyız. Bir σ -cebir sayılabilir birleşim, sayılabilir kesişim ve tümlemeye göre kapalı A U içi A olayıı gerçekleşmesi demek deey soucuu A ı elemaı olması demektir. A, B U içi, A B { ω : ω Ω, ω A veya ω B} A B { ω : ω Ω, ω A ve ω B} A { ω : ω Ω, ω A} olduğu göz öüe alıırsa A B olayıı gerçekleşmesi demek A ve B olaylarıda eaz birii gerçekleşmesi, A B olayıı gerçekleşmesi demek A ve B olaylarıı her ikisii de gerçekleşmesi, A olayıı gerçekleşmesi demek A ı gerçekleşmemesi demektir. Bu hatırlatmaları göz öüde tutarak aşağıdaki çözülmüş problemleri iceleyiiz.

15 Çözülmüş Problemler:.Problem ( Ω, U, P) bir olasılık uzayı, A, A, A3, A4, A5 U olayları tam bağımsız ve her birii olasılığı /3 olsu. a) A, A, A3, A4, A 5 olaylarıda hiç birii gerçekleşmemesi olasılığı edir? Deey soucuda A, A, A 3, A 4, A 5 olaylarıda hiç birii gerçekleşmemesi olayı A A A3 A4 A5 olmak üzere bu olayı olasılığı, 5 3 P( A A A3 A4 A5 ) P( A ) P( A ) P( A3 ) P( A4 ) P( A5 ) ( ) 3 43 b) A, A, A3, A4, A 5 olaylarıda e az birii gerçekleşmesi olasılığı edir? Deey soucuda A, A, A 3, A 4, A 5 olaylarıda e az birii gerçekleşmesi olayı A A A3 A4 A5 olmak üzere bu olayı olasılığı, P( A A A A A ) P( A A A A A ) P( A A A A A ) P( A ) P( A ) P( A ) P( A ) P( A ) ( ) P( A A A A A ) P( A ) P( A A ) + P( A A A ) c) A, A, 3 i i j i j k i < i j 5 < i j< k 5 5 < i j< k< l 5 P( A A A A ) + P( A A A A A ) i j k l P( A ) P( A ) P( A ) + P( A ) P( A ) P( A ) i i j i j k i < i j 5 << i j k 5 P( A ) P( A ) P( A ) P( A ) + P( A ) P( A ) P( A ) P( A ) P( A ) < i j< k< l 5 i j k l 5 0 ( ) + 0 ( ) 5 ( ) + ( ) A olaylarıda yalız birii gerçekleşmesi olasılığı edir? Deey soucuda A, A, A 3 olaylarıda yalız birii gerçekleşmesi olayı, ( A A A3) ( A A A3) ( A A A3) olmak üzere bu olayı olasılığı, P( ( A A A) ( A A A) ( A A A) ) P( A A A) + P( A A A) + P( A A A)

16 d) A, A, 3 A olaylarıda yalız ikisii gerçekleşmesi olasılığı edir? Deey soucuda A, A, A 3 olaylarıda yalız ikisii gerçekleşmesi olayı, ( A A A3) ( A A A3) ( A A A3) olmak üzere, P( ( A A A) ( A A A) ( A A A) ) P( A A A) + P( A A A) + P( A A A) e) A, A, A3, A4, A 5 olaylarıda yalız ikisii gerçekleşmesi olasılığı edir? p ( ) ( ) f) A, A, A3, A4, A 5 olaylarıda e az ikisii gerçekleşmesi olasılığı edir? p ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) p ( ) ( ) ( ) ( ) Problem Bir tavla zarıı bir kez atılması deeyide örek uzay {,, 3, 4, 5, 6} olsu. Bua göre, bir zar iki kez ardı ardıa atıldığıda örek uzay, S {( x, y) : x, y,, 3, 4, 5, 6} {(,), (, ), (,3 ), (, 4 ), (,5 ), (,6 ), (,), (, ), (,3 ), (,4 ), (,5 ), (,6 ), ( 3, ), ( 3, ), ( 3,3 ), ( 3,4 ), ( 3,5 ), ( 3,6 ), ( 4, ), ( 4, ), ( 4, 4 ), ( 4,5 ), ( 4,6 ), ( 4,7 ), ( 5, ), ( 5, ), ( 5,3 ), ( 5, 4 ), ( 5,5 ), ( 5,6 ), ( 6, ), ( 6, ), ( 6,3 ), ( 6,4 ), ( 6,5 ), ( 6,6)} ve ( S ) 36 U P( S) ve P( A) ( A) / 36 olarak taımlaa ( S, U, P) olasılık uzayıı deeyi bir modeli olarak kulladığımızda, öreği üste gele sayılar toplamıı 9 da büyük olma olayı, olmak üzere, bu olayı olasılığı A {(5, 5),(6, 4),(4, 6),(5, 6),(6, 5),(6, 6)} P( A) ( A) / 36 6/ 36 / 6

17 Birici atışta gele sayıı ikici atışta gele sayıda farklı olması olayı B {( x, y) S : x y} olmak üzere ( B ) 30 ve P( B ) 30/ 36 5/ 6 Birici veya ikici atışta çift sayı gelmesi olayıı olasılığıı hesaplamak içi C. atışta çift sayı gelmesi D. atışta çift sayı gelmesi olaylarıı taımlayalım. O zama araa olasılık P( C D) P( C) + P( D) P( C D) veya P( C D) P( C D) P( C D) Gele sayılar toplamıı 9 da büyük olduğu bilidiğide, birici atışta 6 gelmiş olması olasılığı edir? E olayı birici atışta 6 gelmesi olayı olsu. Sorula olasılık, P( E A) 3/ 36 P( E / A) P( A) / 6 A,B,C,D,E olaylarıı bağımsızlığıı araştıralım. 4 P( A B) 36 olup A ile B bağımsız değildir. 5 P( A). P( B) P( A C) 36 P( A). P( C) 6 4 P( A D) 36 P( A). P( D) 6 olup A ile C bağımsız değildir. olup A ile D bağımsız değildir. değildir. P( E A) 3/ 36 P( E / A) P( E) olduğuda A ile E bağımsız P( A) / 6 6

18 . 5 P( B C) 36 5 P( B). P( C) 6 5 P( B D) 36 5 P( B). P( D) 6 5 P( B E) 36 5 P( B). P( E) P( C D) 36 P( C). P( D) P( C E) 36 P( C). P( E) 6 olup B ile C bağımsız değildir. olup B ile D bağımsız değildir. olup B ile E bağımsız olaylar olup C ile D bağımsız olaylar olup C ile E bağımsız olaylar değildir. 3 P( D E) 36 olup D ile E bağımsız olaylar P( D). P( E) 6 P( A B C) 36 olup A,B,C olayları 3-lü bağımsız değildir. 5 P( A). P( B). P( C) 6 6 P( A B C D) 36 5 P( A). P( B). P( C) P( D) 6 6 olup A,B,C,D olayları 4-lü bağımsız değildir. P( A B C D E) 36 olup A,B,C,D,E olayları 5-li bağımsız değildir. 5 P( A). P( B). P( C) P( D). P( E) 6 6 6

19 3 P( C D E) 36 olup C,D, E olayları 3-lü bağımsız değildir. P( C). P( D). P( E) 6 Daha kaç tae karşılaştırma yapılacaktır? 5 tae olay içi 3 tae eşitliği karşılaştırılması gerekmektedir. 3.Problem a, b, c, d harfleri 4 ayrı kağıt parçasıa yazılsı ve bir kavaoza atılsı: ) çekilei geri atma şartıyla ardarda, ) çekilei geri atmama şartıyla ardarda, 3) ayı ada üç tae kağıt parçası çekilsi. Bu deeyleri Örek uzayları sırasıyla S { a, b, c, d} { a, b, c, d} { a, b, c, d} {( x, y, z) : x, y, z { a, b, c, d}} S {( x, y, z) : x, y, z { a, b, c, d}, x y, x z, y z} S {{ x, y, z} :{ x, y, z} { a, b, c, d}} 3 olmak üzere ( S) , ( S) 4 3 4, ( S3) 4 * Bu deeyleri her biri içi; çekilişlerde a harfii kavaozda alımamış olması olayıı olasılığıı hesaplayalım.. deey içi olay A { b, c, d} { b, c, d} { b, c, d} olmak üzere, ( A ) P ( A) ( S ) deey içi olay olmak üzere, B {( x, y, z) S : x, y, z { b, c, d}} ( B) 3 P ( B) ( S ) deey içi olay C {{ b, c, d}} olmak üzere, ( C) P3 ( C) ( S3) 4 * Çekile üç harfi de ayı harf olması olayıı göz öüe alırsak,.deey içi olay, A {( a, a, a),( b, b, b),( c, c, c),( d, d, d)} ikici deey içi B ve üçücü deey içi C olmak üzere olasılıklar

20 olacaktır. 4 P ( A), P ( B) 0, P3 ( C) 0 64 olmak üzere, * Çekile üç harf arasıda a veya b i gelmesi olayı;. deey içi A S \{ c, d} { c, d} { c, d} ( A) 8 7 P ( A) ( S ) deey içi B S, P( B) ve 3. deey içi C S3 olmak üzere, P( C ) * Đlk öce a sora b ve sora c i çekilmesi olayı;. deey içi A {( a, b, c)} olmak üzere P ( A ) / 64,. deey içi B {( a, b, c)} olmak üzere P ( B ) / 4, 3. deey içi böyle bir olay taımsız * E,. deeyde çekile harfleri birbiride farklı ve alfabetik sıraya göre çekilmesi olayı olmak üzere, ( E) 4 3 3! P ( E) ( S) 64 6 * D, ). deeyde b harfii. çekilişte gelmesi olayı olmak üzere ( D) 3 P ( D) ( S) 4 4 * F, 3).deeyde a ve b harflerii çekilmesi olmak üzere ( F) P3 ( F) ( S ) 4.Problem Bir kavaozda k tae kırmızı ve b tae beyaz top bulusu. Bir top çekilip regie bakıldıkta sora bu rekte başka c tae top ile birlikte kavaoza geri atılsı. B, i,, i.çekilişte beyaz top gelmesi olayı, i K i, i,, i.çekilişte kırmızı top gelmesi olayı olmak üzere:

21 k b P( K), P( B ) b + k b + k P( K ) P[( K B ) K ] P( K K ) + P( B K ) P( K ) P( K / K ) + P( B ) P( K / B ) P( K ). P( K / K ) + P( B ). P( K / B ) k k + c b k + b + k b + k + c b + k b + k + c k b + k b P( B ) P( K) b + k Görüldüğü gibi P( B ) P( B ) ve P( K) P( K) Bir top çekilip regie bakıldıkta sora bu rekte başka c tae top ile birlikte kavaoza geri atıldığıda olasılıklar değişmemektedir. Şimdi ikici çekilişte topu kırmızı olduğu bilidiğide birici çekile topu kırmızı olması olasılığıı hesaplayalım. P( K K) k + c P( K/ K) P( K) b + k + c Burada, b P( B/ K) P( K/ K) b + k + c 5.Problem,, 3, 4, 5, 6, 7, 8, 9 rakamları ile oluşturula, farklı rakamlı 6 basamaklı sayılarda biri rasgele seçildiğide: a) Çift sayı olması olasılığı edir? S kümesi,,, 9 rakamları ile oluşturula farklı rakamlı 6 basamaklı sayıları kümesi (Örek Uzay) olmak üzere, ( S ) Çekile sayıı çift sayı olması olayı, A { x S : x çift sayı} olmak üzere, ( A ) A olayıı olasılığı,

22 ( A) 4 P( A) ( S) 9 Buda soraki şıklarda Örek Uzayı yazmayacağız. b) Rakamlar toplamıı çift sayı olması olasılığı edir? B { x S : x i rakamları toplamı cift sayı} ve k,, 3, 4 içi Bk { x S : x sayısıı k tae rakamı cift} olmak üzere, B B B 4 ( B) ( B ) + ( B ) 4 ve !+ 6! 40 6! ! 40 3! 0 P( B) c) Çift rakamları ya yaa (bir arada) olması olasılığı edir? C { x S : x deki cift rakamlar yayaa} olmak üzere, C C S C ( B B B B ) 3 4 ( C B ) ( C B ) ( C B ) ( C B ) 3 4 ( C) ( C B ) + ( C B ) + ( C B ) + ( C B ) !+ 5!!+ 4! 3!+ 3! 4! ve ( C) 4 6! P( C) ( S) d) 3 tae rakamı tek, 3 tae rakamı çift veya 8 rakamıı içermesi olasılığı edir? D { x S : x, 8 rakamıı icerir} olmak üzere D B3 D olayıı olasılığı,

23 P( D ) P( B ) + P( D) P( B D) 3 3 ( B3 ) + ( D) ( B3 D) ( S) !+ 6! 6! / 4 e) Çift sayı olması veya 8 rakamıı içermesi olasılığı edir? E A D olmak üzere araa olasılık P( E) P( A) + P( D) P( A D) ! ! ( S) ( S) f) Rakamları azala veya arta sırada olması olasılığı edir? F { x S : x deki rakamlar azala veya arta sırada} olmak üzere ( F ) ! ve P( F 6! 360 g) 3 tae rakamı tek, 3 tae rakamı çift, tek rakamlar azala ve çift rakamlar azala sırada olması olasılığı ! 3! 3! ( S) h) 3 tae rakamı tek, 3 tae rakamı çift olması, ayı ciste iki rakamı yayaa olmaması ve sayıdaki e büyük tek rakamı teklere göre e sağda olması olasılığı [3! 3!] 3! ( S)

24 i) Ya yaa iki çift rakam bulumaması olasılığı edir? I { x S : x de yayaa iki cift rakam yok} olmak üzere ve I ( I B ) ( I B ) ( I B ) ( I) 6!+ 4!!+ 3! 3! ( I) P( I ) ( S) j) Rakamlar toplamıı e az 3 olması olasılığı edir? K rakamlar toplamıı e az 3 olması olayı olmak üzere P( K) P( K) 6! 6! + ( S) ( S) Problem Elimizde,,,3,..., sayıları ile umaralamış tae top ve tae kutu bulusu. Bir topu umarası içide buluduğu kutuu umarasıa eşitse bu durumda bir "eşleşme" vardır deir. a) tae top tae kutuya her kutuda bir top buluacak şekilde rasgele atıldığıda e az bir eşleşme olması olasılığı edir? tae farklı (umaralamış) top tae farklı (umaralamış) kutuya her kutuda bir top buluacak şekilde! biçimde atılabilir. Örek Uzayı elema sayısı! dir. A, i,,3,..., olayı i. kutu içi eşleşme olması olayı olsu. i ( )! P( Ai ), i! ( )! P( Ai Aj ), i< j! ( )

25 ( 3)! P( Ai Aj Ak ), i< j< k! ( )( )... P( A A... A )! olmak üzere, e az bir eşleşme olması olayıı olasılığı, ( ) ( ) ( ) ( ) ( ) ( ) i i + i j + i j k i i i< j i< j< k P A P A P A A P A A A P A A A ( ) ( ) 3 ( )( )! + + +! 3!!... ( )... B-hiçbir eşleşme olmaması olayı olsu. Bu olayı olasılığı, P( B) P( B) P( A A... A ) ( )!! 3!! B olayıı olasılığıı p ile gösterelim. olmak üzere, p ( )!! 3!! e ( ) +...!! 3!! sayısı göz öüe alıırsa, p olasılığı e sayısıı seri açılımıdaki ( + ). kısmi toplam e ve p , p , p , p olmak üzere, p i değerleri küçük ler içi bile e değerie yakı Böylece e az bir eşleşme olması olasılığıı pratik olarak de ( > 5) bağımsız olduğuu ve yaklaşık olarak olduğuu söyleyebiliriz. b) tae top, her bir kutuda bir top olacak şekilde, kutuya rasgele atıldığıda tam r ( r ) tae eşleşme olması olasılığı edir? r içi bu olasılık! r durumu söz kousu olamaz, çükü tae kutuda kedi umaralarıa karşılık gele toplar buluuyorsa geriye kala kutuda da bir eşleşme var r,,..., içi B r olayı, tam r tae eşleşme olması olayı olsu. Bir a içi r tae eşleşmei,,, r umaralı kutularda olduğuu düşüelim. Diğer r kutuda hiçbir eşleşme olmayacak şekilde farklı düzelemeleri sayısı ( r)! p r olacaktır. Burada, ( r)! p r r P( Br ) ( ( ) ), r,,... r! r!!! 3! ( r)!

26 7.Problem,,..., sayıları ile umaralamış tae kutu ve özdeş k tae top göz öüe alalım. k tae özdeş top farklı kutuya kaç yolda dağıtılabilir? (Boş kutu kalabileceği gibi topları tümü bir tek kutuda da olabilir.) Kutular umara sırasıa göre ya yaa dizildikte sora aralarıa birer ayıraç (levha) kosu ve sadece k tae top ile - tae ayıraç göz öüe alısı. Aşağıdaki gibi bir durum, umaralı kutuda 3, umaralı kutuda 0, 3 umaralı kutuda, dört umaralı kutuda, 5 umaralı kutuda 0,..., - umaralı kutuda ve umaralı kutuda 0 tae top ola dağılışı alatmakta Bua göre farklı dağılışları sayısı, k taesi özdeş (top) ve - taesi özdeş (levha) ola - + k tae esei farklı sıralaışlarıı sayısı kadar olacaktır. Bua göre, k özdeş topu farklı kutuya dağılışlarıı sayısıı s(, k ) ile gösterilirse, ( + k )! F I s(, k ) - + k k!( )! k Öreği 3, k içi dağılışlar; HG KJ olmak üzere, dağılış sayısı 3-+ s(3,) 6 3, k 3 içi dağılışlar olmak üzere, 3-+3 s(3,3) 0 3

27 0 özdeş top 5 farklı kutuya rasgele atıldığıda (dağıtıldığıda): Boş kutu kalmaması olasılığı Topları hepsii ayı kutuda olması olasılığı Yalız bir kutuu boş olması olasılığı Yalız bir umaralı kutuu boş olması olasılığı Yalız iki kutuu boş olması olasılığı Kutularda eşit sayıda top olması olasılığı

28 8.Problem Cıvata üretile bir atölyede üç işçi çalışmakta Birici işçi üretimi %40 ıı, ikici işçi %35 ii ve üçücü işçi %5 ii gerçekleştirmektedir. Birici işçi cıvatalarda %5 ii, ikici işçi %4 üü ve üçücü işçi % ii bozuk üretmektedir. Bu atölyede üretile cıvatalarda rasgele seçile bir cıvataı bozuk olduğu görüldüğüde birici işçi tarafıda üretilmiş olması olasılığı edir? A -seçile cıvataı birici işçi tarafıda üretilmiş olması olayı A -seçile cıvataı ikici işçi tarafıda üretilmiş olması olayı A -seçile cıvataı üçücü işçi tarafıda üretilmiş olması olayı 3 B-seçile cıvataı bozuk olması olayı olsu. Bua göre sorula olasılık, P( A ) P( B / A ) P( A / B) P( A ) P( B / A ) + P( A ) P( B / A ) + P( A ) P( B / A ) 3 3 %40 % %40 %5 + %35 %4 + %5 % Ağaç Diyagramı yardımıyla çözüm: Yolları Olasılıkları %95 Sağlam %40x%95 %40 %5 %35. Đşçi.Đşçi 3.Đşçi %5 %96 %4 %98 Bozuk Sağlam Bozuk Sağlam %40x%50.0 *** %35x%96 %35x%40.04 * %5x%98 % Bozuk %5x%0.005 * *** 0.0 *** + * + *

29 9.Problem Bir cam kavaozda beyaz 3 siyah ve bir tahta kavaozda beyaz siyah top bulumakta Rasgele bir kavaoz seçilip içide bir top çekilip diğer kavaoza atılmaktadır ve bu kavaozda bir top çekilmektedir. a) Çekile her iki topu da siyah olması olasılığı edir? b) Çekile ikici topu siyah olduğu görüldüğüde birici topu da siyah olması olasılığı edir? Yolları Olasılıkları / 3/5 /5 / / /4 3/ / /3 /3 /3 /3 / / a) b) 3 37 p / p /

30 0.Problem (0,) aralığıdaki reel sayılarda rasgele iki sayı seçildiğide çarpımlarıı 0.5 de küçük olması olasılığı edir? Örek Uzay: Ω {( x, y) : 0< x<, 0< y< } Olasılık Ölçüsü: " Aı ala ölçüsü" P( A ) " Ω ı ala ölçüsü" Đlgilediğimiz olay: A ( x, y) : 0< x<, 0< y<, xy< y Ω A 0.5 x " Aı ala ölçüsü" P( A ) " Ω ı ala ölçüsü" dx x l x x l (l l )

31 DAĞILIŞLAR VE ÖRNEK SEÇĐMĐ Bu kısımda ilk olarak eseleri kutulara (gözelere) dağılışı ve daha sora eselerde seçim ele alıacaktır. çıkmaktadır: Neseleri veya kutuları özdeş olup olmamasıa göre karşımıza değişik durumlar a) r tae farklı ese, tae farklı kutuya r farklı şekilde dağıtılabilir. b) r tae özdeş ese, tae farklı kutuya, F + ri s(, r) r farklı şekilde dağıtılabilir. HG KJ c) r içi r tae farklı ese, tae farklı kutuya her kutuda e çok bir ese olacak şekilde ( )( )...( ( r )) farklı biçimde dağıtılabilir. d) r içi r tae özdeş ese, tae farklı kutuya bir kutuda e çok bir ese olacak şekilde r farklı biçimde dağıtılabilir. (r içi r özdeş esei farklı kutuya bir dağılışı, tae kutuda r taesii bir seçimi olmak üzere, farklı dağılışları sayısı r ) e) r durumuda r tae özdeş ese tae farklı kutuya boş kutu kalmayacak şekilde, r farklı biçimde dağıtılabilir. (Boş kutu kalmaması içi r özdeş esede taesi her kutuda bir ese olacak şekilde yerleştirilir (bir tek biçimde yapılabilir) ve buda sora geriye kala r özdeş ese kutuya dağıtılır. Bua göre souç sayısı, s(, r ) F HG + r r r I F KJ HG r I KJ f),,..., ile umaralamış tae ese,,,..., ile umaralamış kutuya her kutuda bir ese buluacak şekilde! farklı biçimde dağıtılabilir. Belli bir dağılışta bir kutuu umarası ile bu kutuda bulua esei umarası ayı ise bir eşleşme vardır deir. Tüm

32 kutular içi eşleşme olacak şekilde bir tek dağılış var Bir umaralı kutuda eşleşme olacak şekildeki dağılışları sayısı (-)! Bir umaralı kutuda eşleşme ola dağılışları bazıları içi diğer kutularda da eşleşme olabileceğie dikkat edi. Belli iki kutuda, öreği ve 3 umaralı kutularda eşleşme olacak şekildeki dağılışları sayısı (-)! g) (r + r r r,0 ri,i,,..., ) olmak üzere r farklı ese,. kutuda r,. kutuda r,...,. kutuda r ese olacak şekilde farklı kutuya, F HG r r IF KJHG r r r I KJ... F HG I KJ r ( r + r r ) r! r r! r!... r! biçimde dağıtılabilir. değielim. Şimdi eselerde seçim veya başka bir ifade ile örekleme kousua kısaca A) farklı esede iadeli olarak (çekilei yerie atarak) birer birer k ese çekilmesi (çekiliş yapılması) ve çekiliş sırasıa bakılarak souçları değerledirilmesi durumuda karşımıza esei k -lı tekrarlı permütasyoları çıkmaktadır Buları sayısı k B) farklı esede iadeli olarak birer birer k ese çekilmesi ve çekiliş sırasıa bakılmaksızı souçları değerledirilmesi durumuda souçları birbiride ayırt ede özellik her bir esei kaç kez çekilmiş olması i,,..., içi x i ler her bir esei kaç kez çekildiğii göstermek üzere souç sayısı, x + x x k deklemii egatif olmaya tamsayılar kümesideki çözüm sayısı kadar Bua göre farklı souçları sayısı, s(, k ) F HG + k k I KJ Bu durumda souçlar ayı zamada farklı esei k -lı tekrarlı kombiasyoları olarak da isimledirilmektedir. C) farklı esede iadesiz olarak birer birer k ese ( k ) çekilmesi ve çekiliş sırasıa göre souçları değerledirilmesi durumuda karşımıza farklı esei k -lı permütasyoları çıkmakta Buları sayısı, ( )( )...( ( k ))

33 D) farklı esede iadesiz olarak birer birer k ese ( k ) çekilmesi ve çekiliş sırasıa bakılmaksızı souçları değerledirilmesi durumuda farklı souçları sayısı, k Her bir souca, farklı esei k -lı bir kombiasyou deir. farklı esede iadesiz olarak birer birer k ese ( k ) çekilmesi ve çekiliş sırasıa bakılmaksızı souçları değerledirilmesi deeyi ile bu esede ayı ada k ese alıması deeyi souçlar bakımıda birbirii ayısı PROBLEMLER. ω ω ω3 ω4 ω5 ω6 Ω {,,,,, }, U P( Ω ) olsu. a) P ({ ω }) / 6,,,, 6 b) P ({ ω }) /,,,, 6 P ({ ω }) P ({ ω }) /, P3 ({ ω }) 0, 3, 4, 5, 6 c) 3 3 A { ω, ω, ω }, B { ω, ω3} olmak üzere i,, 3 içi ve 3 5 olasılıklarıı hesaplayıız. P( A), P( B), P( A B), P( A B), P( A/ B) i i i i i. Ω {( x, y) R : x, y ve, A ı ala ölçüsü P( A) Ω ı ala ölçüsü olsu. Aşağıdaki kümeleri (olayları) olasılıklarıı hesaplayıız. A {( x, y) : x y}, B {( x, y) : x y}, C {( x, y) : x + y > } D A C, E {( x, y) : y > 0}, F {( x, y) : x 0, y 0}

34 3. P, P, P3 ve P 4 olasılık ölçüleri sırasıyla aşağıda verilmiş F, F, F3 ve F 4 dağılım foksiyolarıı belirlediği ölçüler olsu. 0, x < 0 0, x < [[ x]] F ( x) x, 0 x < 6 F ( x), x < 6 6 6, x 6, x 6 0, x < 0 0, x < F3 ( x) F / 4( x) x e, x 0, x Bu foksiyoları grafiklerii çiziiz ve A (, 3], B {3}, C (, 3), D (, ), E (, 0], 3 F [, ), G (7, ), H {,, 3}, I { } kümelerii (olaylarıı) P, P, P3 ve P 4 e göre olasılıklarıı hesaplayıız. 4. Bir torbaı içide 5 beyaz ve bir siyah top bulumakta 6 oyucu sırayla, a) çekile topu geri atarak, b) çekile topu geri atmaksızı, birer top çekmektedir. Siyah top çekildiğide oyu bitmekte ve çeke oyuu kazamakta Kaçıcı olmak isterdiiz?

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

x A şeklinde gösterilir. Aksi durum ise x A olarak

x A şeklinde gösterilir. Aksi durum ise x A olarak BÖLÜM I OLSILIK Küme teorisi, matematiği geliştirilmesi ve öğretimide gittikçe daha fazla yararlaıla koularda biridir. yrıca olasılıkla ilgili birici bölümü temel aracıdır. Bu kısımda amaç, olasılık kousuda

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, gdemir2@yahoo.com.tr 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birici Bölüm DENEME-4 Bu sıav iki bölümde oluşmaktadır. * Çokta seçmeli

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B . +? + + işlemii soucu aşağıdakilerde xy } y 5,x 4 5x 4y Ç 6y +7x 6.5+7.4 58 cm Yaıt:C hagisie eşittir? A) 7 B) 4 C) 7 4 D) 7 7 E ) 7 4. Aşağıda alaları verile dairelerde hagisii alaı sayıca çevresie eşittir?

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK KAPAK KONUSU Kırsal Kalkıma içi IPARD Programı da Sektöre BÜYÜK DESTEK Kırsal Kalkıma (IPARD) Programı Kırmızı Et Üretimi ve Et Ürülerii İşlemesi ve Pazarlaması alalarıda gerçekleştirilecek yatırımları

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır

KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır Güeşe bakarsaız gölgeleri göremezsiiz KOMBİNASYON Adı : Soyadı : Zeka, Tecrübe ve Çalıskalık birlesirse tüm hedeflere ulasılır Mat Müh BAHTİYAR DAĞDELEN 05-799 9 5 KOMBİNASYON KOMBİNASYON r olmak üzere,

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C BLS Öcei erste; DN izilerie,,g, bazlarıı izilişi, RN izilerie,,g,u bazlarıı izilişi ve protei izilerie amio asitleri izilişi baımıa, orta bir alfabe ile yazılmış izileri hizalaması üzerie urulu. Hizalamış

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı