tf* J.,',,': j*= ,I+ (* *1,+)a*=ff a*=$ * i)i-= ro 0"+X- v/z n\ax I alnrnar a) lo' ,';;t or=t de\.,2- r) e) e) Ir' fl fug-or f, Itt'rrlr, o Ir+ t f.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "tf* J.,',,': j*= ,I+ (* *1,+)a*=ff a*=$ * i)i-= ro 0"+X- v/z n\ax I alnrnar a) lo' ,';;t or=t de\.,2- r) e) e) Ir' fl fug-or f, Itt'rrlr, o Ir+ t f."

Transkript

1 integlai tanrmtndan yat'arlanarak aqa[rdaki integralleri hesaplaytntz. [1 a) xdx Jn rl D Jnx2ax 1l c; e*dx 17 d) z'dx Aqafrdaki eqitliklerin do[r'ulu!unu gcisteriniz. a) lo',';;t or=t ot fu'*"f-+,' a*=$ * c) rnl4 1.1 tanjr Sec - x dx =; z e) r' (* *1,+)a*=ff o, lo.''#r** de\.,2- r) e),? t. f4 J rt' 36 t, COSa//,. :d[= ^ Z\i t; z / \\,i /- - ' '\ r/rsin Jr r) [n: ;l n\, ft / - cot'\x+q)ax=t-i -\ rl'l. x-dx tt x )r ri ia. 11 h) /.,+ - ^li t+^jx S1l]- X d.x=; j Ax= zlnz- L Agalrdaki integralleri hesapiayrnrz. n a) Jn snx ax t; O, /.' 2sec'x dx o r+ sinz t ctx d) a, [\ xdx w),. ro x'+3x+2 fl fug-or 'la) t f. 4 tanx dx raaj i)-= ro 0"+X- v/z n\ax k) fdx t- J 1a"[2xa1. t2n *^^2 -. l,rh),..': Jn / x-tar'x 'o"^ dx 13.@/n u"la, [2 ri${ xfixnrlx G-e),q ii) J,lxldx p2 alnrnar J-1 /" sin(lnx) J, -r o* l.tr. r2 i;d.t, / xlt -r'1,1, ^_...+1, f, tt'rrlr, 's, /;"* tf* J.,',,': pl p) xsgnxdx 1.', J-.["dx 12 Jn 3.2."." 11 ' v) l. :-," {-., " ' (l+x-j-,fl lonrsn{*' - 4x + 3)cJx,, [^' j*= rv ^l 4-x' D, ck,!.- \l

2 4. n*nax+l [-xnax=b-a Ja Ja oldu[unu gcisteriniz. 1:i"/ Her ne Nicin \i f nxndx= n(n - l) ro2 oldu$unu gcisterinrz. r9 : t r-n ttr. J, ll^t t )l d.t = 13 oldufunu gcisteriniz. 7. Aga[rdaki integralleri hesaplayrnrz..) r.,il,j ll*t- 3*'+zxlclx '- flt ' b) lro"3 *ld* r-fi 1,9i integrallenebilen bir / fonksiyonu igin '.9-" rb ^,,. f7 J, Q)dx = (b - d J, f La + (b - dxldx oldu!unu gcisteriniz. ntegrallenebilen bir / fonksiyonu ve k*0,' no* 1rr,',(i)* oldu$unu gosteriniz. lq" u = 1-- x de[igken de$iqtirmesini yaparak, m,ne N igin [).. rl lo*'1t - x)' dx= tt - *)"r' dr igin 3.i. x = sinz defiqken de$igtirmesi yardrmryla tfr l^x", 1 - x2 7, dx= / ' sin,, x cos2,,,) x dx J11 oldulunu gcisteriniz. Bundan yararlanarak ' rl" / "r (r - *')'o d, integralini hesaplayrnrz. $2" Aqafrdaki integralleri hesaplayrnrz. (n e ltr) fr ft. f ) a) /-sin"*'xdx D 'stnrxdx n r. c) l^',osn r0 * d* d) [' eos2" r x dx t,, ifxldx_ \J,.U3" J_, icos 'x + s 3 oldu$unu gcisteriniz. iz$" HerneN igin ^t [, r. o\z / (1 - x'') dt,_2zntn!12 Js - er-a $5. x= f - r degiqken deliqtirmesi yaparak \./ fr^ [1 Vsin 2x, re ls 'v!t}; +3J;os2 x "* - 4 oldufiunu g6steriniz. oldu$unu gcisteriniz. Bundan y arurlanarak r7 l. Jn*'(t - x)'u dx mtegralini hesaplayrnrz. x6,i x = x(, - / ddniiqiimilnden yararlanarak fn x sinx,] lt -,J "^- 4 " vl +srn-ir olacaftnr gcisteriniz. 287

3 !17 " x> igin 1 + xa <2xa eqitsizli$inden yararlanarak 13-- *r l"lt*ro dxsl!"lt 3r1 3 oldu$unu gcisteriniz. JA., a > 0 ve / fonksiyonu [0,a] tizerinde siirekli olsun. i) Lt = q - x de[igken deligtirmesini yaparak [" f(x\ )_. [' f(q - x),_ fe) +f(a - i qx = h fe) *-fg; d* il8.,rr> 1 icin \- -,,,' fx t fx a)!ar.l ar J T Jl b) 0<lnr<x-1 oldufunu gcisteriniz. ii) iii) oldulunu gcisteriniz. fof(i,uj ' ' Av- fg) +.fqa- x) -^ 2 olaca!rnr gosteriniz, rl 4, x'dx ls xa+(l-x)a tzx Le. fg)=l l)o - )r!"" fonksiyonu iein yrnrz. $e ise integralini hesapla- integralini hesaplayrmz. '24. :Siirekli bir / fonksiyonu iqin rl ro lo f7,a* = l- rf{- *ta* oldu$unu gcisteriniz. 2t]. ru;={t. at, -2<x<1 ise, 7<x<2 ise 12 l- ionksiyonu rein integralini hesaplayrnrz. J _ rl?)dx 11 ln flia, l-",lto, = 3 dtir. / nin tek veya gift oluquna gdre i ntegralini hesaplayrnrz <.x<1iEin 0 < siruv < x eqitsizlieinden yararlanarak r1 a) o</ -- s^"2a*s! """" *'"- 3 f t2 b) O=/o- sin"'.x Or=i\;) 1. f 1 c) 0< l- xsinx dx<- ' ' Js -24 oldu$unu gcisteliniz. 22" x>0 igin 0 < sinx <x egitsizli$indenyararlanarak 288 tf tlm!/ e-0* E oldu[unu gcisteliniz. xsinxclx=o 1b rb-c [z*" J\ia*=l flx+c)dx \ ra Ja-c, 27; Periyodu 7olan birperiyodik / fonksiyonuve her k tamsayrsr iqin pb 1b+kT flljdx Kloa*= J6 ".larkt " olaca!rnr gosteriniz Aqa[rda velilen fonsiyonlarrn karqilarrnda yaali alalildar iizerindeki ortalama deferlerini bulunuz. Fonksiyon bu ortalama de$eri hangi noktada alrr? a) f(x) = 2 lxl, b) "f(-x) = cos,r, c) f(x)=",11-f, d f@)=3x2-2x+2, 1= [_1,1] J = l0,2nl 1 = [_1,1] 1= 10,21

4 ,"r. f,tfrirr=4 olsun' lr'21 arahlnda f(c)=4 olacak qekilcle en az bir i noktastnln varltfmt goster llll /. sll. A5agrdaki fonksiyonlarrn tijrevlerini hesaplayrnz' a) p(i=lt1r+tz)2odt 4'' t0 b) FU)- tsr;rt dt ' Jr [*' c) PG)= tsint dt r-x 9) F(r)=1 tcost4dt -.2 ' d) flx) = '' l'dl Jr! + r2x e) P(i= l. JSTNX cost dt ( 3Nr' AqaEldaki eqitsizliklerin do[rulugunu gcisteriniz' ary m>2 iqin tz dt = x cos Trrc oldufiuna gore, /(4) ^1 t) L.l' - --!!:,: 2- NT-"^ 6 ab ikinci rnertebeden siirekli tiirevlere sahip y =/(l) efirisinin A ve B noktalarrndaki tefetleri birbirine paraleldir. fo f'(*l o, J a.f '(x) integralini hesaplayrmz, 6./o l+xru J,r 4r-3E' h\ 1 <[' j u) to- r**o*ts c) +,l rr*,"-' 6 t... y -"f (r) JL Siirekii/ fonksiyonu ieinf(z) = 3 oldueuna gore, v rx ]\t t'1 J, frttat imitini hesaplayrnrz. Siirekli tiireve sahip ve grafigi yukartda verilen fonksiyonu iein fi t,/-.\ 13 l,'jfa*-1,'9or 1 sx+h i:ohjx limll uu limitini hesaplayrmz. - [*' s4" f(t)dt=xcostrx,*^ll*u, J9. ifadesini hesaplayrntz. YarrEapt 3 birim olan kiire, merkezinden ;r birim uzakhkta bir dtizlemle kesiliyor. Dairesel dik kesitin alanrnrn ortalama de[eri nedir? oldufuna gdre /(4) kagtrr? 289

5 f2 : [x'ld*=5-o-^e oldufunu goster:iniz. :2" Herne N iein 6" Siirekli bir.f : la,bl -+ R fonksiyonu igin 1b fafix=o ra ise (a,b) arahfrnda/(c) = 0 olacak qekilde en az bir c noktasrnrn varhfirnr gosteriniz. 2 rttz n(n-l)(4n+l) fi"enar = oldulunu gdsteriniz. a) Herne Nigin 7. f v. g, la,bl izettnde siirekli iki fbnksiyon ve tb 1b ft*tar=l g;-)ctx Ja " Ja olsun. [a,d] de f(c) =6(c) olacakqekilde enazbir c noktasrnrn varhlrnr gosteriniz. f" n -n q\n- l)qn - l) fg)= M'ndt= J \--', 6 oldulunu gcisteriniz. b) x> 0 iqin rx f(x)= [tn'at bigiminde tanrmlanan / fonksiyonunun [0,3] lrfr ndaki grafi[i n i gizinrz. ata- t. 8. = l' ft 2 r-t = ' fr 1 olsun. t- r- a.os3"+bsin3;v cosx + sln.t asin3x+bcos3x, -ax sln-x + cos'x rly ', h + b)(n - 1) oldu[unu gosteriniz a) Siirekli ve bir tek/ fonksiyonu iein 9" t2 dv - q^ re a2 + b2 tan2 x 2a(a + b) fn / f( cosx)dx = 0 " oldufunu gcisteriniz, 5" olaca[rm gcister:iniz. b) Sijrekli ve bir Eift/ fonksiyonu igin tn# [(cosx)dx=2 ' f(cosx)dx " oldufr.rnu gosteriniz. T.L! / cosxlnf,ix= 0 n0" /: [0,1] -+ R fonksiyonu siirekli olsun. Agaftdaki bafrntrlarrn dofrulufunu gosteriniz. tt a) [(sinx)dx=21" '* f(sinx)dx./0 f\fi b) l' flsinx)dx= l'.[(cosx)dx " rfr tnl c) / xf(sinx)dx=*.f(sinxtdx ' Zr0 rt rn d) / /(sinx) /(cosx)dx=0 '

6 .f : R + R fonksiyonu siilekli oisun Agafrdaki e$itliklerin clofrulufunu gosteriniz' ro fa At r\rtdr=l lt?l+f(-x))dx r. t^ -_ b)!_ rr.'v.=z l".f{*')a* -7 ru':a'=o /, esas PeriYodu P olan olsun. ftxp t P ' frrt ax -- n l ltx1ax olacafirnr gosteriniz' ro' periyodik fonksiyon L3. f :la,bl-+r fonksiyonu la,bl deintegrallenebilir olsun. lx F(x) = J" f(t) dt Vx iein.f '(x)> 0 r'e fl1) = 0 olsun' g{r)= lr' flt)at fonsiyonu do[ludur? aqa[rdaki dnermelerden hangilerl a) g tiirevlenebilen bir fonksiyondur. b) g, x de siireklidir. c) x =, y = g(x) in bir diiqey asimtotridur. d) B, x = 1 de yerel minimuma sahiptit" e) x =, nin bir ddntim noktasldrr. f) y = {@) efrisinin grafili 0x- eksenini x = 1 de keser. 16" Her m rcel sayrst igin "+.m /' tt""'' dr=4 sintx+cos"'x + oldu[unu gosteliniz' eqitli$ ile tanrmlanan F fonksiyonunun siilekli oldufunu gdsteriniz., rlnr 14 + f1)dt= dx r0 ise /(x) nedit?

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

Şekildeki gibi yarıçapları 1 cm olan üç çember birbirine teğettir. Bu çemberler arasındaki a- lan kaç cm 2 dir? A) π. E) π+ 2 3. Çözüm: üçgendir. 2.

Şekildeki gibi yarıçapları 1 cm olan üç çember birbirine teğettir. Bu çemberler arasındaki a- lan kaç cm 2 dir? A) π. E) π+ 2 3. Çözüm: üçgendir. 2. . + - + + - x y x y x y x y ifadesi aşağıdakilerden hangisine eşittir? ) - B) - C) - x y x y x y D) - E ) 5 - x y x y + - + + - 5 - x y x y x y x y x y. Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

- ~ - p.:, o... :ı> .~ ~ 3. ~... c: (1) ::ı 3 ..., < ... "O ~ rı ;!. o tı) l"li. ... '< j ;ı;. r ~ v:ı ~ ...

- ~ - p.:, o... :ı> .~ ~ 3. ~... c: (1) ::ı 3 ..., < ... O ~ rı ;!. o tı) lli. ... '< j ;ı;. r ~ v:ı ~ ... Q. :,. [ ;::l (JQ l O'Q (h ::: ;:,;' (JQ tı) l"li!t "'I N p.:,,, : ") r ti 8 cr'5 r.! :,;.. Q. ı;ıı,. r r (/) tn.{/),, < ) rı, ff ı ı r ı "' ı :: ı,,,, ;:,;', ı (li p.:, p.:, ::! l"li ti" p.:,,(/),,{j)..

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

A)22 B)24 C)zo D)za E)so

A)22 B)24 C)zo D)za E)so üçrırın çıorty 1 1. bir üçgen _...-\ _,.-..\ m() : m() Io1 = 2.. Ia1 = 4.. I + ; = 9.1n 4. 6 üçgeninde [] dı açıortay n1 = 4., IR1 = 6.. l = 12 m 2 x Yukarıdakiverilere göre, = x kaç m dir? )ı )4 )5 )6

Detaylı

t-) fe'ki/j. gdslen'kr->

t-) fe'ki/j. gdslen'kr-> SfnTiN f- Vize 8/s/oZ t-) fe'ki/j. gdslen'kr-> 5o kn tr /o5,y,c, sbferat'o l".trl t' 1 rtolu Cubul '4uvve/trti fusa7/2lntz' r--+' -r 4:--* r ---11*- - 1-) fefi;l

Detaylı

A)8 B)9 C) ıo D) ıı E)12

A)8 B)9 C) ıo D) ıı E)12 üçrırıo LN 1 1. bir üçgen t]] t] t].l- t] o1 = 4., Ir =., = x + 3 Yukarıdakiverilere göre, x kaç m dir? 3457 a = * 4. dlk üçgen t]j- t] t]j- t] n1 = 15 m a1 = 0 m O Yukarıdakiverilere göre, l= x kaç m

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

MATEMAT K 6 ÜN TE II NTEGRAL

MATEMAT K 6 ÜN TE II NTEGRAL ÜN TE II NTEGRAL ntegralin tan m ntegral alma yöntemleri Basit fonksiyonlar n integralleri Rasyonel ifadelerin integrali Trigonometrik de iflken de ifltirme E ri alt nda kalan bölgenin alan Belirli integral

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ HAZİRAN 04 PAZAR TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun,

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

y tr$e y * A KR, K*N H RA y*hej A!a-, ;' ::*T KO t] {!.!,r]:!]!t;.ju}!rr, L$yf \GF.nff t'n, E.]:"jq. L}ll :y:l l l Antnlajt S t Yerlc lc Ahalajl Su NalI Aralarfln -'al lc LJ] ve l]sa,sl l-lkkdt "t'*bl,,,,_,_t";;;:;:.:1,1,l,

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) 3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur. Öğrenci Seçme Sınavı (Öss) 8 Haziran 6 Matematik II Soruları ve Çözümleri. f (x) + x lim f ( x) a x x ve, x ise fonksiyonu için,, x lim f ( x) b olduğuna göre, a b kaçtır? x A) B) C) D) E) Çözüm x x için,

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

MEMBRAN TRANSPORT MEKANİZMALARI

MEMBRAN TRANSPORT MEKANİZMALARI MMBRA TRASPRT MKAİZMALARI Dr.Sinan Trablus Membran prlarından geçebilen slütler, iki değişik mekanizma ile taşınırlar: a) Diffüzyn b) Ultrafiltrasyn (knveksiyn) Rastgele mlekül hareketinin bir snuu lduğu

Detaylı

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 3. HAFTA SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi TAYLOR TEOREMİ Eğer f C n [a,b] ve f n+1 [a,b] de mevcut ise, x

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB00 Analiz I 3 Aralık 03 Final Sınavı Öğrenci Numarası: Adı Soyadı: - Taatlar: Sınav süresi 0 dakikadır. İlk 30 dakika sınav salonunu terk etmeyiniz.

Detaylı

00322 ELEKTRiKMAKiNALARı-II

00322 ELEKTRiKMAKiNALARı-II 00322 ELEKTRKMAKNALARı-II Vze Sınavı 08.04.2013 5.1) 5.2) 2300 V, 1000kVA, 0.8 ger güç faktörlü 60Hz, 2 kutuplu, V-bağlı br senkron jeneratör, 1.1 O'luk senkron reaktans ve O.lSO'luk br armatür drencne

Detaylı

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x SOULA. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim! lim sin(t )dt sin 4 np n! i= n sin i n. q + arcsin belirli integralini hesalay n z. Cevab n z n aşamalar n belirtiniz. 3. 4

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

1085 - Devlet Demiryolları ve Limanlan İşletme Umum Müdürlüğünün 1951 bütçe yılı hesabı katı Kanunu

1085 - Devlet Demiryolları ve Limanlan İşletme Umum Müdürlüğünün 1951 bütçe yılı hesabı katı Kanunu 1085 - Devlet Demiryolları ve Limanlan İşletme Umum Müdürlüğünün 1951 bütçe yılı hesabı katı Kanunu (Eesmî Gazete ile ilâm : 14. VII. 1956 - Say t : 9358) Wo» Kabul tarihi 6782 9 11.1056 MADDE 1. Devlet

Detaylı

e e ex α := e α α +1,

e e ex α := e α α +1, s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik - Bilgisayar Bölümü MC 886 ntegral Denklemler... Yßliçi Sßnavß CEVAPLAR Talimatlar: Sßnav süresi 9 dakikadßr. lk dakika sßnav salonunu terk etmeyiniz.

Detaylı

CEVAP ANAHTARI POLİNOMLAR - 4 POLİNOMLAR - 2 POLİNOMLAR - 1 POLİNOMLAR - 3. b) zaferbalci.com. 2. zaferbalci.com

CEVAP ANAHTARI POLİNOMLAR - 4 POLİNOMLAR - 2 POLİNOMLAR - 1 POLİNOMLAR - 3. b) zaferbalci.com. 2. zaferbalci.com POLİNOMLAR POLİNOMLAR POLİNOMLAR POLİNOMLAR. zaferbalci.com. zaferbalci.com. zaferbalci.com.. zaferbalci.com.. zaferbalci.com. 99 +..,,,,,,,. x x. x 0.... zaferbalci.com. (x + ).Q(x) + 0. E. x +. 0. a)

Detaylı

T.C. istanbul Valilili. F-l'l*:" ' 1.;'j".': I .KOKULU MUDURLUGUNB KADIKOY. Ogretinr yrh gelir-gider tablosu aga$rdal6i gibi olup, 391.780.

T.C. istanbul Valilili. F-l'l*: ' 1.;'j.': I .KOKULU MUDURLUGUNB KADIKOY. Ogretinr yrh gelir-gider tablosu aga$rdal6i gibi olup, 391.780. Kadrkiiy ilges: T.C. istanbul Valilili i Erenkdy ilkokulu Miidtirliifii "- ::.:il-, F-l'l*:" ' 1.;'j".': I ERENKOY i].kokulu MUDURLUGUNB Okul A ve il an panosr ; Birlilimiz 2013-2014 Egitin La asrlmrgtr.

Detaylı

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir.

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Tanım: Eğer bir I aralığındaki her x için F (x) = f(x) ise, F fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Örneğin, f = x 2 olsun. Eğer Kuvvet Kuralı nı aklımızda

Detaylı

2010 oldu¼gundan x 2 = 2010 ve

2010 oldu¼gundan x 2 = 2010 ve ) 444400 say s ndaki rakamlar n yerleri de¼giştirilerek 7 basamakl kaç farkl say yaz labilir? Çözüm : Bu rakamlar n bütün farkl 7 li dizilişlerinin say s 7! olacakt r. Bu dizilişlerin 4!! soldan ilk rakam

Detaylı

İNTEGRAL İŞLEMLER LEMLERİ

İNTEGRAL İŞLEMLER LEMLERİ İKTİSADİ DİNAMİKLİK K VE İNTEGRAL İŞLEMLER LEMLERİ 2 İktisat biliminde dinamiklik kavramı, değişkenlerin değişim süreçlerini, dengeye geliş ya da uzaklaşmalarını içeren bir analiz tipidir. Daha önce karşılaştırmalı

Detaylı

TÜREVİN UYGULAMALARI. Maksimum ve Minimum Değerler. Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun.

TÜREVİN UYGULAMALARI. Maksimum ve Minimum Değerler. Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun. Maksimum ve Minimum Değerler Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun. TÜREVİN UYGULAMALARI D içindeki her x elemanı için f(c) f(x) ise f fonksiyonunun c noktasında mutlak maksimumumu vardır.

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Komisyon İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN

Komisyon İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN Komisyon İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TAMAMI ÇÖZÜMLÜ 0 DENEME ISBN 978-605-8-8-5 Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. Pegem Akademi Bu kitabın basım, yayın ve satış hakları

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

ANAL IZ III Aras nav Sorular

ANAL IZ III Aras nav Sorular Ad ve Soyad : Numaras : ANAL IZ III Aras nav Sorular 26.11.27 1. x 1 = p 3 ve x n+1 = p 3 + x n ; n = 1; 2; ::: biçiminde tan mlanan (x n ) dizisinin yak nsak oldu¼gunu gösteriniz ve limitini bulunuz.(2)

Detaylı

3.Ders Rasgele Değişkenler

3.Ders Rasgele Değişkenler 3.Ders Rasgele Değişkenler Tanım:,U, P bir olasılık uzayı ve X : R X olmak üzere, a R için, : X a U oluyorsa X fonksiyonuna bir rasgele değişken denir. a R için X, a : X a U özelliğine sahip bir X rasgele

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13 4. İNTEGRALLER 4.1. Kompleks İntegrasyon Tanım 1. f : [a, b] R fonksiyonu f(t) u(t) + iv(t) biçiminde olsun. Eğer u ve v, [a, b] aralığı üzerinde integrallenebilirse, olarak tanımlanır. b f(t)dt b u(t)dt

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR,

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR, , 00 M ebir Notları Gökhan EMĐR, gdemir@yahoo.com.tr Trigonometri. TEST I π 'ün esas ölçüsü kaçtır? ) p ) p ) p ) π p. tanθ = ) ) olduğuna göre, sinθ değeri kaçtır? ) ). 0 'nin esas ölçüsü kaçtır?. θ

Detaylı

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E) ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MATEMAT K TEST KKAT! + Bu bölümde cevaplayaca n z soru say s 40 t r + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 2 4. 4. 0,5 2. iflleminin sonucu

Detaylı

B)3 c)4 D)s E)o. ^ )z. A)s 8)6 c)7 D)8 E)9. A) +o B) +ı Qqz D) +ı E)q + A)6 B)7 c)8 D)9 E)10. üçcrr,ıoe Açı KENAR gn ınrıları. , t El : 30o RB1:6..

B)3 c)4 D)s E)o. ^ )z. A)s 8)6 c)7 D)8 E)9. A) +o B) +ı Qqz D) +ı E)q + A)6 B)7 c)8 D)9 E)10. üçcrr,ıoe Açı KENAR gn ınrıları. , t El : 30o RB1:6.. üçrr,ıo çı KNR gn ınrılrı 1. ikizkenar üçgen. bir üçgen m () = 0" l = m () : o" = e, ne =, m () : 50o f r1 = 1 m() = O", t l : 0o m() :0" Yukarıdaki veriiere göre, a a ıdakilerden hangisi do rudur? Yukarıdaki

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

Ö.S.S. 2006. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. = -1 olur. lim. x 2

Ö.S.S. 2006. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. = -1 olur. lim. x 2 Ö.S.S. 6 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. f(x) x, x, x x olduğuna göre, a b kaçtır? ise fonksiyonu için, lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için x > ve x < x x xx - olur. lim

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

!"!#$"%&'()%#*$+,$(*-%

!!#$%&'()%#*$+,$(*-% !"#$%"'()*+,%-.%),/!"!#$"%'()%#*$+,$(*-%.%/%$0$1%!"#$%" 34-#5$%" 6()*"()*-.47)#"#7# *8*- 9("*:,*)*"(-!"#$%" +,%-.%),;

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

reparmmetrizasyonudur,

reparmmetrizasyonudur, 13 Reparametri2asyonTanimi_rikpHRnveFilIipHRngrikriisinaaFidaklersaglanirsaTejrisineJhinreparametrizasyonudeniriilHertenueLiynnbirOilJFHkiP1vardrriiloflikip1kpTdizgindiriiilFCEl86lIDVEECIploltliainFlEtHHnoktaayIj@diiynnofpycontGnn13UTARIFihnreparametrisasyonuiserdaFhmreparametrizaryonudurtolTlHEoYtIiIyltklasts

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 26 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 26 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınavı (Öys) / 6 Haziran 99 Matematik Soruları Ve Çözümleri. Birler basamağı 0 olan, ile bölünebilen, iki basamaklı en büyük pozitif doğal sayının, birler basamağı 0 olan, ile bölünebilen,

Detaylı

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.112 Kompleks Değişkenli Fonksiyonlar 2008 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms http://tuba.acikders.org.tr

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 10 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 8 Aralık 1999 Saat: 09.54 Problem 10.1 (a) Bir F kuvveti ile çekiyoruz (her iki ip ile). O

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

"#$%&'%&!()&*)+#!,-./!.0!"%123!.4,.!5!6,!"%123!.4,7! /48!(9*)$!:%'2;$%!<%=>&?!

#$%&'%&!()&*)+#!,-./!.0!%123!.4,.!5!6,!%123!.4,7! /48!(9*)$!:%'2;$%!<%=>&?! "$%&'%&()&*)+,-./.0"%123.4,.56,"%123.4,7 /48(9*)$:%'2;$%&? "$%&%'%()*+,"'*")-.-'/(*-,)-0./1-,)) "$%&'()*+,%-'.,+/-01"2".3$+'4")56'4$7'80970-6'()730-':)$72);,+0"'4,%-5%2) %,$-1%'?'"%+%79%@%$%&'9%@7'$A*,+0B*072$2&2''

Detaylı

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre,

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre, TI BSINCI TEST - 1 1 1 π dir π Bun göre, 4 > 1 CEV B de ve cisimlerinin e ypt klr s nçlr eflit oldu un göre, SX S Z + 4 8 S Y I II III CEV B Tu llr n X, Y ve Z noktlr n ypt s nç, X S Y S Z S dir Bun göre,

Detaylı

; k = 1; 2; ::: a (k)

; k = 1; 2; ::: a (k) Analiz III Ara S nav 2 Kas m 2 x k = ; 2 ; :::; ; k = ; 2; ::: olmak üzere (x k ) R dizisi veriliyor. ; dizi ise (x k ) dizisi de yak nsak olur. Ispatlay n z. 2 ; :::; 2 A; B R olsun. A B ise A B olur

Detaylı

Kirişlerde İç Kuvvetler

Kirişlerde İç Kuvvetler Kirişlerde İç Kuvvetler B noktasındaki iç kuvvetlerin bulunması B noktasındaki iç kuvvetler sol ve sağ parça İki boyutlu problemlerde eleman kesitinde üç farklı iç kuvvet oluşur! 2D 3D Pozitif normal/eksenel

Detaylı

Yüksek Mertebeden Diferansiyel Denklemler. İkinci Mertebeden. İndirgenebilir Diferansiyel Denklemler

Yüksek Mertebeden Diferansiyel Denklemler. İkinci Mertebeden. İndirgenebilir Diferansiyel Denklemler Yüksek Mertebeden Diferansiyel Denklemler İkinci Mertebeden İndirgenebilir Diferansiyel Denklemler YÜKSEK MERTEBEDEN DİFERANSİYEL DENKLEMLER ikinci mertebeden bir diferansiyel denklem, bilinmeyen y(x)

Detaylı

Ö.Y.S. 1995. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. a, b, c, d rakamları birbirinden farklı, tek ve abcd sayısı en büyük olacağından

Ö.Y.S. 1995. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. a, b, c, d rakamları birbirinden farklı, tek ve abcd sayısı en büyük olacağından Ö.Y.S. 99 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır. Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E)

Detaylı

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi;

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi; S i s t e m - a t i k M e m b r a n K a p a k S i p a r i T a k i p v e Ü r e t i m T a k i p S i s t e m i ; T ü r k i y e l d e b i r i l k o l a r a k, t a m a m e n m e m b r a n k a p a k ü r e t

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında Bölüm #2 Laplace Dönüşümü F (s) = f(t)e st dt s > şeklinde tanımlanan dönüşüme LAPLACE dönüşümü adı verilir ve kısaca L{f(t)} ile sembolize edilir. Diferansiyel denklemlerin Çözümünde Laplace dönüşümü

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Fizik 101: Ders 16. Konu: Katı cismin dönmesi Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei Rotasyon

Detaylı

3-P C ile h a b e r le şm e y e u y g u n b ir a r a b ir im. (IS A, P C I, U S B g ib i )

3-P C ile h a b e r le şm e y e u y g u n b ir a r a b ir im. (IS A, P C I, U S B g ib i ) M O D E M N E D İR : M o d u la to r -D e m o d u la to r k e lim e le r in in k ıs a ltm a s ı M O D E M. Y a n i v e r ile r i s e s s in y a lle r in e s e s s in y a lle r in i v e r ile r e d ö n

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

BÖLÜM 10 BORULAR İÇERİSİNDE AKIM. Hidrolik - ITU, Ercan Kahya

BÖLÜM 10 BORULAR İÇERİSİNDE AKIM. Hidrolik - ITU, Ercan Kahya BÖLÜM 10 BORULAR İÇERİSİNDE AKIM 10.1. HAREKET DENKLEMİ v Zamanla değişmeyen akımı v Hareket denklemini (d) HAREKET DENKLEMİ (p + L1p) m 2 - pnr 2 - y (m 2 L1x) sina - 't (2m L1x) Kütle x DEĞERLENDİRME:

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir. .7. Analitik ve Harmonik Fonksiyonlar Tanım 1. f(z) nin z 0 da f (z 0 ) türevi mevcut ve z 0 ın bir D ε (z 0 ) = {z : z z 0 < ε} komşuluğundaki her noktada türevi varsa bu durumda f ye z 0 da analitiktir

Detaylı

f : A B f(x) a b.sin (cx d), g(x) a b.cos (cx d) TRİGONOMETRİ-2 PERİYODİK FONKSİYONLAR f, A kümesinden B kümesine tanımlı bir fonksiyon olsun.

f : A B f(x) a b.sin (cx d), g(x) a b.cos (cx d) TRİGONOMETRİ-2 PERİYODİK FONKSİYONLAR f, A kümesinden B kümesine tanımlı bir fonksiyon olsun. TRİGONOMETRİ-2 PERİYODİK FONKSİYONLAR f, A küesinden B küesine tanılı bir fonksiyon olsun. f : A B Her x A için f(x+t)=f(x) olacak şekilde sıfırdan farklı en az bir T reel sayısı varsa; f fonksiyonuna

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

İTME VE MOMENTUM. 1. P i

İTME VE MOMENTUM. 1. P i 7 BÖÜM İTME E MOMENTUM AIŞTIRMAAR ÇÖZÜMER İTME E MOMENTUM P i 0/s kg P s 0/s kg x +x düzle a Du va rın cis e u gu la dı ğı it e, o en tu de ği şi i ne eşit tir P i i 0 0 kg/s P s s ( 0 0 kg/s it e P P

Detaylı

Soru 1. Soru 4. Soru 2. Soru 5. Soru 3. Soru 6.

Soru 1. Soru 4. Soru 2. Soru 5. Soru 3. Soru 6. İ s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik -Bilgisayar Bölümü MB500, MC 56, MC 56 - NÜMERİK ANALİZ (I) 0 Ocak 0 CEVAPLAR Talimatlar Sınav süresi 5 dakikadır. İlk 0 dakika sınav salonunu

Detaylı

Konik Kesitler ve Formülleri

Konik Kesitler ve Formülleri Konik Kesitler ve Formülleri Konik Kesitler ve Formülleri B 1 (0, b) P (x, y) A 2 ( a, 0) F 2 ( c, 0) F 1 (c, 0) A 1 (a, 0) B 2 (0, b) Şekil 1: Elips x2 a 2 + y2 b 2 = 1. Konik Kesitler ve Formülleri B

Detaylı

KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları

KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları Kesme ve Moment Diyagramlarının Oluşturulması için Grafiksel Yöntem (Alan Yöntemi) Kiriş için işaret kabulleri (hatırlatma): Pozitif

Detaylı

Elemanter fonksiyonlarla yaklaşım ve hata

Elemanter fonksiyonlarla yaklaşım ve hata Elemanter fonksiyonlarla yaklaşım ve hata Prof. Dr. Erhan Coşkun Karadeniz Teknik Üniversitesi, Fen Fakültesi Matematik Bölümü Kasım, 2018 e 5 Kasım, 2018 1 / 48 Elemanter fonksiyonlarla yaklaşım ve hata

Detaylı

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar 11. SINIF No Konular Kazanım Sayısı GEOMETRİ Ders Saati Ağırlık (%) 11.1. TRİGONOMETRİ 7 56 26 11.1.1. Yönlü Açılar 2 10 5 11.1.2. Trigonometrik Fonksiyonlar 5 46 21 11.2. ANALİTİK GEOMETRİ 4 24 11 11.2.1.

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

MAT1009 Matematik I. Ders Notları. Dokuz Eylül Üniversitesi

MAT1009 Matematik I. Ders Notları. Dokuz Eylül Üniversitesi MAT9 Matematik I Ders Notları Dokuz Eylül Üniversitesi 26 2 İçindekiler Fonksiyonlar 5. Polinomlar................................................. 7.2 Trigonometrik Fonksiyonlar.......................................

Detaylı

BÖLÜM IV SİNÜZOİDAL KARARLI-DURUM (STEADY-STATE) ANALİZİ

BÖLÜM IV SİNÜZOİDAL KARARLI-DURUM (STEADY-STATE) ANALİZİ BÖLÜM IV SİNÜZOİDAL KARARLI-DURUM (STEADY-STATE) ANALİZİ Bağılı veya bağısız bir sinüzoidal kaynak, zaana bağlı olarak sinüzoidal şekilde değişen bir gerili üretir. Bu tip kaynaklara ait gerili ifadesi

Detaylı