Nokta (Skaler) Çarpım

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Nokta (Skaler) Çarpım"

Transkript

1 Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda çözüm için vektö yöntemlei uygulanmalıdı. Skale çapım, iki vektöün çapımı için özel bi yöntemdi. ve B vektöleinin skale çapımı, Bşeklinde yazılı ve skale çapım B diye okunu. ve B nin büyüklüklei ile iki vektö aasındaki açının kosinüsünün çapımı olaak tanımlanı. B B cos θ 0 o θ 180 o 1

2 2 Bu çapıma skale çapım veya nokta çapım da deni. Bu işlemin kuallaı : Değişme özelliği (komütatiflik ) Skale ile çapım Dağılma kualı (distibutiflik) ) ( ) ( ) ( ) ( ) ( ) ( D B D B ab B a B a B B + +

3 3 Katezyen vektö fomülasyonu B cosθ B Fomülünü kullanaak katezyen biim vektölein çapımını bulmak için kullanılabili. Öneğin: 0 ˆ ˆ 0 ˆ ˆ 1 ˆ ˆ 1 ˆ ˆ 0 (1)(1) cos 90 ˆ ˆ 1 (1)(1)cos0 ˆ ˆ j k k i k k j j j i i i o o

4 Uygulamala Skale çapımın mekanikte iki önemli uygulama alanı vadı: 1) İki vektö veya kesişen doğula aasındaki açı 4

5 Uygulamala 2) Bi vektöün bi doğuya paalel ve dik bileşenleinin bulunması: a : a-a doğultusundaki vektöünün bileşeni. nın izdüşümü de deni. a-a nın doğultusu u a biim vektöüyle belilenmişse, a vektöünün şiddeti skale çapımla bulunabili. a a u a ( u 1) ua cosθ cosθ u şeklinde bulunu. a a 5

6 6 vektöünün dik bileşeni:. ' sin cos ) cos ( bulunu den veya u u a a a a a + θ θ θ ÖRNEK 6 ekilde veilen F kuvvetinin B çubuğuna paalel ve dik bileşenleini bulunuz.

7 7

8 Noktasal Cismin Dengesi Bu bölümde; Kuvvetlei bieşenleine ayıma ve katezyen vektö şeklinde ifade etme yöntemlei noktasal cismin dengesini içeen poblemlein çözmede kullanılacaktı. Bölüm 3 8

9 Noktasal Cismin Dengesi Denge Koşulu: Bi maddesel noktaya etkiyen bütün kuvvetlein bileşkesi sıfısa maddesel nokta dengededi. Bi paçacık, başlangıçta haeketsizken halen duağan halde bulunuyosa veya başlangıçta haeketli iken halen sabit hıza sahipse dengededi. denge veya statik denge ifadesi çoğu zaman dumakta olan bi nesneyi tanımlamak için kullanılı. 9

10 Denge duumunu koumak için Newton un biinci haeket kanununu sağlamak geeklidi: bi paçacık üzeine etkiyen bileşke kuvvet sıfı ise, paçacık dengededi. F 0 Bu fomül denge için geekli koşul olmakla kalmayıp, aynı zamanda yeteli koşuldu. Bu duum Newton un ikinci haeket kanunu ile otaya konu. F ma ma 0 a 0 Paçacık sabit hızla haeket etmekte veya dumaktadı 10

11 Sebest Cisim Diyagamı Denge denklemini doğu uygulayabilmek için, paçacık üzeine etkiyen tüm bilinen ve bilinmeyen kuvvetlei hesaba katmak geeki. Bunun için paçacığı çevesinden soyutlanmış ve sebest olaak gösteen bi şema çizili. Paçacık üzeine etkiyen tüm kuvvetlei gösteen bu çizime sebest cisim diyagamı deni. Sebest cisim diyagamını çizeken kullanılan iki bağlantı tipi : Yayla İple ve makaala 11

12 Yayla Mesnet olaak linee elastik bi yay kullanılıyosa, yayın uzunluğu, üzeine etkiyen kuvvet ile doğu oantılı olaak değişi. Yaylaın elastikliğini tanımlayan : yay sabiti (k) F ks s l l 0 l 0 F 0.4 m k 500 N / m ks (500N / m)(0.6m l 0.6 m l 0.4m) 100N 0.2 m F ks (500N / m)(0.2m 0.4m) 100N 12

13 İple (Kablola) ve Makaala Tüm kablolaın ihmal edilebili bi ağılığa sahip ve uzayamaz olduğu kabul edilecekti. Kablola sadece çekme kuvveti taşıla ve bu kuvvet daima kablo doğultusunda etki ede. ekilde hehangi bi θ açısında, kablo uzunluğu boyunca sabit T geilmesi oluşmaktadı. 13

14 Sebest Cisim Diyagamı Çizme Yöntemi Öncelikle yapılması geeken; Uygun bi paçacık belilendikten sona buna etkiyen kuvvetlei gösteebileceğimiz sebest cisim diyagamını basit bi şekilde çizmekti. 14

15 1.adım: paçacık çevesinden soyutlanaak, sebest kaldığı düşünüleek genel hatlaıyla çizili. 2.adım: paçacık üzeine etkiyen bütün kuvvetle gösteili. Bu kuvvetle cismi haeket ettimeye çalışan aktif kuvvetle ve/veya haeketi önleme eğilimi olan kısıtlamala ve mesnetlein neden olduğu tepki (eaktif) kuvvetlei di. 3.adım: bilinen kuvvetle uygun büyüklük (şiddet) ve doğultulala (yön) işaetlenmelidi. Bilinmeyen kuvvetlein şiddet ve yönü ise hafle gösteili. Bi kuvvetin etki çizgisi biliniyo, ancak yönü ve şiddeti bilinmiyosa, kuvvet yönünü tanımlayan ok ucu vasayıma göe seçili. Doğu yön şiddet bulunduktan sona işaetleni. Tanım geeği şiddet daima pozitifti, çözüm negatif bi skale veise eksi işaeti kuvvetin ucunun veya yönünün başta vasayılanın tesi yönde olduğunu göstei. 15

16 Önek 7 C noktasının sebest cisim diyagamını çiziniz. 16

17 Düzlemsel Kuvvet Sistemlei F 0 F x 0 ˆ F + xi F y F 0 y ˆj 0 x-y düzleminde bulunan kuvvetlein dengede olması için vektöel toplamın sıfı olması geeki. Bu vektöel denklemin sıfıa eşit olması için x ve y bileşenlei sıfıa eşit olmalıdı. Bu iki denklem en çok iki bilinmeyen kuvvetin bulunması için kulanılı. Denklemlede kuvvetlein yönlei de dikkate alınmalıdı. 17

18 Skale gösteim Bileşenlein gösteiminde skale notasyon kullanılacaktı. He bi bileşenin yönü sebest cisim diyagamında bileşenin ok yönüne kaşı gelen bi cebisel işaet ile ifade edili. Bi kuvvet bileşeninin işaeti bilinmiyosa, alınan yön pozitif olu, çözüm negatif çıkasa kuvvet yönünün tes olduğu anlaşılı. Öneğin, F x 0 + F F 10N 18

19 Önek 8 D silindii 60 kg dı. B ve BC kablolaında oluşan çekme kuvvetleini bulunuz. 19

20 20

21 Önek 9 8 kg lık lambanın şekildeki gibi taşınabilmesi için C kablosunun uzunluğu ne olmalıdı? l B 0.4 m (defome olmamış boy) 21

22 22

23 Ödev 7 W ekilde gösteilen kablolada 0.5 kn un üzeinde çekme kuvveti oluşmaması için asılı olan kovanın ağılığını (W) bulunuz. 23

24 Üç Boyutlu Kuvvet Sistemlei Paçacık dengesinin sağlanması için: Paçacık üzeine etkiyen kuvvetle i, j, k bileşenleine ayılısa: Bu denklemle, paçacığa etkiyen x, y, z kuvvet bileşenleinin cebisel toplamlaını göstemektedi, 0 dı. Bu denklemle ile en fazla 3 bilinmeyen kuvvet bulunabili. 24

25 Önek N luk sandığı taşımak için kullanılan kablolada oluşan kuvvetlei bulunuz. 25

26 26

27 Kuvvet Sistemlei Bi kuvvetin bi nokta veya eksene göe momentinin bulunması Bi noktadan geçmeyen kuvvet sistemleinin bileşkeleinin bulunması Kuvvet çiftinin oluştuduğu momentin bulunması İki ve üç boyutlu kuvvetle için moment hesaplanması Moment bi cismi döndümeye çalışı, denge ise cismin dönmemesini geektii. Bi cisme bi kuvvet uygulandığında, cismi etki çizgisinin dışında bi nokta etafında döndümeye çalışı. Bu döndüme eğilimine tok veya daha sık kullanıldığı şekliyle moment deni. 27

28 Bi kuvvetin momenti Bi kuvvetin bi noktaya veya bi eksene göe momenti (M), kuvvetin cismi o nokta veya eksen etafında döndüme eğiliminin bi ölçüsünü göstei. M 0 F. d Momentin şiddeti, F kuvvetinin şiddeti ile oantılıdı ve F kuvvetine dik olan moment kolu d ile oantılıdı. (b) de moment kolu daha kısa! d dsinθ (d <d) (c) de θ0 d 0 M0 28

29 Moment daima F ve d yi içeen düzleme dik bi eksen etafında etkimektedi. Ve bu eksen düzlemi, O noktasında kesmektedi. iddeti M 0 F. d olan momentin doğultusu sağ el kualı kullanılaak belileni. 29

30 Bileşke Moment Bi kuvvet sistemi x-y düzleminde ye alısa, he bi kuvvetin O noktasına göe momenti z ekseni yönünde olacaktı. Sistemin bileşke momenti, bütün kuvvetlein momentleinin cebisel toplamı alınaak bulunabili, çünkü bütün moment vektölei aynı doğultudadı. Moment saatin tesi yönündeyse (+), saat yönündeyse (-) Sağ el kualına göe baş pamak sayfa düzleminin dışına doğu (+z ekseni) ise (+), içine (-z ekseni) doğuysa (-) 30

31 Önek 11 31

32 Önek 12 Etkiyen döt kuvvetin O noktasında oluştuduğu bileşke momentin değeini bulunuz. Pozitif moment yönü, +k yönünde, yani saatin tesi yönünde olduğu kabulü ile: 32

33 F kuvveti he zaman dönme etkisi yaatmayabili. F kuvveti noktasında M F.d momenti kada döndümeye çalışıyo, ancak geçek döndüme etkisi B mesnetinin kaldıılması halinde oluşu. Çiviyi çıkamak için F H kuvvetinin O noktasında yaatmış olduğu momentin, F N çivi kuvvetinin yaatmış olduğu momentten büyük olması geeki. 33

34 Vektöel çapım (çapaz çapım) Bi kuvvetin momenti, katezyen vektöle kullanılaak ifade edilebili. Bundan önce vektö çapımında kullanılacak olan çapaz çapıma bakalım. ve B vektöleinin vektöel (çapaz) çapımı sonucu C vektöü elde edili. C B C vektöünün şiddeti de şu şekilde bulunabili: C Bsinθ 34

35 YÖN: C vektöünün yönü, ve B vektöleinin bulunduğu düzleme dikti. Sağ el kualı ile belileni. C vektöünün yönü, u c biim vektöüyle kaakteize edilebili. Pamaklaımızı dan B ye doğu kıvıdığımızda başpamağımızın göstediği yön C vektöünün yönünü göstei. C B ( Bsinθ ) u c 35

36 Vektö çapım kuallaı asosiyatif özellik he duumda şiddet aynı doğultu aynı Distibutif özellik 36

37 Katezyen vektö fomülasyonu Katezyen biim vektöleinin çapaz çapımlaını bulmak için: ve B vektöleinin vektöel çapımı : Bu teimle düzenlenise : 37

38 Katezyen vektö fomülasyonu Vektöel çapım, deteminant fomunda da ifade edilebili. Bu deteminant (3 satı ve 3 kolona sahip) üç minö kullanılaak hesaplanı. Deteminant hesabı için minölein bulunması Bu üç bileşen toplanı ve deteminant bulunu : 38

39 Bi kuvvetin momenti: Vektö fomülasyonu Bi kuvvetin bi noktaya göe momenti M 0 F O noktasında F kuvvetinin etki çizgisinin hehangi bi yeine olan pozisyon vektöü Vektöel çapım ile belilenen moment doğu şiddet ve doğu yöne sahip olacaktı. 39

40 iddet M F M F sinθ F( sin ) 0 0 θ Fd θ ve F vektölei aasındaki açı d dik mesafe Yön Sağ el kualına göe momentin yönü belileni. 40

41 M 0 Taşınabililik (Tansmisibilite) ilkesi F F F Vektöel çapım işlemi, üç boyutlu poblemlede sıklıkla kullanılı. Çünkü kuvvetin etki çizgisinden O noktasına olan dik mesafeyi bulmaya geek yoktu. O noktasından F kuvvetinin etki çizgisinin hehangi bi yeine ölçülen vektöü moment hesabı için kullanılabili. F kuvveti etki çizgisinin hehangi bi yeine etkiyebili, ve O noktasında aynı moment etksini yaatı. 41

42 Momentin katezyen vektö fomülasyonuna göe bulunması + + Konum vektöü bileşenlei Kuvvet vektöü bileşenlei 42

43 Bi kuvvet sisteminin bileşke momenti M F Bi kuvvet sisteminin O noktasına göe bileşke momenti şöyle bulunu: 0 i i i 43

44 Önek 13 O noktasında oluşan moment değeini ve yönünü bulunuz. 44

45 45

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

MLER Bundan önce cismin tek bir parçacıktan olu unu kabul ettik. Genelde cismin çok sayıda parçacı ın (noktasal cismin) bile

MLER Bundan önce cismin tek bir parçacıktan olu unu kabul ettik. Genelde cismin çok sayıda parçacı ın (noktasal cismin) bile RİJİT CİSİMLER GİRİŞ Bundan önce cismin tek bi paçacıktan oluştuğunu kabul ettik. Genelde cismin çok sayıda paçacığın (noktasal cismin) bileşimi olaak incelenmesi geeki. Yani kuvvetlein çeşitli noktalaa

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

ÜNİTE: KUVVET VE HAREKETİN BULUŞMASI - ENERJİ KONU: Evrende Her Şey Hareketlidir

ÜNİTE: KUVVET VE HAREKETİN BULUŞMASI - ENERJİ KONU: Evrende Her Şey Hareketlidir ÜNTE: UET E HAREETN BUUŞMASI - ENERJ NU: Evende He Şey Haeketlidi ÖRNE SRUAR E ÇÖZÜMER. x M +x Bi adam önce noktasından noktasına daha sona ise noktasından M (m) 3 3 (m) noktasına geldiğine göe adamın

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

BÖLÜM 2 KORUNUM DENKLEMLERİ

BÖLÜM 2 KORUNUM DENKLEMLERİ BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur SIT MKINR Günlük yaşantımızda iş yapmamızı kolaylaştıan alet ve makineledi asit makinelele büyük bi yükü, küçük bi kuvvetle dengelemek ve kaldımak mümkündü asit makinalada yük, dengeleyici kuvvet ile gösteili

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Bölüm 3 - Parçacık Dengesi. Spring 2002 Equilibrium of a Particle 1

Bölüm 3 - Parçacık Dengesi. Spring 2002 Equilibrium of a Particle 1 Bölüm 3 - Parçacık Dengesi Spring 2002 Equilibrium of a Particle 1 3 Boyutta denge 0 Burada parçacık üzerineetkiyen tüm kuvvetlerin toplamıdır. Spring 2002 Equilibrium of a Particle 2 Spring 2002 Equilibrium

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER BÖÜ BASİ AİNEER AIŞIRAAR ÇÖZÜER BASİ AİNEER yatay düzlem 0N 0N 0N 0N fiekil-i fiekil-ii yatay düzlem 06 5 06 7 08 He iki şe kil de de des te ğe gö e tok alı nı sa a) kuvvetinin büyüklüğü 04 + 08 80 + 60

Detaylı

TEST - 1 BAS T MAK NELER. fiekil-ii

TEST - 1 BAS T MAK NELER. fiekil-ii BA A EER E - fiekil-i fiekil-ii difllisi fiekil - II deki konuma yönünde devi yapaak gelebili Bu duumda difllisi yönünde döne f f ve kasnakla n n ya çapla eflit oldu undan kasna- tu atasa, de tu ata,,

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

ÇEMBERİN ANALİTİK İNCELENMESİ

ÇEMBERİN ANALİTİK İNCELENMESİ ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p VİDALA VE CIVAALA d : Miniu, inö yada diş dibi çapı (=oot) d : Otalaa, noinal çap yada böğü çapı (=ean) d : Maksiu, ajö çap, diş üstü çapı λ : Helis açısı p : Adı (p=pitch) l (hatve): Civatanın bi ta dönüşüne

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

ESKĐŞEHĐR-ŞUBAT 2014. http://mizan.ogu.edu.tr.

ESKĐŞEHĐR-ŞUBAT 2014. http://mizan.ogu.edu.tr. ÖLÜM I ESKĐŞEHĐ-ŞUT 14 1 http://mian.ogu.edu.t. ÖLÜM I ÖLÜM ĐÇĐNEKĐLE ÖNSÖZ... ÖLÜM 1.... Safa ı 1.1 Giiş... 1.. Statikte Kullanılan Temel iimle... 1.3. Vektöel [Sinüs] ve Skale Çapım... ÖLÜM : MOMENT....1.

Detaylı

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 14- Des 6 Gauss Kanunu D. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynakla: -Fizik. Cilt (SWAY) -Fiziğin Temellei.Kitap (HALLIDAY & SNIK) -Ünivesite Fiziği (Cilt ) (SAS ve ZMANSKY) http://fizk14.aovgun.com www.aovgun.com

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi 3B Kuvvet Momenti Üç Boyutlu Kuvvet Sistemi M = r (vektör) X F (vektör) Her F kuvvetinin uzunluk r vektörünü bul Eğer verilmemişse, F kuvvetini de vektörel ifade et. Uzunluk vektörünü r bulmak için: Uzunlık

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları İZ101 İZİK-I Ankaa Ünivesitesi en akültesi Kimya Bölümü B Gubu Bölüm V: Newton un Haeket Yasalaı 05.12.2014 Aysuhan OZANSOY Bölüm-V: Newton un Haeket Yasalaı: 1. Kuvvet Kavamı 2. Newton un I. Yasası (Eylemsizlik

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve leri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boyutlu Kuvvet

Detaylı

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması Evensel kuvvet - haeket eşitliklei ve güneş sistemi uygulaması 1. GİRİŞ Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

5. Açısal momentum korunduğu için eşit zaman aralıklarında. 6. Uydular eşit periyotta dönüyor ise yörünge yarıçapları CEVAP: D.

5. Açısal momentum korunduğu için eşit zaman aralıklarında. 6. Uydular eşit periyotta dönüyor ise yörünge yarıçapları CEVAP: D. KOU 5 VSL ÇK SS Çözüle. S 5- ÇÖÜL 5. çısal oentu kounduğu için eşit zaan aalıklaında eşit açı taala. L v CVP: C liptik öüngede dönen udua etki eden çeki kuvveti h z vektöüne dik de ildi. Bundan dola çeki

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 Toplam 100 1 Mukavemet ve Statiğin Önemi 2 Statiğin

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR Giriş STATİK (1. Hafta) Mühendislik öğrencilerine genellikle ilk yıllarda verilen temel derslerin başında gelir. Sabit sistemler üzerindeki kuvvet ve momentleri inceleyen bir bilim dalıdır. Kendisinden

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

KLASİK MEKANİK-1 BÖLÜM-1 KLASİK MEKANİĞE GİRİŞ 1)UZAY VE ZAMAN:

KLASİK MEKANİK-1 BÖLÜM-1 KLASİK MEKANİĞE GİRİŞ 1)UZAY VE ZAMAN: KLASİK MEKANİK- BÖLÜM- KLASİK MEKANİĞE GİRİŞ )UZAY VE ZAMAN: Uzay ve zaman fiziğin en temel vasayımlaı ile ilgili kavamladandı. Uzay ve zamanın süekli olduğunu vasaymak, ancak uzunluk ve zamanın bi standadının

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017 KÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) ölümleri SRU-1) Mühendislik apılarında kullanılan elemanlar için KSN (Tarafsız eksen) kavramını tanımlaınız ve bir kroki şekil çizerek

Detaylı

Otomotiv Mühendisliği Bölümü Dinamik Ders Notu

Otomotiv Mühendisliği Bölümü Dinamik Ders Notu 16 Otomotiv Mühendisliği Bölümü Dinamik Des Notu Pof. D. Halit KARABULUT 1.1.16 GİRİŞ Dinamik cisimlein kuvvet altında davanışlaını inceleyen bi bilim dalıdı. Kinematik ve kinetik konulaını kapsamaktadı.

Detaylı

Bölüm 6: Newton un Hareket Yasalarının Uygulamaları:

Bölüm 6: Newton un Hareket Yasalarının Uygulamaları: (Kimya Bölümü A Gubu 17.11.016) Bölüm 6: Newton un Haeket Yasalaının Uygulamalaı: 1. Bazı Sabit Kuetle 1.1. Yeçekimi 1.. Geilme 1.3. Nomal Kuet. Newton un I. Yasasının Uygulamalaı: Dengedeki Paçacıkla

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A. FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ ÖZET Egün ALKAN Elk.Y.Müh. Buga Otis Asansö Sanayi ve Ticaet A.Ş. Tel:0212 323 44 11 Fax:0212 323 44 66 Balabandee Cad. No:3 34460 İstinye-İstanbul

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki outlu Kuvvet

Detaylı

FİZİK BASİT MAKİNELER MAKARALAR

FİZİK BASİT MAKİNELER MAKARALAR İZİ AARAAR : BASİ AİEER Haeketli akaa : Sabit akaa : x h Önek : Şekildeki haeketli makaa sistemini dengede tutmak için; a) akaa ağılıksız ise =? h b) akaa ağılığı 0 ise =? x 60 c) akaa ağılısız ise yükü

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİKSEL POTANSİYEL TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİKSEL POTANSİYEL TEST ÇÖZÜMLERİ 11. SINIF SORU BNSI. ÜNİT: TRİ V MNYTİZM. onu TRİS POTNSİY TST ÇÖZÜMRİ lektiksel Potansiyel Test 1 in Çözümlei 1. y ı ca yük le en bi i (+), öte ki e ( ) ol ma lı ı. 1 in an uzak lı ğı 4 bi im ise, nin

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir.

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birçok uygulama alanları vardır. Çatı sistemlerinde, Köprülerde, Kulelerde, Ve benzeri

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı