KONİKLER. Bir dik koni ile bir düzlemin değişik açılarda kesişmesi ile oluşan arakesite KONİK denir. ÇEMBER NOKTA ELİPS

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KONİKLER. www.celalisbilir.com. Bir dik koni ile bir düzlemin değişik açılarda kesişmesi ile oluşan arakesite KONİK denir. ÇEMBER NOKTA ELİPS"

Transkript

1 KNİKLER ir ik koi ile ir üzlei eğişik çılr kesişesi ile oluş rkesite KNİK eir ÇEMER NK İPERL ÇKIŞIK İKİ DĞRU PRL KESİŞEN İKİ DĞRU Ş KÜME 84 wwwellisiliro

2 İN NLİİK İNCELENMESİ KKIND GENEL İLGİLER, IRLMLR MERKEZİL NIM: Düzlee sit iki okt uzklıklrı tolı sit ol oktlrı geoetrik erie (küesie elis eir (, elisi erkezi `(, ` (, (, Ḟ `(, P(, (,,`,,` elisi köşeleri,`: elisi oklrı (, [`]: elisi sl eksei (üük ekse [`]: elisi eek eksei (küçük ekse ` = elisi sl ekse uzuluğu ` = elisi eek ekse uzuluğu ` = elisi oklr rsı uzklığı + ` = oluğu = ır İN ÇEMERLERİ P + P` = P oktsıı özel olrk oktsı getireli: ik üçgeie isgor ğıtısı ile + = ele eilir Ḟ Elisi sl Elisi eek çeeri çeeri ( + = ( ` + = *N: Merkezi oklr iri ve rıçı ol çeere oğrult çeeri eir eks R e ılrı İN DENKLEMİ sl ekse (oklrı uluuğu ekse eksei sl ekse (oklrı uluuğu ekse eksei ise ise ` ` ` + = Elis ile ir oğruu iririe göre uruu + = ise oğru elise teğettir + < ise oğru elisi kesez + > ise oğru elisi frklı iki okt keser orl = + teğet elisi ile = + oğrulrı verilsi ` = + İN DIŞ MERKEZLİĞİ ir elisi oklrı rsıki uzklığı, elisi sl ekseii uzuluğu orı elisi ış erkezliği eir = + ` α Ḟ ` e = osα elisi ış erkezliği eir e = = osα e = < 1 ir e < 1 85 UYRI eğetlik şrtı forül ugulırke her z i sıki sıır Elisi sl ekseii eksei olsı ir şei eğiştirez wwwellisiliro

3 Elisi litik ieleesi hkkı geel ilgiler, htırltlr eğeti eğe oktlrıı kooritlrı = ve = (, EĞEİN DENKLEMİ elisie üzerieki (, oktsı çizile teğeti eklei; (, oğrusuu eklei = + (, eğet oğrusu = osα = siα İN PRMERİK DENKLEMİ İN KİRİŞİ VE ÇPLRI Elis üzerieki iki oktı irleştire oğru rçsı elisi ir kirişi eir Elisi erkezie geçe herhgi ir kirişie e elisi ir çı eir olu si α + os α = 1 eşitliğie Souç olrk : Elisi sosuz sı kiriş ve çı vrır ç kiriş İN LNI Elisi lı = π eks R e ılrı İN DİK KESİŞEN EĞELERİ K (, = + = İN DĞRULMNI ` İN PRMERESİ M = = ± oğrulrı elisi oğrultlrı eir (Doğrult göre e elis tıı ılilir! M = N = olsu MN = = K oktlrıı geoetrik eri ir erkezil çeerir ir elisi iririe ik teğetlerii kesi oktlrıı geoetrik eri ir erkezil çeerir Deklei e + = + ( u MNJ çeeri eir EREM: ir elisi oklrı elisi herhgi ir teğetie ol uzklıklrıı çrılrı sittir K N `M = K `L = = M K N L ` N MN : elisi retresi 86 wwwellisiliro

4 Elisi litik ieleesi hkkı geel ilgiler, htırltlr EREM: MERKEZİL LMYN LER elisii = + oğrusu rlel ol kirişlerii ort oktlrıı geoetrik erii eklei: = ( elisi ir çıı ekleiir β+ β β ` α ` M ` α α+ ` = ` = ` = = + Merkezii kooritlrı M(α, β ol elisi eklei; = ( α ( β EREM: (, oktsı elisii içie ir okt olsu, ort oktsı (, ol kirişi (kirişi tşı MERKEZİN KRDİNLRI: M(α, β KÖŞELERİN KRDİNLRI: DKLRI; oğruu eklei: P (, R eks R e ılrı (α +, β `(α, β (α +, β (α, β + `(α, β `(α, β KÖŞELERİNİN KRDİNLRI PLMI: 4(α α + β β DKLRIN KRDİNLRI PLMI: (α α + β β PR oğrusuu eklei; + = + DÖNDÜRÜLMÜŞ LER KUUP DĞRUSU Elisie ışıki P(, oktsı çizile teğetler elise ve oktlrı teğet olsu: oğrusu elisi KUUP DĞRUSU eir oğrusuu eklei P(, C + D + E + = şeklieki koik eklei ir elis eklei olileeği geel koik ekleie hseilişti α P oğrult ` ış erkezlik e = P' P oğrult olu, li teri u eşitlikte gelir li terii ok etek içi elise α ereelik öe ugulır wwwellisiliro

5 İPERLÜN NLİİK İNCELENMESİ KKIND GENEL İLGİLER, IRLMLR İPERL NIM: Düzlee sit iki okt ol uzklıklrı frkı sit ol oktlrı geoetrik erie İPERL eir K L K K` = L` L = ` = uzuluğu hierolü sl ekse uzuluğu eir (, ` `(, (, ` `(, ` `(, (, (,, `(,, (,, `(, hierolü köşeleriir (,, `(, oktlrı hierolü oklrı ` = hierolü sl ekse uzuluğu ` = hierolü eek ekse uzuluğu ` = hierolü oklr rsı uzklığı = ve = sitotlrı (hierolü strt ekleie 1 erie zrsk ele eile ekle sitotlrı eklei olur eks R e ılrı İPERLÜN ÇEMERLERİ ve PRMERESİ + = (sl çeer [ ] hierolü P ` retresi = = ` + = (eek çeer Merkezi oklr iri ve rıçı ol çeere hierolü oğrult çeeri eir İPERLÜN DIŞ MERKEZLİĞİ oklr rsı uzklık e = ierolü ış erkezliği = = ır köşeler rsı uzklık e > 1 İPERLÜN DĞRULMNI = ± oğrulrı hierolü oğrultlrı eir Merkezi hierolü oğı( `, rıçı hierolü sl ekse uzuluğu( eşit ol çeere DĞRULMN ÇEMERİ eir İKİZKENR İPERL Ekse uzuluklrı eşit ol ( = hierollere eir sitotlrı = ve = oğrulrıır ierol ile ir oğruu iririe göre uruu = 1 ierolü ile = + oğrulrı verilsi Elisteki teğet ol koşulu ol + = ekleie erie zrsk hierol içi teğet ol şrtı ol + = eklei ele eiliş olur : İPERLÜN DENKLEMİ P(, ` (, ` (, * + = ise oğru hierole teğet * + > ise oğru hierolü frklı iki okt keser Kesi oktsıı kooritlrı ortk çözü ile uluur * + < ise oğru hierolü kesez P` P = oluğu iki okt rsı uzklık ğıtısı = 1 eklei ele eilir N: klr eksei üzerie ise = seθ = tθ Pretrik = 1 eklei ele eilir ekle 88 EĞEİN DENKLEMİ = 1 ierolü üzerieki P(, oktsı çizile teğeti eklei; : = 1 wwwellisiliro

6 PRLÜN NLİİK İNCELENMESİ KKIND GENEL İLGİLER, IRLMLR NIM: Düzlee sit ir oğrusu ve oğrusu üzerie ulu sit ir oktsı veriliş olsu oğrusu uzklığı, oktsı uzklığı eşit ol oktlrı geoetrik erie PRL eir ; rolü oğrultı ; rolü sietri eksei ; rolü retresi ; rolü köşesi(tee oktsı E e = = 1 (ış erkezlik EK K K` PRLÜN DENKLEMİ K(, P(, = oğrult ok Sietri eksei E (, (, P = PK eşitliğie = eklei ele eilir = k X eksei üzerie ise ; E` eks R e ılrı PRLÜN PRMERESİ Prolü oğı sietri ekseie ik çizile kirişi uzuluğu PRLÜN PRMERESİ eir ( < PRL İLE İR DĞRUNUN İRİRİNE GÖRE DURUMU = rolü ile = + oğrulrı verilsi ( = ` ( > = = ( = [`] rolü retresi = ( = ise oğru role teğettir ( < ise oğru rolü kesez ( > ise oğru rolü frklı iki okt keser eğeti eğe oktsıı kooritlrı; (, = = EĞEİN DENKLEMİ Sietri eksei ok Sietri eksei ok = Prolüe üzerieki P(, oktsı çizile teğeti eklei = ( + = oğrult k Y eksei üzerie ise; = oğrult Prolüe üzerieki P(, oktsı çizile orli eklei = ( = ok Sietri eksei oğrult = oğrult Sietri eksei ok = = 89 N: eğet ve orl ekleleri türevle e kol uluilir orl = ( + (, teğet = wwwellisiliro

7 Prolü litik ieleesi hkkı geel ilgiler, rt oktsı verile kirişi i tşı şı oğruu eğii e eğet et eğe oktsıı kooritlrı 1 DURUM 1 DURUM = + = + = (, oğrusuu eğii; = = (, = eğeti eğe oktsıı kooritlrı DURUM = + DURUM = + = (, = = oğrusuu eğii; = 3 DURUM = = (, = + eks R e ılrı eğeti eğe oktsıı kooritlrı (, 3 DURUM = = + oğrusuu eğii; = eğeti eğe oktsıı kooritlrı (, 4 DURUM = + 4 DURUM = + = (, = eğeti eğe oktsıı = oğrusuu eğii; = 9 kooritlrı (, wwwellisiliro

8 = oğrult KNİKLER KLERİN KRŞIL ILŞIRM LSU -1- (ÜÇÜ `(, K K = L L = = uzuluğu hierolü sl ekse uzuluğu eir (, ÜÇÜ İR RD İPERL PRL K(, P(, K L P ` ` Ḟ P + P = P e = < 1 (ış erkezlik e = > 1 (ış erkezlik e = = 1 (ış erkezlik PK Dış erkezliğe göre e elis, hierol, rol tılrıı ıliliğii uutlı P ` Ḟ ` = oğrult = elisi sl ekse uzuluğu = elisi eek ekse uzuluğu = oğrult = oğrult = oğrult (, ok (, Sietri eksei = P = PK + = = 1 = ` + = = 1 = ` = = Pretresi: Elisi ile = + oğrusu verilsi = 1 ierolü ile = + oğrusu = Prolü ile = + oğrusu verilsi verilsi * + = ise oğru elise teğet * + < ise oğru elisi kesez * + > ise oğru elisi frklı iki okt keser : kıs rı ekse : uzu rı ekse * = ise hierol oğru teğet * > ise oğru hierolü kesez Pretresi: * < ise oğru hierolü frklı iki okt keser Pretresi: ( = ise oğru role teğettir Değe oktsı ( < ise oğru rolü kesez ( > ise oğru rolü frklı iki okt keser (, ir 91 wwwellisiliro

9 KNİKLER KLERİN KRŞIL ILŞIRM LSU -- (ÜÇÜ ÜÇÜ İR RD İPERL PRL Elisi sl Elisi eek çeeri çeeri ( + = ( + = ` ` + = (sl çeer + = (eek çeer *N: rolü çeerleri YKUR! *N: sl çeer her z üük çeerir *N: sl çeer her z hierolü tee oktlrı geçer PSİN N DĞRULMN ÇEMERLERİ İPERLÜN N DĞRULMN ÇEMERLERİ Merkezi elisi oğı ( ` ve rıçı Merkezi hierolü oğı ( ` ve elisi sl ekse uzuluğu ( eşit ol çeere oğrult çeeri eir rıçı hierolü sl ekse uzuluğu ( eşit ol çeere oğrult çeeri eir *N: oğrult çeerleri YKUR! ekleleri: ekleleri: sl ekse eksei ise sl ekse eksei ise sl ekse eksei ise sl ekse eksei ise ( + = 4 + ( = 4 ( + = 4 + ( = 4 ( + + = 4 + ( + = 4 ( + + = 4 + ( + = 4 PSİN N DİK D K KESİŞ İŞEN EĞELER ELERİ ir elisi iririe ik teğetlerii kesi oktlrıı geoetrik eri ir erkezil çeerir + = + ( u MNJ çeeri eir İPERLÜN N DİK D K KESİŞ İŞEN EĞELER ELERİ ir hierolü iririe ik teğetlerii kesi oktlrıı geoetrik eri ir erkezil çeerir Deklei + = PRLÜN N DİK D K KESİŞ İŞEN EĞELER ELERİ Prolü ik kesişe teğetlerii kesi oktlrıı geoetrik eri rolü oğrult oğrusuur LM KŞULU İPERL LM KŞULU PRL LM KŞULU + + C + D + E + = ekleie = 4C olk üzere; < ve C ve ise, ekle elis elirtir te oğrult rultı vr + + C + D + E + = ekleie = 4C olk üzere; > ve ekle çrlrı rılıors hierol elirtir te oğrult rultı vr + + C + D + E + = ekleie = 4C olk üzere; = ve ekle çrlrı rılıor ise rol elirtir 1 te oğrult rultı vr 9 wwwellisiliro

10 KNİKLER KLERİN KRŞIL ILŞIRM LSU -3- (ÜÇÜ ÜÇÜ İR RD eğet et eğe oktsıı kooritlrı İPERL eğet et eğe oktsıı kooritlrı PRL eğet et eğe oktsıı kooritlrı (, P(, = + = + = + = = (, = ve Elisi eğe kirişi i (kutu oğrusu P(, = = ve (, = 1 eğeti eğe oktsıı kooritlrı (, ierolü eğe kirişi (kutu oğrusu Prolü eğe kirişi(kutu oğrusu = 1 P(, P(, = ; ; = 1 ; = ( + GENEL KNİKLERDE KLERDE EĞE E DENKLEMLERİ PRİK İLGİ; + + C + D + E + = Dekleii ktsılrı uruu göre, ir koik üretei oluğuu ilioruz Verile u eğrie üzerieki P(, oktsı çizile teğeti eklei: ( + C + D( + E( + = PRİK İLGİ; + + C + D + E + = Deklei ile verile eğrie D E e e z iri sıfır frklı ise orijie u eğrie çizile teğeti eklei: D + E + = PRİK İLGİ; = K (hierol Deklei ile verile eğrii (hierolü üzerieki P(, oktsı çizile teğeti eklei: + = K 93 wwwellisiliro

11 GENEL KNİK DENKLEMİ KKIND GENEL İLGİLER, IRLMLR GENEL KNİK DENKLEMİ Düzlee sit ir okt (, ve sit ir oğru ( uzklıklrı orı (e sit ol oktlrı (P(, oluşturuğu şekle koik eir (e hoş tı eğil i? : (, : Koiği oğrultı (, : Koiği oğı P(, P(, : Koik üzerieki eğişke okt + + = P rı sit olu u or koiği ış erkezliği eir P + + C + D + E + = ekleie 1DURUM: = 4C olk üzere; oş küe elirtir < ise ekle elis, çeer, okt, = C ve = ise ekle çeer, okt oş küe elirtir C ve ise ekle elis, okt oş küe elirtir DURUM: = ise ekle rol, rlel iki oğru, çkışık iki oğru oş küe elirtir Dekle çrlrı rıliliors rlel iki oğru çkışık iki oğru elirtir Dekle çrlrı rılıor ise rolür P e = ( ış erkezlik = koiği isii elirlee or P e < 1 ise P(, oktlrı ir elis ı üzerieir e > 1 ise P(, oktlrı ir hierol ı üzerieir e = 1 ise P(, oktlrı ir rol ı üzerieir P e = P İki okt rsı uzklık Noktı oğru ol uzklığı eks R e ılrı 3DURUM: > ise ekle hierol, kesişe iki oğru elirtir Dekle çrlrı rıliliors kesişe iki oğru elirtir Dekle çrlrı rılıors hierol elirtir P e = = P ( + ( Dekle üzeleir ve gerekli kısltlr ılırs; ÇEMER İPERL PRL < < > = + + C + D + E + = geel koik eklei ele eilir(iz u eklee ir l koik üretei e ieiliriz İşte u ekle ktsılrı uruu göre: elis hierol rol çeer oş küe rlel iki oğru kesişe iki oğru çkış iki oğru okt elirtir u koikler içerisie çeer ekleie li ife uluz Ne ilgiç!!!! ir üşüeli klı sıl oluor ir elis ekleie, ir hierol ekleie, ir rol ekleie li ir ife uluilior : C + D + E + = geel koik eklei üzeleiğie ( + ( = şeklie ir ekle ele eiliors u ekle see (, ikilisi ile sğlır ki u ozuluş ir elis ol oktı ife eer + + C + D + E + = geel koik eklei üzeleiğie (k > olk üzere ( + ( = k şeklie ir ekle ele eiliors, u eklei çözü küesi oş küe olu u ozuluş ir elistir + + C + D + E + = geel koik eklei üzeleiğie ( + + = şeklie ir ekle ele eiliors, u eklei çkışık iki oğru oluğuu gösterirdiğer urulrı siz üşüee çlışı wwwellisiliro

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI [, ] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI f : [, ] R sürekli ir foksio olsu. Bu [,] kplı rlığı = <

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

ÜÇGN ÜÇGN ÇI ÖZLLİLİ x ı x 6. ir iç çıorty ile ir dış çıortyı kesişmesiyle oluş çıı ölçüsü m() z z y ı y z z ı 1. Üçgei iç çılrı ölçüleri toplmı 180 d

ÜÇGN ÜÇGN ÇI ÖZLLİLİ x ı x 6. ir iç çıorty ile ir dış çıortyı kesişmesiyle oluş çıı ölçüsü m() z z y ı y z z ı 1. Üçgei iç çılrı ölçüleri toplmı 180 d ÜÇGN ÜÇGN ÇI ÖZLLİLİ x ı x 6. ir iç çıorty ile ir dış çıortyı kesişmesiyle oluş çıı ölçüsü m() z z y ı y z z ı 1. Üçgei iç çılrı ölçüleri toplmı 180 dir. x + y + z 180. Üçgei dış çılrı ölçüleri toplmı

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar İçieiler Ceir 4.İtegrl... 4. Belirsiz İtegrl... 4.. Bir fosiou elirsiz itegrli... Alıştırmlr 4.... 4.. Belirsiz İtegrli Özellileri...... 4.. Temel itegrl lm urllrı..... 4 Alıştırmlr 4.... 8 4..4 İtegrl

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

G E O M E T R İ  ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r

Detaylı

ALIN DÜZLEMİ: Alın izdüşüm düzlemine paralel veya çakışık olan düzlemlere ALIN DÜZLEMİ denir. (Şekil 2.1)

ALIN DÜZLEMİ: Alın izdüşüm düzlemine paralel veya çakışık olan düzlemlere ALIN DÜZLEMİ denir. (Şekil 2.1) r. Doç. Dr. Mus Glip ÖZK DÜZLEMLERİN İZDÜŞÜMLERİ ir üzlemin üzerine çeşitli noktlmlr ypmk ve üzlem üzerine oğrulr çizmek mümkünür. u neenle üzlemler: ) ynı oğrultu olmyn üç nokt ile, ) ir oğru ve u oğru

Detaylı

Geometri Notları Mustafa YAĞCI, Elips

Geometri Notları Mustafa YAĞCI, Elips www.mustfgi.om.tr 1 Geometri Notlrı Mustf YĞCI, gimustf@hoo.om Elips Koniğin genel tnımını htırlrk erse şllım: Düzleme ir noktsı ve en geçmeen ir oğrusu veriliğine, noktsın uzklığının oğrusun uzklığın

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Örnek...1 : O merkezli çemberde ÇEMBERDE AÇI 1 S S TEMEL KAVRAMLAR TEĞET KESEN KİRİŞ ÇEMBERDE AÇI 1. MERKEZ AÇI ÇEMBERDE TEĞET VE KİRİŞ ÖZELLİKLERİ

Örnek...1 : O merkezli çemberde ÇEMBERDE AÇI 1 S S TEMEL KAVRAMLAR TEĞET KESEN KİRİŞ ÇEMBERDE AÇI 1. MERKEZ AÇI ÇEMBERDE TEĞET VE KİRİŞ ÖZELLİKLERİ Ç ÇI 1 ( V Ğ, SN, İİŞ V Öİİ Ç ÇI V Öİİ ĞNİ ) V üzlem de sabit bir noktadan eşit uzaklıktaki noktalar kümesine çember denir. uradak i sabit nok ta ya çemberin merkezi, eşit uzaklığa ise çemberin yar ıçapı

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 6 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı ve ir kısmıı

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

İNTEGRAL - 6 ALAN HESABI. Bazı Önemli Fonksiyonların Grafikleri: y = mx3. y = mx 2. Taralı Alan = x = my 2. f g. y.x = m. g f. (f(x) g(x)).

İNTEGRAL - 6 ALAN HESABI. Bazı Önemli Fonksiyonların Grafikleri: y = mx3. y = mx 2. Taralı Alan = x = my 2. f g. y.x = m. g f. (f(x) g(x)). SEÇKÝN GRUP DERSHANESÝ Kurtuluþ Mh. Hkký Yðcý C. - 76 / UÞAK İNTEGRAL - 6 ALAN HESABI.. Bzı Önemli Fonksionlrın Grikleri: = m = m () = () = Trlı Aln = (). Trlı Aln = (). = m. = m 5. 6. g g Trlı Aln = Trlı

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş

Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş ş ö ö ö ö ş ş ş Ü ş ş ş Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş Ç ş Ö ö ş ş ş ş ş ö Ç Ç ş ö ş ö ö ö ö ö ö ş ş

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

2010 Ağustos. www.guven-kutay.ch DİŞLİ ÇARKLAR GENEL 12-00. M. Güven KUTAY. www.guven-kutay.ch

2010 Ağustos. www.guven-kutay.ch DİŞLİ ÇARKLAR GENEL 12-00. M. Güven KUTAY. www.guven-kutay.ch 010 Ağusos www.guve-kuay.ch DİŞLİ ÇARKLAR GENEL 1-00 M. Güve KUTAY www.guve-kuay.ch Sevgili eşim FİSUN ' a ÖNSÖZ Bir kouyu ilmek emek, ou eleki imkalara göre kullaailmek emekir. Dişliler kousuu ilmek,

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

İ İ İ ç çi İ İ İ ç İ İ ç Ş İ Ç Ş İ ç Ş ç İ İ İ ç İ Ç ç İ İ İ İ İ İĞİ İ İ İ İ Ş Ş Ş Ş ç Ş Ş Ş İ İ İ Ğ İ İ İ İ Ş Ç Ş Ç Ş İ İ İ ç Ç Ş Ç Ş ç İ Ç Ş İ ç ç Ö Ç ç Ü İ ç Ç İ İ ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

İ İ İ İ İ Ö Ü İ İ İ İ Ğ Ö Ö Ö İ Ö Ç İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ «Ü İ İ Ü İ İ İÇİ İ İ Ü İ İ İ İ İ Ö Ü İ Ö İ Ü İ İ İ İ İ Ü Ö İ İ İ İ İ Ö İ İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ İ Ç»«İ Ü İ İ Ü Ç İ İ İİ İ İ Ü

Detaylı

İİİ Ş Ş ç ç ç ç ç ç ç İ Ö İ İ Ğ ç ç ç Ö ç ç Ş ç ç ç ç ç ç ç ç ç ç ç ç İ ç Ş İ İ Ü İ Ş İ ç ç ç İ ç İ İ İç ç İ ç ç ç ç İ İ İ İ İ İ İİ İ Ç ç Ş İ Ş İ İ ç ç ç İ Ç ç Ö İ Ü İ İŞ ç ç İ Ğ Ş Ü İ ç ç Ş Ş ç İ İ Ö

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz.

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz. GOMTRİ 05/0/0. bir üçgen m() =, m() = 90 +, = 5 br, = 7 br, olduğuna göre = x kaç br dir? 5 m 9 0 m 9 0 5 90+ 7 x Çözüm: den ye çıkılan dikmenin doğrusunu kestiği nokta olsun. bir dik üçgen ve bir ikizkenar

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

Küresel Aynalar. Test 1 in Çözümleri

Küresel Aynalar. Test 1 in Çözümleri 0 üresel Aynalar Test in Çözümleri 4.. L T T 4 Cismin L noktası merkeze e birim yükseklikte oluğu için görüntüsü yine merkeze, ters e birim yükseklikte olur. Cismin noktası an uzaklıkta e birim yükseklikte

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

Ox ekseni ile sınırlanan bölge, Ox ekseni

Ox ekseni ile sınırlanan bölge, Ox ekseni DERSİN ADI: MATEMATİK II MAT II (06) ÜNİTE: BELİRLİ İNTEGRALLERİN UYGULAMALARI. HACİM HESABI GEREKLİ ÖN BİLGİLER 1. Eğri Çizimleri. İntegrl formülleri KONU ANLATIMI. HACİM HESABI ) Disk Yöntemi = f ()

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI KARŞI AKIŞI SU SOĞUTMA KUESİ BOYUTANIDIRIMASI Yrd. Doç. Dr. M. Turh Çob Ege Üiversitesi, Mühedislik Fkultesi Mkie Mühedisliği Bölümü turh.cob@ege.edu.tr Özet Bu yzımızd ters kışlı soğutm kulelerii boyut

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

1. GİRİŞ: Matrisler, tanımlar 9

1. GİRİŞ: Matrisler, tanımlar 9 GİRİŞ: Mtrisler tılr MRİSLER Gücel şıız tlolr ve çizelgeler kullırız Örek: Strç thtsı ers çizelgesi ıllık tkvi ir ı güleri spor toto ve sısl loto kupou gii lou stırlrı ve kololrı vrır Bir stır ve kolou

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

Ders. Yrd. Doç.. Dr. Ayhan CEYLAN. Mim. Fak. Harita MühendisliM A.B.D. A Blok Oda no:101 Tel: selcuk.edu.

Ders. Yrd. Doç.. Dr. Ayhan CEYLAN. Mim. Fak. Harita MühendisliM A.B.D. A Blok Oda no:101 Tel: selcuk.edu. Ku Ölçeler Ders rd. Dç.. Dr. Ah CELAN rd. Dç.. Dr. İsl ŞANLIOĞLULU S.Ü.. Müh. M M. Fk. Hrt MühedslM hedslğ Bölüü, B Ölçe Tekğ A.B.D. A Blk Od :0 Tel:3 933 cel@selcuk selcuk.edu.tr 4.SERBEST İSTASON HESABI

Detaylı

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR UZY MRİ IN NL IRLMLR UZY SİYMLRI kı iki noktdn i tek doğu geçe oğus omyn fkı noktdn i tek düzem ÜÇ İM RMİ tı isim souını çözmede çok fydı i igidi geçe i doğu ve u doğu üzeinde uunmyn i nokt düzem eiti

Detaylı

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem İ itörler: Kerem KÖKR - Kenan SMNĞLU Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem KPSS Geometri itörler: Kerem Köker / Kenan smanoğlu KPSS Geometri ISN 978-605-364-197-1

Detaylı

2010 Ağustos. MİLLER ve KİRİŞLER. 06a. Özet. M. Güven KUTAY

2010 Ağustos.  MİLLER ve KİRİŞLER. 06a. Özet. M. Güven KUTAY 00 ğustos www.guven-kut.ch İR ve KİRİŞR 0 Özet. Güven KUTY İ Ç İ N D K İ R Ortdn tek kuvvet etkisindeki klsik kiriş... simetrik tek kuvvet etkisindeki klsik kiriş... 5 Simetrik iki kuvvet etkisindeki klsik

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

ç Ğ İ Ş Ç ğ Ü ö İ ğ İ ç ğ ğ ç Ç İ İ ö ğ İ ğ ğ ğ ö ç ğ ö ö Ü ğ ç ç ğ ç ğ ğ ğ Ç ğ Ü ö Ö İ ğ Öğ ğ İ Öğ ğ İ ö ö ö Ç ö ö ç ö ç ö İ ğ öğ «öğ ğ ö İ ö ğ öğ ö çö ğ ç ğ ö öğ ç İ öğ ğ Ş ğ ğ ğ öğ ö Öğ İ ğ Ö öğ ç Ü

Detaylı

Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Fizik 101: Ders 16. Konu: Katı cismin dönmesi Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei Rotasyon

Detaylı

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrı toplmı: 1 + + 3 +...+ =.(+1) Ardışık çift syılrı toplmı : + 4 + 6 +... + =.(+1) Ardışık tek syılrı toplmı: 1 + 3 + 5 +... + ( 1) =.= Ardışık tm kre syılrı

Detaylı

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C BLS Öcei erste; DN izilerie,,g, bazlarıı izilişi, RN izilerie,,g,u bazlarıı izilişi ve protei izilerie amio asitleri izilişi baımıa, orta bir alfabe ile yazılmış izileri hizalaması üzerie urulu. Hizalamış

Detaylı

Ü İ ı ı ı ş Ö ı Ü İ İ ş ı ı ı ı ı Ü ıı ı ı ı ı ı ı ı ı Ö ı ı ı ş ş ş Ü İ İ ıı ı ı ı ı ı çıı ı ı ı ış ı ş ı ç ı ş ıı ş ıı ş ı ç ş ş Üııı ı ıı ıı ı ıı ı

Ü İ ı ı ı ş Ö ı Ü İ İ ş ı ı ı ı ı Ü ıı ı ı ı ı ı ı ı ı Ö ı ı ı ş ş ş Ü İ İ ıı ı ı ı ı ı çıı ı ı ı ış ı ş ı ç ı ş ıı ş ıı ş ı ç ş ş Üııı ı ıı ıı ı ıı ı ı Ğ ı Ğ İ İ Ğ Ü İ İ ç ş ış ı ı ı ı ı ı ı ı ı ş ı ı ı ı ı ç ı Ü İ İ ş ı ş ış ı ı ı ş ç ç ı ş ı ı ı İ şı çı ış ş ı ı ş ı ç ş ş ı ı ç ş Ü İ İ Ü ş ı ı ş ı ç İ ş Ö ş ı ı ı ı Ö Ü ı ç ş ıı ş ı ı ıı İ ş ç ş ş

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

IfiI IN DALGA DO ASI. ALIfiTIRMALARIN ÇÖZÜMÜ. 1. P noktas n n kaynaklara olan yol fark dalga boyunun. 2. a) 3. ayd nl k saça n merkez

IfiI IN DALGA DO ASI. ALIfiTIRMALARIN ÇÖZÜMÜ. 1. P noktas n n kaynaklara olan yol fark dalga boyunun. 2. a) 3. ayd nl k saça n merkez IfiI IN DAGA DO ASI. oktas lara ola yol fark alga boyuu tam kat a eflit ise ay l k, e ilse karal k saçakt r. a) YF. b) IfiI IN DAGA DO ASI.. ay l k saçakt r. YF ( ). ( )..karal k saçakt r.. a). ay l k

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

2011 LYS MATEMATİK Soruları

2011 LYS MATEMATİK Soruları 0 LYS MATEMATİK Sorulrı. 0, ( 0, ) işlminin sonuu kçtır? A) B) C) 0 D) E). x y = oluğun gör, x + 4y 4x y y + x ifsinin ğri kçtır? A) 4 B) C) 8 D) 9 E). v < x < v oluğun gör, x şğıkilrn hngisi olilir? 4

Detaylı

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır?

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır? . + c m 9 + c9 m 9 9 20 ) ) 9 ) 27 ) ) 82 9 5. a, b, c gerçel saıları için 2 a = b = c = 8 olduğuna göre, a.b.c çarpımı kaçtır? ) ) 2 ) ) ) 5 6. a, b, c gerçel saıları için, a.c = 0 a.b 2 > 0 2. 2 2 +

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ . ANTALYA MATEMATĐK OLĐMPĐYATI (00) SORULARININ ÇÖZÜMLERĐ PROBLEM : vrdır? + y y deklemii pozitif tmsyılrd kç (, y ) çözüm ikilisi A) B) 6 C) 4 D) 8 E) Sosuz çoklukt ÇÖZÜM (L. Gökçe): + deklemide pyd eşitleyip

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

IŞIK TEORĐLERĐ. Eğer perde üzerindeki P noktasının kaynaklara olan yol farkı, kullanılan ışığın tam katlarına eşitse, P noktasında aydınlık saça

IŞIK TEORĐLERĐ. Eğer perde üzerindeki P noktasının kaynaklara olan yol farkı, kullanılan ışığın tam katlarına eşitse, P noktasında aydınlık saça IŞIK TEORĐERĐ ÇĐFT YARIKA GĐRĐŞĐM DENEYĐ Thomas Youg şk kayaklar su ortama girişim yapa su algalar gibi avrağ ortaya koymak içi bir üzeek hazrlamştr. Bu eey içi ay faza çalşa iki şk kayağa ihtiyaç varr.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

SAYISAL BÖLÜM. 5. a, b, c gerçel sayıları için. 2 a = 3. 3 b = 4. 4 c = 8. olduğuna göre, a b c çarpımı kaçtır? 6. a, b, c gerçel sayıları için

SAYISAL BÖLÜM. 5. a, b, c gerçel sayıları için. 2 a = 3. 3 b = 4. 4 c = 8. olduğuna göre, a b c çarpımı kaçtır? 6. a, b, c gerçel sayıları için SYISL ÖLÜM ĐKKT! U ÖLÜM VPLYĞINIZ TPLM SRU SYISI 90 IR. Đlk 45 soru Matematiksel Đlişkilerden Yararlanma Gücü, Son 45 soru Fen ilimlerindeki Temel Kavram ve Đlkelerle üşünme Gücü ile ilgilidir. şit ğırlık

Detaylı

İÇİNDEKİLER. Anasayfa...4 Güncellemeler Sekmesi...4 Yazılar Menüsü...4 Tüm Yazılar Sekmesi...5

İÇİNDEKİLER. Anasayfa...4 Güncellemeler Sekmesi...4 Yazılar Menüsü...4 Tüm Yazılar Sekmesi...5 İÇİNDEKİLER WordPress kullanım kılavuzu...3 WordPress Kılavuzu : WordPress Nasıl Kurulur?...3 Cpanel üzerinden tek tıkla wordpress kurulumu...3 WordPress Kılavuzu : WordPress Yönetici Paneli...3 Başlangıç

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler.

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler. . BÖLÜ ÜRESEL AYNALAR ALŞRALAR ÇÖZÜLER ÜRESEL AYNALAR. Çukur ynnın odğı, merkez () dr. Aşğıdk ışınlr çukur ynd ynsıdıktn sonr şekllerdek b yol zler. / / 7 / / / / / 8 / / / / / 9 / / / / N 0 OPİ . Çukur

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. a 9! 8!, 9! 8! OKEK (a, ) OBEB (a, ) ifadesinin değeri kaçtır?. a ve a ile arasındaki ağıntı nedir? a a a a a a a a. ( ). ( ). ( ) 8 nın insinden eşiti nedir?. z z z toplamı

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

AKILLI. ÖDEV ve ÖLÇME

AKILLI. ÖDEV ve ÖLÇME KILLI ÖV ve ÖLÇM. sınıf ykut KRÇİMN erna TŞKIRN G Matbaa Yayıncılık Kağıt İnş. Ltd. Şti. uca OS, GOS 2. ölge 3/20 Sk. No: 17 uca-izmir Tel: 0.232.442 01 01-442 03 03 aks: 442 06 60 u kitabın tüm hakları

Detaylı

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir AĞIRLIK MERKEZİ Bir cise etki eden yerçekii kuvvetine Ağırlık denir. Ağırlık vektörel bir büyüklüktür. Yere dik bir kuvvet olup uzantısı yerin erkezinden geçer. Cisin coğrafi konuuna ve yerden yüksekliğine

Detaylı

DENKLEM KURMA PROBLEMLERİ

DENKLEM KURMA PROBLEMLERİ DENKLEM KURM İ SYI KESİR İ Örnek... : H a n g i s a yın ın d ö r t t e b i r i n i n 4 e k s i ğ i n i n 2 k a t ı 5 6 d ır? i r p r o b l e m i ç ö ze r k e n, s o r u d a ye r a l a n v e r i l e r i,

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

Cebir Notları. Oran-Orantı-Ortalamalar Mustafa YAĞCI,

Cebir Notları. Oran-Orantı-Ortalamalar Mustafa YAĞCI, www.mustgi.om, 00 Ceir Notlrı Must YAĞCI, gimust@hoo.om Or-Ortı-Ortlmlr E irisi sıır rklı olmk üere, ı irime iki çokluğu krşılştırılmsı (ölümesie) or eir. Çokluklrı ı irime olmsı öemliir. Litre ile kilometrei,

Detaylı