RF MİKROELEKTRONİK GÜRÜLTÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "RF MİKROELEKTRONİK GÜRÜLTÜ"

Transkript

1 RF MİKROELEKTRONİK GÜRÜLTÜ

2 RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama güç kavramını kullanarak gürültünün büyüklüğünü ifade ederiz. Bu integralde kullanılan T periyodu gürültü sinyalinin en düşük frekanslı parçasının periyodunun birkaç katı olacak şekilde alınır.

3 GÜRÜLTÜ SPEKTRUMU Herhangi bir sinyalin 10 khz frekansındaki değerini ölçmek için diğer bütün spektrumu filtreleyip 10 khz deki ortalama gücünü ölçmemiz gerekir

4 GÜRÜLTÜ SPEKTRUMU Gürültü sinyalinin her bir frekansta 1 Hz lik filtrelerden geçirilmiş halinin gücü ölçüldüğünde spektral güç dağılımı S x (f)elde edilmiş olur.

5 SPEKTRAL GÜÇ DAĞILIMI (SGD) S x (f)in altında kalan toplam alan x(t)nin ortalama gücüne eşittir. İki taraflı spektrada sol taraf sağ tarafın simetriğidir fakat güç eksenindeki değerler yarıya bölünmüştür. Sonuçta alttaki alan aynıdır. Çift taraflı Tek taraflı

6 DİRENÇ GÜRLÜTÜSÜ R1 değerine sahip bir direncin tek taraflı SGD si aşağıdaki gibidir. Denklemde k= J/KBoltzmann sabitidir, T mutlak sıcaklıktır.böylesi bir SGD dağılımı beyaz olarak anılır çünki beyaz ışık gibi bütün frekans değerlerinden eşit güç miktarında sinyali içinde barındırır. (a) Bu gürültü voltajının ortalama güç değeri nedir? (b) S v (f)nin birimi nedir? (c) 50Ωluk bir direncin oda sıcaklığında 1 Hz deki gürültü voltajını hesaplayın.

7 DİRENÇ GÜRLÜTÜSÜ (a) S v (f)in altındaki alan sonsuz olarak görünmektedir. Bu durum mümkün değildir çünki dirençteki gürültünün kaynağı ortamdaki sonlu ısıdır. Gerçekte S v (f)f> 1 THz frekanslarında azalmaya başlar ve toplam gürültü enerjisi sonlu hale gelir. Bu durumda direnç gürültüsü gerçekte beyaz değildir.

8 DİRENÇ GÜRLÜTÜSÜ (b) S v (f)in birimi (V /Hz)dir. Bu durumda SGD yi aşağıdaki gibi yazmak mümkündür V = 4kTR n Burada V n V n in 1 Hz bant genişliğindeki ortalama gücünü temsil etmektedir. Burada ortalama işlemi aynı gürültü farklı zamanlarda birkaç sefer ölçülerek alınır. Bunu belirtmek için üst çizgi kullanılır.

9 DİRENÇ GÜRLÜTÜSÜ (c) T=300 K de 50 Ωluk bir direnç için = 4kTR = V n = V n V Hz V n = 0.91 nv Hz

10 TRANSFER FONKSİYONU ETKİSİ SGD nin tanımlanmasındaki en büyük sebep deterministik sinyaller için frekans ekseninde kullanılan operasyonların rastgele sinyaller içinde kullanılmasını sağlamaktır. Çıkıştaki SGD girişteki SGD nin devrenin transfer fonksiyonunun mutlak değerinin karesiyle çarpılmasıdır. Karenin sebebi SGD vin V li olmasıdır.

11 CİHAZ GÜRÜLTÜSÜ Herhangi bir cihazın gürültüsü seri bağlanmış bir voltaj kaynağı yada paralel bağlanmış bir akım kaynağı olarak modellenebilir. Kaynağın kutuplarının yönü önemli değildir fakat bu kutupların hesaplamalar sırasında aynı olması önemlidir.

12 ÖRNEK Aşağıdaki şekilde görülen RLC devresinin çıkışındaki gürültü voltajının SGD sini çiziniz R 1 in gürültüsünü I n1 gürültü kaynağı olarak modellediğimizde V n /I n1 oranı RLC devresinin toplam empedansı olan Z T ye eşittir. Bu durumda f 0 da L 1 ve C 1 rezonansa girerek devreyi R1 den ibaret hale dönüştürür ve bu noktada gürültü 4kTR 1 e eşit olur. f 0 ın altındaki ve üstündeki frekanslarda devrenin empedansı düşer ve çıkıştaki gürültü voltajıda düşer

13 DEVRE GÜRÜLTÜSÜ Pasif ve resiprokal bir devrenin iki terminali arasından görünen empedansın reel kısmı Re{Z out }ise bu devrenin bu iki terminal arasından görünen termal SGD si 4kTRe{Z out } olur.

14 MOSFET de GÜRÜLTÜ Doyum bölgesinde çalışan bir MOS transistörün termal gürültüsü şekilde görülen akım kaynağı yada voltaj kaynağı şeklinde modellenebilir.

15 MOSFET de GÜRÜLTÜ Burada γuzun kanallı transistörlerde 0.67 den kısa kanallı transistörlerde ye kadar değişen bir katsayıdır. g m ise kısa kanal etkisi W görmezden gelindiğinde g = µ C V V dir m n ox L ( ) GS T

16 KAPI DİRENCİNİN GÜRÜLTÜSÜ Yüksek frekans devrelerinde kullanılan transistör tasarımlarında kapı uzunluğu fazla olduğundan kapı direncinin termal gürültüsü de görmezden gelinemeyecek kadar fazla olur. Fakat kapı direncinin gürültü modellemesi klasik direnç gürültüsüne göre farklı olduğundan ayrıca belirtilmesi gerekir.

17 KAPI DİRENCİNİN GÜRÜLTÜSÜ Şekil a daki gibi bir kapı için kapı direnci dir. Burada R kapı iletkeninin birim karesinin direncidir. Bu kapı direncinin SGD si RG 4kT dir. 3 İyi bir tasarımda

18 TİTREŞİM GÜRÜLTÜSÜ Titreşim gürültüsü kapı yalıtkanı ile yarıiletken yüzey arasında hapsolmuş yüklerin yol açtığı frekansın tersiyle orantılı SGD ye sahip bir gürültüdür. Titreşim gürültüsünün SGD si: Bu gürültü voltajı kapı terminaline seri bağlanır.

19 TİTREŞİM GÜRÜLTÜSÜ Şeklindeki titreşim gürültüsü voltajı şekilde görüldüğü gibi bir akım kaynağı şekline dönüştürülüp de bağlanabilir. Bu durumda akım kaynağının değeri aşağıdaki gibidir.

20 KÖŞE FREKANSI Köşe frekansı titreşim gürültüsünün değerinin termal gürültüye eşit olduğu frekans değeridir. Hesaplamada kapı direncinin gürültüsü görmezden gelinmiştir

21 BJT GÜRÜLTÜSÜ Bipolar transistörlerin base emitör ve kollektör terminallerinin iç dirençleri gürültü oluştururlar. Bunların haricinde bipolar transistörlerde shot gürültüsü denen bir gürültü vardır. Bu gürültü şekilde görülen iki akım kaynağı ile modellenir.

22 GİRİŞTE GÖSTERİLEN GÜRÜLTÜ Herhangi bir gürültülü devrenin içindeki gürültü kaynakları girişte gürültü voltajı ve gürültü akımı olarak iki kaynaklı bir şekilde gösterilebilir.

23 GİRİŞTE GÖSTERİLEN GÜRÜLTÜ Gürültü voltajını bulmak için iki devrenin de girişleri kısa devre yapılır ve çıkıştaki gürültü voltajları birbirine eşitlenir. Gürültü akımını bulmak için iki devrenin girişleri açık devre yapılır ve çıkıştaki gürültü voltajları eşitlenir.

24 GÜRÜLTÜ KATSAYISI Gürültü katsayısı bir devrede girişten çıkışa SNR (sinyal gürültü oranı) in ne kadar değiştiğini gösteren bir parametredir. Bu parametre sadece devrenin gürültüsüne bağlı değildir. Aynı zamanda önceki basamaktan gelen SNR değerinede bağlıdır. Örneğin giriş sinyalindeki gürültü değeri sıfır olsaydı NF sonsuz olurdu.

25 GÜRÜLTÜ KATSAYISI

26 NF GÜRÜLTÜ KATSAYISI = 1+ α V n A v 1. V Rs Yukarıda verilen gürültü katsayısı formülünün sağ tarafı aşağıdaki şekilde sadeleştirilebilir. A 0 = α n, out = Vn + A v V Rs = 4kTR s V A 4kTR 0 s

27 GÜRÜLTÜ KATSAYISI Gürültü katsayısını hesaplamanın iki yöntemi vardır. 1. Toplam çıkış gürültüsünü devrenin voltaj kazancına böleriz ve çıkan sonucu kaynak gürültüsü olan R s in gürültüsüne göre normalize ederiz.. Yükselticinin kendi çıkış gürültüsünü hesaplarız bunu voltaj kazancına böleriz çıkan sonucuda R s in gürültüsüne göre normalize ederiz çıkan sonuca bir ekleriz. Vn 1 NF = 1+. α A V v Rs

28 ÖRNEK Şekildeki R p direncinin gürültü katsayısını hesaplayın.

29 ÖRNEK Şekilde görünen ortak source devresinin gürültü katsayısını R S kaynak direncine göre hesaplayınız. M 1 FET inin kapasitanslarını ve titreşim gürültüsünü görmezden geliniz ve I 1 akım kaynağının ideal olduğunu varsayınız.

30 ÇÖZÜM Gürültü kaynakları eklenince devre şekildeki hale döner. Devreyi analiz ettiğimizde gürültü katsayısı aşağıdaki gibi çıkar.

31 KASKAD BAĞLANTIDA NF Tek bir basamak için: Vn 1 NF = 1+. = 1+ α A V v Aşağıda görülen kaskad bağlantıya tek bir blok gibi bakarsak hesaplamamız gerekenler bloğun çıkış gürültü voltajı ve yansımaları da hesaba katan voltaj kazancıdır. Rs V A n 0 A 1. V Rs 0 = α A v

32 KASKAD BAĞLANTIDA NF Yansımaları hesaba katan voltaj kazancı: Unutulmaması gerekir ki 1. basamağın girişinde yansıma olduğu gibi 1. basamağın çıkışı ile. basamağın girişi arasında da yansıma olur ve bu yansıma sağ altta görülen devre kullanılarak hesaplanır.

33 KASKAD BAĞLANTIDA NF İki basamağın çıkışta oluşturduğu gürültü önce birinci basamağın çıkış gürültüsünün birinci ile ikinci arasındaki yansıma katsayısı ve ikinci basamğın voltaj kazanıcının her ikisinin kareleriyle çarpılması ve bu sonuca ikinci basamağın çıkış gürültüsünün eklenmesiyle bulunur. V n = V n + V n1 ( R + R ) in R in out1 A v

34 KASKAD BAĞLANTIDA NF Bulunan değerler NF formülüne yerleştirilince RS n t V A V NF + = ( ) 1 1 v out in in n n n A R R R V V V + + =

35 KASKAD BAĞLANTIDA NF Toplam NF değerini birinci ve ikinci basamakların NF değeri cinsinden aşağıdaki gibi ifade ederiz. NF t formülünün ikinci kısmının paydası kullanılabilir güç kazancı olarak bilinir ve tam uyumlu bir yüke verilen maksimum çıkış gücünün (P out,av ) tam uyumlu bir kaynaktan alınan maksimum giriş gücüne (P S,av ) oranıdır.

36 KASKAD BAĞLANTIDA NF O halde ikinci basamağın NF değeri birinci basamağın kullanılabilir güç kazancı oranında azalmış olur. Bu formülü çok basamaklı kaskad bağlantılar için aşağıdaki gibi genelleyebiliriz. Bu demek oluyor ki kaskad bağlantılarda sonradan gelen basmakların gürültüsü önemsiz hale geliyor ve gürültüsü en önemli olan basamak ilk basamak oluyor. Hatırlanacağı gibi eğrisellikte durum tam tersidir.

37 ÖRNEK Şekildeki gibi kaskad bağlanmış ortak source devresinin gürültü katsayısını hesaplayınız. FET kapasitanslarını ve titreşim gürültülerini görmezden geliniz.

38 ÇÖZÜM Öncelikle NF

39 ÖRNEK Şekilde görülen devrenin gürültü katsayısını hesaplayınız. FET kapasitanslarını titreşim gürültüsünü, kısa kanal etkilerini, ve body etkisini görmezden geliniz.

40 ÇÖZÜM Kısa kanal etkisini görmezden gelirsek r 0 sonsuz olur.

RF MİKROELEKTRONİK DÜŞÜK GÜRÜLTÜLÜ YÜKSELTİCİ (LNA)

RF MİKROELEKTRONİK DÜŞÜK GÜRÜLTÜLÜ YÜKSELTİCİ (LNA) RF MİKROELEKTRONİK DÜŞÜK GÜRÜLTÜLÜ YÜKSELTİCİ (LNA) GÜRÜLTÜ KATSAYISI LNA nın gürültü katsayısı alıcının gürültüsüne direkt olarak eklendiğinden düşük olması elzemdir. Takip eden basamakların gürültü katsayıları

Detaylı

RF MİKROELEKTRONİK TEMEL BİLGİLER

RF MİKROELEKTRONİK TEMEL BİLGİLER RF MİKROELEKTRONİK TEMEL BİLGİLER BİRİMLER terminalli bir devre için desibel cinsinden voltaj kazancı: V o A = V 0log db Vi GİRİŞ Güç kazancı: P o A = P 10log db Pi ÇIKIŞ BİRİMLER Girişteki kaynak direnci

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI A. Amaç Bu deneyin amacı; BJT kuvvetlendirici devrelerinin girişine uygulanan AC işaretin frekansının büyüklüğüne göre kazancının nasıl etkilendiğinin belirlenmesi,

Detaylı

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE BÖLÜM 7 YÜKSEK GEÇİREN FİLTRE KONU: Opamp uygulaması olarak; 2. dereceden Yüksek Geçiren Aktif Filtre (High-Pass Filter) devresinin özellikleri ve çalışma karakteristikleri incelenecektir. GEREKLİ DONANIM:

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

DENEY 6: MOSFET. Şekil 6.1. n ve p kanallı MOSFET yapıları

DENEY 6: MOSFET. Şekil 6.1. n ve p kanallı MOSFET yapıları Deneyin Amacı DENEY 6: MOSFET MOSFET (metal oxide semiconductor fieldeffect transistor, metal oksit tabakalı yarıiletken alan etkili transistör) yapısının ve karakteristiğinin öğrenilmesi, MOSFET li bir

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 7: MOSFET Lİ KUVVETLENDİRİCİLER Ortak Kaynaklı MOSFET li kuvvetlendirici

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

DENEY-3. FET li Yükselticiler

DENEY-3. FET li Yükselticiler DENEY-3 FET li Yükselticiler Deneyin Amacı: Bir alan etkili transistor ün (FET-Field Effect Transistor) kutuplanması ve AF lı bir kuvvetlendirici olarak incelenmesi. (Ayrıca azaltıcı tip (Depletian type)

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin

Detaylı

ANALOG HABERLEŞME (GM)

ANALOG HABERLEŞME (GM) ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)

Detaylı

BJT (Bipolar Junction Transistor) :

BJT (Bipolar Junction Transistor) : BJT (Bipolar Junction Transistor) : BJT içinde hem çoğunluk taşıyıcılar hem de azınlık taşıyıcıları görev yaptığı için Bipolar "çift kutuplu" denmektedir. Transistör ilk icat edildiğinde yarı iletken maddeler

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 3 SERİ VE PARALEL RLC DEVRELERİ Malzeme Listesi: 1 adet 100mH, 1 adet 1.5 mh, 1 adet 100mH ve 1 adet 100 uh Bobin 1 adet 820nF, 1 adet 200 nf, 1 adet 100pF ve 1 adet 100 nf Kondansatör 1 adet 100

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I FET KARAKTERİSTİKLERİ 1. Deneyin Amacı JFET ve MOSFET transistörlerin

Detaylı

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER BÖLÜM İKİNİ DEEEDEN FİLTELE. AMAÇ. Filtrelerin karakteristiklerinin anlaşılması.. Aktif filtrelerin avantajlarının anlaşılması.. İntegratör devresi ile ikinci dereceden filtrelerin gerçeklenmesi. TEMEL

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Deney 2: FET in DC ve AC Analizi

Deney 2: FET in DC ve AC Analizi Deneyin Amacı: Deney 2: FET in DC ve AC Analizi FET in iç yapısının öğrenilmesi ve uygulamalarla çalışma yapısının anlaşılması. A.ÖNBİLGİ FET (Field Effect Transistr) (Alan Etkili Transistör) FET yarıiletken

Detaylı

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. Deneyin Amacı: Deney 3: Opamp Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. A.ÖNBİLGİ İdeal bir opamp (operational-amplifier)

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

Bölüm 10 İşlemsel Yükselteç Karakteristikleri

Bölüm 10 İşlemsel Yükselteç Karakteristikleri Bölüm 10 İşlemsel Yükselteç Karakteristikleri DENEY 10-1 Fark Yükselteci DENEYİN AMACI 1. Transistörlü fark yükseltecinin çalışma prensibini anlamak. 2. Fark yükseltecinin giriş ve çıkış dalga şekillerini

Detaylı

MOSFET. MOSFET 'lerin Yapısı

MOSFET. MOSFET 'lerin Yapısı MOSFET MOSFET 'lerin Yapısı JFET 'ler klasik transistörlere göre büyük bir gelişme olmasına rağmen bazı limitleri vardır. JFET 'lerin giriş empedansları klasik transistörlerden daha fazla olduğu için,

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ TC SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL

Detaylı

ĐŞLEMSEL YÜKSELTEÇLER

ĐŞLEMSEL YÜKSELTEÇLER K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı ĐŞLEMSEL YÜKSELTEÇLER Đşlemsel yükselteçler ilk olarak analog hesap makinelerinde toplama, çıkarma, türev ve integral

Detaylı

, gerilimin maksimum değerini; ω = 2πf

, gerilimin maksimum değerini; ω = 2πf 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ A. DENEYİN AMACI : Seri ve paralel RC devrelerinin ac analizini yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal Üreteci, 2. Osiloskop, 3. Değişik değerlerde direnç ve kondansatörler. C. DENEY İLE

Detaylı

BÖLÜM 4 RADYO ALICILARI. 4.1 Süperheterodin Alıcı ANALOG HABERLEŞME

BÖLÜM 4 RADYO ALICILARI. 4.1 Süperheterodin Alıcı ANALOG HABERLEŞME BÖLÜM 4 RADYO ALIILARI 4. Süperheterodin Alıcı Radyo alıcıları ortamdaki elektromanyetik sinyali alır kuvvetlendirir ve hoparlöre iletir. Radyo alıcılarında iki özellik bulunur, bunlar ) Duyarlılık ) Seçicilik

Detaylı

DENEY 10: SERİ RLC DEVRESİNİN ANALİZİ VE REZONANS

DENEY 10: SERİ RLC DEVRESİNİN ANALİZİ VE REZONANS A. DENEYİN AMACI : Seri RLC devresinin AC analizini yapmak ve bu devrede rezonans durumunu incelemek. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı, 2. Sinyal üreteci, 3. Değişik değerlerde dirençler

Detaylı

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır. Elektronik Devreler 1. Transistörlü Devreler 1.1 Transistör DC Polarma Devreleri 1.1.1 Gerilim Bölücülü Polarma Devresi 1.2 Transistörlü Yükselteç Devreleri 1.2.1 Gerilim Bölücülü Yükselteç Devresi Konunun

Detaylı

Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme

Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme Tajik (Tajikistan) Q2-1 Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme Lütfen bu probleme başlamadan önce ayrı zarftaki genel talimatları okuyunuz Giriş Faz geçişleri günlük hayatta iyi

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik

Detaylı

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET) 2.1. eneyin amacı: Temel yarıiletken elemanlardan BJT ve FET in tanımlanması, test edilmesi ve temel karakteristiklerinin incelenmesi. 2.2. Teorik bilgiler: 2.2.1. BJT nin özelliklerinin tanımlanması:

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

3.5. Devre Parametreleri

3.5. Devre Parametreleri 3..3 3.5. Devre Parametreleri 3.5. Devre Parametreleri Mikrodalga mühendisliğinde doğrusal mikrodalga devrelerini karakterize etmek için dört tip devre parametreleri kullanılır: açılma parametreleri (parametreleri)

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuvarı Deney Föyü Deney#10 Analog Aktif Filtre Tasarımı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 10 Analog

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI 6. Bölüm: Alan Etkili Transistörler Doç. Dr. Ersan KABALCI 1 FET FETler (Alan etkili transistörler) BJTlere çok benzer yapıdadır. Benzerlikleri: Yükselteçler Anahtarlama devreleri Empedans uygunlaştırma

Detaylı

DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir.

DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir. DENEY NO: 9 MOSFET Lİ KUVVETLENDİRİCİLER DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir. DENEY MALZEMELERİ MOSFET: 1x4007 Kondansatör: 3x1 µf,

Detaylı

EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi

EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi EEM 0 DENEY 0 SABİT FEKANSTA DEVEEİ 0. Amaçlar Sabit frekansta devrelerinin incelenmesi. Seri devresi Paralel devresi 0. Devre Elemanları Ve Kullanılan Malzemeler Bu deneyde kullanılan devre elemanları

Detaylı

Deney 1: Transistörlü Yükselteç

Deney 1: Transistörlü Yükselteç Deneyin Amacı: Deney 1: Transistörlü Yükselteç Transistör eşdeğer modelleri ve bağlantı şekillerinin öğrenilmesi. Transistörün AC analizi yapılarak yükselteç olarak kullanılması. A.ÖNBİLGİ Transistörün

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI DENEY NO: 8 JFET TRANSİSTÖRLER VE KARAKTERİSTİKLERİ Laboratuvar Grup

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

Şekil Sönümün Tesiri

Şekil Sönümün Tesiri LC Osilatörler RC osilatörlerle elde edilemeyen yüksek frekanslı osilasyonlar LC osilatörlerle elde edilir. LC osilatörlerle MHz seviyesinde yüksek frekanslı sinüsoidal sinyaller elde edilir. Paralel bobin

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.

Detaylı

12. DC KÖPRÜLERİ ve UYGULAMALARI

12. DC KÖPRÜLERİ ve UYGULAMALARI Wheatstone Köprüsü ile Direnç Ölçümü 12. DC KÖPRÜLERİ ve UYGULAMALARI Orta değerli dirençlerin (0.1Ω

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır.

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır. TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır. AMPERMETRENİN ÖLÇME ALANININ GENİŞLETİLMESİ: Bir ampermetre ile ölçebileceği değerden daha yüksek bir akım ölçmek

Detaylı

LCR METRE KALİBRASYONU

LCR METRE KALİBRASYONU 599 LCR METRE KALİBRASYONU Yakup GÜLMEZ Gülay GÜLMEZ Mehmet ÇINAR ÖZET LCR metreler, genel olarak indüktans (L), kapasitans (C), direnç (R) gibi parametreleri çeşitli frekanslardaki alternatif akımda ölçen

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi DENEY NO :5 DENEYİN ADI :İşlemsel Kuvvetlendirici - OPAMP Karakteristikleri DENEYİN AMACI :İşlemsel kuvvetlendiricilerin performansını etkileyen belli başlı karakteristik özelliklerin ölçümlerini yapmak.

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 2 LAB. DENEY FÖYLERİ

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 2 LAB. DENEY FÖYLERİ MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK-BİLGİSAYAR BÖLÜMÜ ELEKTRONİK 2 LAB. DENEY FÖYLERİ Elektronik 2 Deney föyleri Arş. Gör. Hayriye Korkmaz tarafından hazırlanmıştır. JFET ÖN GERİLİMLENDİRME

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta E sınıfı DC kıyıcılar; E sınıfı DC kıyıcılar, çift yönlü (4 bölgeli) DC kıyıcılar olarak bilinmekte olup iki adet C veya iki adet D sınıfı DC kıyıcının birleşiminden oluşmuşlardır. Bu tür kıyıcılar, iki

Detaylı

DENEY 5: RC DEVRESİNİN OSİLOSKOPLA GEÇİCİ REJİM ANALİZİ

DENEY 5: RC DEVRESİNİN OSİLOSKOPLA GEÇİCİ REJİM ANALİZİ A. DENEYİN AMACI : Seri RC devresinin geçici rejim davranışını osiloskop ile analiz etmek. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal Üreteci, 2. Osiloskop, 3. Değişik değerlerde direnç ve kondansatörler.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN

Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN Gürültü nedir? Basit olarak, istenmeyen veya zarar veren ses db Skalası Ağrı eşiği 30 mt uzaklıktaki karayolu Gece mesken alanları 300 mt yükseklikte

Detaylı

21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ

21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ 21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ KONULAR 1. Frekansın Ölçülmesi 2. Güç Katsayısının Ölçülmesi 3. Devir Sayının Ölçülmesi 21.1.Frekansın Ölçülmesi 21.1.1. Frekansın Tanımı Frekans,

Detaylı

Asenkron Makineler (2/3)

Asenkron Makineler (2/3) Asenkron Makineler (2/3) 1) Asenkron motorun çalışma prensibi Yanıt 1: (8. Hafta web sayfası ilk animasyonu dikkatle inceleyiniz) Statora 120 derecelik aralıklarla konuşlandırılmış 3 faz sargılarına, 3

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

DC DC DÖNÜŞTÜRÜCÜLER

DC DC DÖNÜŞTÜRÜCÜLER 1. DENEYİN AMACI KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) DC DC DÖNÜŞTÜRÜCÜLER DC-DC gerilim azaltan

Detaylı

bölüm POWER AMPLIFIERS

bölüm POWER AMPLIFIERS bölüm POWER AMPLIFIERS T H E S O U N D R E I N F O R C E M E N T H A N D B O O K Power amplifiers 1990 (second editions) by YAMAHA corporation of America and Gary Dacis & Associates Hal Leonard Publishing

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Arş. Gör. Mustafa İSTANBULLU Doç. Dr. Mutlu AVCI ADANA,

Detaylı

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.

Detaylı

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DERE E KISA DERE KARAKTERİSTİKERİ DENEY 4-04. AMAÇ: Senkron jeneratör olarak çalışan üç faz senkron makinanın

Detaylı

Şekil 1.1: Temel osilatör blok diyagramı

Şekil 1.1: Temel osilatör blok diyagramı 1. OSİLATÖRLER 1.1. Osilatör Nedir? Elektronik iletişim sistemlerinde ve otomasyon sistemlerinde kare dalga, sinüs dalga, üçgen dalga veya testere dişi dalga biçimlerinin kullanıldığı çok sayıda uygulama

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

DENEY 3. Tek Yan Bant Modülasyonu

DENEY 3. Tek Yan Bant Modülasyonu DENEY 3 Tek Yan Bant Modülasyonu Tek Yan Bant (TYB) Modülasyonu En basit genlik modülasyonu, geniş taşıyıcılı çift yan bant genlik modülasyonudur. Her iki yan bant da bilgiyi içerdiğinden, tek yan bandı

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı