MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?"

Transkript

1 MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş: Eldeki araştırmada geçmiş yıllardaki Ulusal Bilgisayar Olimpiyatı(UBO) soruları arasında yer alan aşağıdaki soru esas alınmıştır: Soru: Önünüzde 10 basamaktan oluşan bir merdiven var. Eğer her adım atışta bir veya iki basamak yukarı çıkabiliyorsanız kaç farklı şekilde tepeye ulaşabilirsiniz? A) 89 B) 55 C) 144 D) E) (UBO-1997) Çözüm: 1

2 Yani 10 basamaklı bir merdivenin en üst basamağına her adımda 1 ya da 2 basamak çıkarak 89 farklı şekilde çıkılabilir. Örneğin genellenmesini içeren eldeki araştırmada kullanılan bazı önbilgiler şöyle sıralanabilir: ÖB1: olmak üzere terimlerinden oluşan bir sayı dizisinin farklı permütasyonlarının sayısı olarak bulunur. ÖB2: kuralı Binom katsayılarının bir özelliğidir. ÖB3: A ve B reel sayılar olmak üzere, biçiminde tanımlanan diziler indirgemeli dizilerdir ve bu dizilerin en bilineni Fibonacci dizisidir. Fibonacci dizisi, ve için şeklinde ifade edilir. Fibonacci dizisinin genel terimi ise, olarak bulunur. 2

3 Örnekten yola çıkılarak araştırma problemi ve alt problemler şu şekilde geliştirilebilir: Problem: n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1, 2, 3, ya da m basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Problem i: n=2k olmak üzere, n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1 ya da 2 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Problem ii: n=2k+1 olmak üzere, n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1 ya da 2 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Problem iii: n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1, 2 ya da 3 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Yöntem: Alt problemlerin çözümleri şu şekildedir: Problem i: n=2k olmak üzere, n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1 ya da 2 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Çözüm i: 3

4 Problem ii: n=2k+1 olmak üzere, n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1 ya da 2 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Çözüm ii: Problem iii: n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1, 2 ya da 3 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? Çözüm iii: Burada toplu bir sonuç yerine, herhangi bir kombinasyonun kaç farklı şekilde gerçekleşeceğini ÖB1 den faydalanarak şu şekilde bulunur: Sonuç ise şu şekilde ifade edilir: Problem iii şöyle örneklendirilebilir: Örnek: 8 basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1, 2 ya da 3 basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? 4

5 Çözüm: Yani 8 basamaklı bir merdivenin en üst basamağına her adımda 1, 2 ya da 3 basamak çıkarak 81 farklı şekilde çıkılabilir. Araştırma probleminin çözümü ise şu şekildedir: Problem: n basamaklı merdivenin en üst basamağına çıkmak istiyoruz. Her adımda 1, 2, 3 ya da m basamak hareket edebiliriz. Kaç farklı şekilde çıkabiliriz? 5

6 Çözüm: Burada yine, herhangi bir kombinasyonun kaç farklı şekilde gerçekleşeceğini şu şekilde bulunur: Toplam sonuç ise şöyledir: Burada elde edilen sonuç bir teorem şeklinde şöyle ifade edilir: Teorem: n basamaklı merdivenin en üst basamağına, her adımda 1, 2, 3 ya da m basamak hareket edilerek farklı şekilde çıkılabilir. Ayrıca problem i ve problem ii ye çözüm olarak indirgemeli dizi mantığını baz alan bir yaklaşım şu şekilde ifade edilebilir: Teorem: ve n basamaklı bir merdivenin en üst basamağına bir veya iki basamak hareket edilerek kaç farklı şekilde çıkılabileceğinin sayısı olmak üzere, aşağıdaki eşitlikler elde edilir: 6

7 İspat 1: ÖB2 kullanılarak aşağıdaki eşitlikler elde edilir: İspat 2: basamağa ya basamaktan ya da basamaktan ulaşılır. Dolayısıyla eşitliği elde edilir. 7

8 Burada elde edilen varlığı görülecektir: indirgemeli dizisiyle Fibonacci dizisi arasında şöyle bir bağıntının Buradan da, ÖB3 ten faydalanılarak dizisinin genel terimi şeklinde bulunur. Benzer mantıkla şöyle bir genellemeye ulaşılır: ve n basamaklı bir merdivenin en üst basamağına 1, 2 veya m basamak hareket edilerek kaç farklı şekilde çıkılabileceğinin sayısı olmak üzere, aşağıdaki eşitlik elde edilir: Sonuç: Eldeki araştırmada şu sonuçlar elde edilmiştir: n=2k olmak üzere, n basamaklı merdivenin en üst basamağına, her adımda 1 ya da 2 basamak hareket ederek farklı şekilde çıkılabilir. n=2k+1 olmak üzere, n basamaklı merdivenin en üst basamağına, her adımda 1 ya da 2 basamak hareket ederek farklı şekilde çıkılabilir. n basamaklı merdivenin en üst basamağına, her adımda 1, 2 ya da 3 basamak hareket ederek 8

9 farklı şekilde çıkılabilir. n basamaklı merdivenin en üst basamağına, her adımda 1, 2, 3 ya da m basamak hareket ederek farklı şekilde çıkılabilir. Diğer taraftan ve n basamaklı bir merdivenin en üst basamağına bir veya iki basamak hareket edilerek kaç farklı şekilde çıkılabileceğinin sayısı olmak üzere, aşağıdaki eşitlikler elde edilir: Burada elde edilen indirgemeli dizisiyle Fibonacci dizisi arasında bağıntısı elde edilerek dizisinin genel terimi şeklinde bulunur. Son olarak, ve n basamaklı bir merdivenin en üst basamağına 1, 2 veya m basamak hareket edilerek kaç farklı şekilde çıkılabileceğinin sayısı olmak üzere, aşağıdaki eşitlik elde edilir: Ayrıca UBO da sorulmuş benzer iki soru ve çözümü Ek tedir. 9

10 Kaynaklar: 1. Aysan, B. ve Cansu, F. K., (2011), TÜBİTAK Ulusal Bilgisayar Olimpiyatı Soru ve Çözümleri , Altın Nokta Yayınları, İzmir 2. Özdemir, M. (2011), Matematik Olimpiyatlarına Hazırlık 2, Altın Nokta Yayınları, İzmir 3. Özdemir, M. (2010), Matematik Olimpiyatlarına Hazırlık 4, Altın Nokta Yayınları, İzmir 4. Kaya, E. (2012), Kombinatorik, Altın Nokta Yayınları, İzmir 10

11 Ek: basamaklı bir merdiveni, birer veya üçer basamak atlayarak kaç farklı şekilde çıkabiliriz? A) 26 B) 27 C) 28 D) 29 E) 30 (UBO-2007) Çözüm: basamaklı bir merdivene, 1 veya 3 er basamak atlayarak kaç değişik yolla tırmanılabilir? A) 45 B) 60 C) 72 D) 71 E) 100 (UBO-2000) Çözüm: 11

12 12

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 4 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 4 (336 sayfa) ANALİZ CEBİR 1 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın

Detaylı

Nesbitt Eşitsizliğine Farklı Bir Bakış

Nesbitt Eşitsizliğine Farklı Bir Bakış ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI Nesbitt Eşitsizliğine Farklı Bir Bakış Muhammed Osman Çorbalı Danışman Öğretmen: Yüksel Demir PROJE RAPORU 2014 PROJENİN AMACI:

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 7. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 00 Birinci Bölüm Soru kitapçığı türü A 1. Bir ikizkenar

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI ., x x 0,,4 0,7 eşitliğinde x kaçtır? 4. a b b c 3 olduğuna göre a b c ifadesinin değeri kaçtır? A) 0, B) 0,5 C) 0, D) 0,5 A) 9 B) 8 C) D) 4 3. x.y 64, y.x 6 olduğuna göre, x.y ifadesinin değeri kaçtır?

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

SAYILAR TEORÝSÝNE GÝRÝÞ

SAYILAR TEORÝSÝNE GÝRÝÞ OLÝMPÝK MATEMATÝK SERÝSÝ MATEMATÝK OLÝMPÝYATLARINA HAZIRLIK ÝÇÝN MERAKLISINA SAYILAR TEORÝSÝNE GÝRÝÞ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVÝ ÝZMÝR - 2013 Copyright Altýn Nokta Basým Yayýn Daðýtým Biliþim ISBN

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3)

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3) PERMÜTASYON DÜZEY: 1 TEST : 1 1. P(6, 2) + P(4, 3) işleminin sonucu kaçtır? A) 30 B) 44 C) 50 D) 54 5. P(6, n) = 6! eşitliğini sağlayan n doğal sayılarının kümesi aşağıdakilerden hangisidir? A) {7} B)

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

3 olduğuna göre, o gün Lincoln de en düşük

3 olduğuna göre, o gün Lincoln de en düşük AMC 013 (Amerika Liseler Arası Matematik Yarışması 013) 1. Ocak ayının belli bir gününde Lincoln Nebrasca da en yüksek sıcaklık en düşük sıcaklıktan 16 yüksektir. En düşük ve en yüksek sıcaklıkların ortalaması

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

-ÖRÜNTÜ NEDİR? Bir örnek verebilir misin?

-ÖRÜNTÜ NEDİR? Bir örnek verebilir misin? ÖRÜNTÜLERİ TAMIYALIM Fred bu örüntünün ne olduğunu anlayamadım bir türlü. Bana birde sen anlatır mısın? -ÖRÜNTÜ NEDİR? Örüntü, bir nesne veya olay kümesindeki elemanların ardışık olarak düzenli bir biçimde

Detaylı

Mustafa Özdemir. December 29, 2014

Mustafa Özdemir. December 29, 2014 Toplamlar, Çarp mlar, Kombinasyon, Permütasyon, Da¼g l m, Olas l k, Binom Aç l m, Multinom Aç l m, Kan t Yöntemleri ile ilgili Olimpiyat Problemleri Olympiad Problems on the Sums, Products, Combination,

Detaylı

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ Özel Bahçeşehir Fen Teknoloji Lisesi Başakşehir/İSTANBUL Projenin Adı: Bir Polinomun

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. YGS DENEESİ 2 1) U ESE EEL AEAİK VE GEOERİ OLAK ÜERE, OPLA ADE SORU VARDIR. 2) U ESİN CEVAPLANASI İÇİN AVSİYE EDİLEN SÜRE DAKİKADIR. 1) 2,.(!+1!+2!) =?, 1 A) ) 1 C) 2 D) ) +8 ( 2 + 1) ( 2 2+ 2 ) hangisidir?

Detaylı

Doğal Sayılar 1 Akıllı Test 1

Doğal Sayılar 1 Akıllı Test 1 Doğal Sayılar 1 Akıllı Test 1 Öğrenci Adı Soyadı Sınıfı Test Teslim Tarihi Öğretmen Görüşü 1) 378 124 704 doğal sayısı ile ilgili aşağıdakilerden hangisi yanlıştır? A) Üç yüz yetmiş sekiz milyon yüz yirmi

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

SAYILAR TEORİSİ - PROBLEMLER

SAYILAR TEORİSİ - PROBLEMLER SAYILAR TEORİSİ - PROBLEMLER 1. (p + 1) q sayısının hangi p ve q asal sayıları için bir tam kare olduğunu 2. n+2n+n+... +9n toplamının bütün basamakları aynı rakamdan oluşan bir sayıya eşit olmasını sağlayan

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI . a 6 b a b 8 ifadesinin açılımında b çarpanının bulunmadığı terim aşağıdakilerden hangisidir?. Bir toplulukta en az iki kişinin yılın aynı ayı ve haftanın aynı gününde doğduğu kesin bilindiğine göre,

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB1001 Analiz I 6 Aralık 013. Yıliçi Sınavı Öğrenci Numarası: Adı Soyadı: - Talimatlar: Sınav süresi 90 dakikadır. İlk 30 dakika sınav salonunu

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MATEMATİK 205 8. SINIF. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI 25 KASIM 205 Saat: 0.0 Adı

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Mutlak Değerin Sayıya Eşitliği % % Sayılar Akıl Yürütme % % Okek Dikdörtgen Birleştirme % % Kesirlerin Okeki % % Obeb Problemleri % % Obeb Denklemi

Detaylı

Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012

Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 Limit Oyunları Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 1 Giriş Limit ve sonsuzluk kavramlarının anlaşılması birçok insan için zor olabilir. Hatta bazı garip örnekler bu anlaşılması zor kavramlar

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI MATEMATİK 2016 A SORU SAYISI : 20 T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI 23 KASIM 2016 Saat: 10.10 Adı

Detaylı

2. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

2. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 2. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 HATA Sayısal yöntemler analitik çözümlerden farklı olarak

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Salih Zeki Matematik Araştırma Projeleri

Salih Zeki Matematik Araştırma Projeleri Salih Zeki Matematik Araştırma Projeleri PROJENİN ADI: ÖKLİD NE SÖYLER CAUCHY NE ANLAR HAZIRLAYANLAR : AYŞE İREM AKYILDIZ ZEYNEP KOÇYİĞİT ÖZEL BÜYÜKÇEKMECE ÇINAR FEN LİSESİ İSTANBUL-04 Projenin Adı: Öklid

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Temel Matematik Testi - 3

Temel Matematik Testi - 3 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 003. u testte 0 soru vardır. 2. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

ARİTMETİK DİZİLERDE GENEL TERİMİ BULMAK

ARİTMETİK DİZİLERDE GENEL TERİMİ BULMAK ARİTMETİK DİZİLERDE GENEL TERİMİ BULMAK İÇİN PRATİK BİR YÖNTEM HAZIRLAYANLAR: Seçil ÜZEL-Hasan Yılmaz Kurt İ.Ö.O Matematik Öğretmeni Meryem BULUT ÇATAL Hayrabolu İ.Ö.O Matematik Öğretmeni Zehra TEMİZ-Doğanbey

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2)

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2) MATEMATİK 2. SINIF 1. 7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? 74 47 34 2) 3. 48 sayısının onluk ve birliklerine ayrılışı hangi seçenekte doğru verilmiştir? 4 onluk + 8 birlik 8 onluk

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

Üslü Nicelikler = 2 4 (iki üzeri dört) 4 tane. Sefa Tuncay. 8.8 = 8 2 (sekiz üzeri iki) veya (sekizin karesi) 2 tane

Üslü Nicelikler = 2 4 (iki üzeri dört) 4 tane. Sefa Tuncay. 8.8 = 8 2 (sekiz üzeri iki) veya (sekizin karesi) 2 tane Üslü Nicelikler Dogal sayıların kendisiyle tekrarlı çarpımını üslü nicelik olarak ifade eder ve üslü niceliklerin değerini belirler. Kim Milyoner Olmak İster? yarışmasına katıldığınızı ve büyük ödül 1

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

DGS 2010 DGS SAYISAL BÖLÜM ÇÖZÜMLERİ

DGS 2010 DGS SAYISAL BÖLÜM ÇÖZÜMLERİ DGS 00 DGS SAYISAL BÖLÜM ÇÖZÜMLERİ Sınavın bu bölümünden alacağınız standart puan, Sayısal DGS Puanınızın (DGS-SAY) hesaplanmasında ; Eşit Ağırlıklı DGS Puanınızın (DGS-EA) hesaplanmasında,8; Sözel DGS

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. x ile y pozitif tam sayılardır. EBOB(x,y) = 9 ve x+y = 7 olduğuna göre, x kaç farklı değer alır? 3. 4 A) B) 3 C) 4 D) 5 9 7 49 1 5 36 10 4? n n-5. Uygun yerlere parantezler yerleştirilerek, 1::3:4:5:6:7:8

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 0 Mayıs 009 Matematik Soruları ve Çözümleri. ( ) 4 işleminin sonucu kaçtır? A) B) C) 4 D) E) 6 Çözüm ( ) 4 ( ) 4 4 6.

Detaylı

Ayrık Matematik ve Kombinatorik (MATH 112) Ders Detayları

Ayrık Matematik ve Kombinatorik (MATH 112) Ders Detayları Ayrık Matematik ve Kombinatorik (MATH 112) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Ayrık Matematik ve Kombinatorik MATH 112 Bahar 3 0 0 3 6 Ön Koşul

Detaylı

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR ÖZEL EGE LĠSESĠ ġeklġndekġ ĠFADELERĠN SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR HAZIRLAYAN ÖĞRENCĠ: Ersin ĠSTANBULLU DANIġMAN ÖĞRETMEN: Defne TABU ĠZMĠR 2013 ĠÇĠNDEKĠLER 1.

Detaylı

TEST. Doğrusal Denklem Sistemleri. 5. ax + by = 1 ax by = ax y = 11 2x + by = x 2y = 6 2x + 3y = x + 2y = 7 3x + 5y = 18

TEST. Doğrusal Denklem Sistemleri. 5. ax + by = 1 ax by = ax y = 11 2x + by = x 2y = 6 2x + 3y = x + 2y = 7 3x + 5y = 18 Doğrusal Denklem Sistemleri 8. Sınıf Matematik Soru Bankası TEST 67. a b b + = + (a b olmak üzere) denkleminde in değeri aşağıdakilerden b A) a. b B) C) b D) a a 5. a + by = a by = 5 denklem sisteminin

Detaylı

dir. Bu avcı en çok 3 atışta bu hedefi vurabilme

dir. Bu avcı en çok 3 atışta bu hedefi vurabilme 1. 3 mavi, 3 kırmızı, 3 siyah kalemin bulunduğu bir torbada rasgele alınan iki kalemin farklı renkte olma olasılığı kaçtır? A) 1 3 B) 2 3 C) 3 4 D) 3 5 E) 4 5 2. 43 kişilik bir sınıfta Almanca İngilizce

Detaylı

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır.

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır. Saymanın Temel İlkesi Birinci elemanı A 1 kümesinden, ikinci elemanı A 2 kümesinden,..., n inci elemanı A n kümesinden alınmak koşulu ile; kaç değişik sıralı n li yazılabilir? 1. Aşağıdaki problemleri,

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

ALTIN NOKTA YAYINEVİ ANTALYA

ALTIN NOKTA YAYINEVİ ANTALYA ALTIN NOKTA YAYINEVİ ANTALYA - 2016 Copyright Altın Nokta Basım Yayın Dağıtım Bilişim ISBN 978-605-5255-17-6 Ulusal Antalya Matematik Olimpiyatları 1. Aşama Mustafa Özdemir mozdemir07@gmail.com İlham Aliyev

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

16. ULUSAL MATEMATİK OLİMPİYATI

16. ULUSAL MATEMATİK OLİMPİYATI TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 16. ULUSAL MATEMATİK OLİMPİYATI - 2008 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 27 Nisan 2008 Pazar, 13.00-15.30

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı