ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ"

Transkript

1 ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE TABU 2010 İZMİR

2 İÇİNDEKİLER SAYFA NO: PROJENİN ADI 3 PROJENİN AMACI 3 GİRİŞ 3 YÖNTEM 3 SONUÇLAR 12 TEŞEKKÜR 12 KAYNAKÇA 12 2

3 1 PROJENİN ADI: ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ 2 PROJENİN AMACI Projenin esas amacı; elemanları denk kümeler olan ve farklı iki elemanının simetrik farkını içeren kümeleri yaratabilmek, b kümelerin eleman sayılarını ve b sayılardan en büyüğünü veren formülü blp ispatlamak 3 GİRİŞ: Her biri dört elemanlı n kümeden, hangi farklı ikisini alırsak alalım,b iki kümeden yalnızca birine ait olan tüm elemanlardan olşan küme,başlangıçtaki n kümeden birine eşitse, n en çok kaçtır? B sor 2009 TÜBİTAK UMO 1aşama sınavında sorlmştr B sordan yola çıkarak dört elemanlı kümeler yerine, k elemanlı kümeleri alıp, n nin en büyük değerine laşabilmek 4 YÖNTEM: Gözlem ve doğrdan ispat yöntemiyle formüle laştım ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ Tanım: A ve B iki küme olmak üzere, A ve B nin simetrik farkı A B=(A\B) (B\A) şeklinde tanımlanır Simetrik Fark İşleminin Özellikleri: A, B, C üç tane küme olsn 1 A B=B A 2 A (B C)=(A B) C 3 A A=Ø 4 A Ø=A 5 A B=A C B=C Tanım: G bir küme olsn Bir k tam sayısı için G kümesi; 1 A G n(a)=k 2 Her farklı A, B G için, A B G koşllarını sağlarsa, G kümesi (*) özelliğini sağlar diyelim 3

4 B çalışmada k sayısı her zaman, A G için, A nın eleman sayısını yani n(a) yı gösterecektir B drmda 2 özellikden dolayı her farklı A, B G için n(a B)= 2 k olmalıdır Not: TÜBİTAK sors b tanıma göre k=4 için (*) özelliğini sağlayan G kümesinin en çok kaç elemanlı olacağı sorsna denktir k sayısına bağlı olarak (*) özelliğini sağlayan G kümesinin eleman sayısı Şimdi G kümesinin eleman sayısının k tam sayısına bağlı olarak nasıl değiştiğini inceleyeceğiz 1 Drm: k tek ise: k tek ise (*) özelliğini sağlayan G kümesinin eleman sayısı, her farklı A, B G için k n(a B)= bir tam sayı olmadığından, en çok 1 dir 2 Örneğin; k=5 ise, (*) özelliğini sağlayan bir kümenin eleman sayısı en çok 1 dir 2 Drm: k çift ise: k çift ise (*) özelliğini sağlayan 3 elemanlı G kümesi aşağıdaki gibi olştrlabilir k=2s diyelim B drmda A 1, A 2, A 3 ayrık ve n(a 1 ) =n(a 2 )= n(a 3 )=s olarak alınırsa; K 1 = A 1 A 2 K 2 = A 1 A 3 K 3 = A 2 A 3 kümeleri için G= {K 1, K 2, K 3 } kümesi (*) özelliğini sağlamaktadır Brada i, j= 1, 2, 3 için n (K i ) = 2s ve i j için n( K i K j )= s dir Şimdi G kümesinin elemanlarını artırabilir miyiz? Bn inceleyelim K 1 = A 1 A 2 K 2 = A 2 A 3 şeklindeydi K 3 = A 1 A 3 Ykarıdaki kümelerden farklı bir K 4 kümesi varsa her i=1,2,3 için n(k i K 4 ) = 2 k =s olr 4

5 A) K 4 kümesini K 1, K 2, K 3 ün elemanlarıyla olştrmaya çalışalım Her i = 1, 2, 3 için X i Ai şekilde ve K 4 = X 1 X 2 X 3 ise, G nin (*) özelliğini sağlaması için K 1 K 4 = X 1 X 2 K 2 K 4 = X 2 X 3 K 3 K 4 = X 1 X 3 n(x 1 )+ n(x 2 ) = s n(x 2 )+ n(x 3 ) = s n(x 1 )+ n(x 3 ) = s B denklemleri taraf tarafa toplarsak, 2[n(X 1 ) + n(x 2 ) + n(x 3 )] = 3s (1) 2s= 3s Çelişki B drmda aşağıdaki sonc elde ederiz Sonç 1: Sadece elimizdeki elemanları kllanarak G nin eleman sayısını arttıramıyorz B) Her i= 1, 2, 3 için X A i olacak şekilde K 4 = X 1 X 2 X 3 X seçelim n(k 4 ) =2s, n(x 1 X 2 X 3 ) = k 1 olsn 3s (1) nmaralı eşitlikten 2k 1 = 3s k 1 = 2 Sonç 2: Böyle bir K 4 kümesi blabilmemiz için s çift sayı olmalı Örnek: k = 6 = 23 için (*) özelliğini sağlayan bir G kümesinin eleman sayısı en çok 3 olabilir Böyle bir G kümesi aşağıdaki gibidir A 1 ={1,2,3}, A 2 ={4, 5, 6}, A 3 ={7, 8, 9} olmak üzere; K 1 = A 1 A 2 K 2 = A 2 A 3 G = {K 1, K 2, K 3 } K 3 = A 1 A 3 Şimdi s çift olsn ve K 4 kümesini blmaya çalışalım s= 2t 1 olsn B drmda n(k 4 ) =2s= 4t 1 olr n(x 1 ) + n(x 2 ) + n(x 3 ) = 3t 1 olr n(x) = 4t 1 3t 1 = t 1 n(x 1 )+ n(x 2 ) =2t 1 n(x 2 )+ n(x 3 ) = 2t 1 Bradan n(x 1 ) = n(x 2 ) = n(x 3 )=t 1 blnr n(x 1 )+ n(x 3 ) = 2t 1 5

6 i=1,2,3 için, X i * = A i \ X i olarak tanımlayalım n(a i ) = s = 2t 1 oldğndan aşağıdaki sonc blrz Sonç 3: X 1, X 1 *, X 2, X 2 *, X 3, X 3 * ve X kümelerinin eleman sayıları eşittir A) ve B) den aşağıdaki sonc elde ederiz Sonç 4: K 4 kümesini olştrmak için her i= 1, 2, 3 için X A i bir X kümesi kllanmalıyız ve n(x)= t 1 şeklinde Şimdi K 4 kümesini olştrp, (*) özelliğini kllanarak G nin aşağıdaki gibi 7 elemanı elde edilir K 1 = X 1 X 1 * X 2 X 2 * K 2 = X 2 X 2 * X 3 X 3 * K 3 = X 1 X 1 * X 3 X 3 * K 4 = X 1 X 2 X 3 X K 5 = (K 1 K 4 ) = X 1 * X 2 * X 3 X K 6 = (K 2 K 4 ) = X 1 X 2 * X 3 * X K 7 = (K 3 K 4 ) = X 1 * X 2 X 3 * X Simetrik farkın A B A = B özelliğinden i=1, 2, 3, 4, 5, 6, 7 ve i j için K i K j G dir Sonç 5: i=1, 2, 3 için K i K 4 işleminde K i deki yıldızlı kümeler K 4 te blnmadığı için j=5,6,7 için K j kümesine geçer K i ve K 4 kümelerinin ortak olmayan yıldızsız elemanı ve yeni eklenen X elemanı K j e geçer O zaman X kümesi ve i=1,2,3 için X i, X i * kümeleri K 1,,K 7 içinde aynı sayıda kllanılmıştır Sonç 6: Yeni elemanları elde etmek için K 4 ü diğer kümelerle simetrik fark işlemine tabi ttarsak, elimizde daha önce 3 küme blndğndan işlem soncnda 2(2+1)+1 = 7 küme elde edilir Kolaylık olması açısından B 1, B 2, B 3, B 4, B 5, B 6, B 7 ayrık kümelerini aşağıdaki gibi alırsak B 1 =X 1 B 2 =X 1 * B 3 =X 2 B 4 =X 2 * B 5 =X 3 B 6 =X 3 * B 7 = X K 1 = B 1 B 2 B 3 B 4 K 2 = B 3 B 4 B 5 B 6 K 3 = B 1 B 2 B 5 B 6 K 4 = B 1 B 3 B 5 B 7 K 5 = B 2 B 4 B 5 B 7 K 6 = B 1 B 4 B 6 B 7 K 7 = B 2 B 3 B 6 B 7 şeklinde olr 6

7 3 Drm Şimdi G kümesinin elemanlarını arttırabilir miyiz? Bn inceleyelim A) B drmda G kümesinin K 1, K 2, K 3, K 4, K 5, K 6, K 7 elemanlarından farklı olan bir K 8 elemanı var mıdır? n(k i )=4t 1 demiştik i= 1, 2, 3, 4, 5, 6, 7 için Y i B i için K 8 = Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 olrsa, K 8 K 1 = Y 1 Y 2 Y 3 Y 4 n (Y 1 )+ n (Y 2 )+ n (Y 3 )+ n (Y 4 )=2t 1 K 8 K 2 = Y 3 Y 4 Y 5 Y 6 n (Y 3 )+ n (Y 4 )+ n (Y 5 )+ n (Y 6 )=2t 1 K 8 K 3 = Y 1 Y 2 Y 5 Y 6 n (Y 1 )+ n (Y 2 )+ n (Y 5 )+ n (Y 6 )=2t 1 K 8 K 4= Y 1 Y 3 Y 5 Y 7 n (Y 1 )+ n (Y 3 )+ n (Y 5 )+ n (Y 7 )=2t 1 K 8 K 5 = Y 2 Y 4 Y 5 Y 7 n (Y 2 )+ n (Y 4 )+ n (Y 5 )+ n (Y 7 )=2t 1 K K 8 6= Y 1 Y 4 Y 6 Y 7 n (Y 1 )+ n (Y 4 )+ n (Y 6 )+ n (Y 7 )=2t 1 K 8 K 7 = Y 2 Y 3 Y 6 Y 7 n (Y 2 )+ n (Y 3 )+ n (Y 6 )+ n (Y 7 )=2t 1 B denklemleri taraf tarafa toplarsak, 4[n(Y 1 ) + n(y 2 ) + n(y 3 ) + n(y 4 ) + n(y 5 ) + n(y 6 ) + n(y 7 )] = 14t 1 (2) 16t 1 = 14t 1 Çelişki Demek ki elimizdeki elemanları kllanarak G nin eleman sayısını arttıramıyorz B) G nin eleman sayısını arttırabilmek için i= 1, 2, 3, 4, 5, 6, 7 için Y i B i ve Y B i = şeklinde bir Y kümesi olmalıdır K 8 = Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y n (K 8 ) = n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y )=4t 1 n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 )=k 2 olsn (2) nol eşitlikten 4k 2 =14t 1 7t k 2 = 1 blnr 2 Sonç 7: k=4s ve s tek ise (*) özelliğini sağlayan kümenin eleman sayısı en çok 7 dir TÜBİTAK sorsnn cevabı s = 1 için Sonç 7 den çıkmaktadır 7

8 Örnek: k = 12 = için (*) özelliğini sağlayan bir G kümesinin eleman sayısı en çok 7 olabilir Böyle bir G kümesi aşağıdaki gibidir B 1 ={1, 2, 3}, B 2 ={4, 5, 6}, B 3 ={7, 8, 9}, B 4 ={10, 11, 12} B 5 ={13, 14, 15}, B 6 ={16, 17, 18}, B 7 ={19, 20, 21} olmak üzere; K 1 = B 1 B 2 B 3 B 4 K 2 = B 3 B 4 B 5 B 6 K 3 = B 1 B 2 B 5 B 6 K 4 = B 1 B 3 B 5 B 7 G = {K 1, K 2, K 3, K 4, K 5, K 6, K 7 } K 5 = B 2 B 4 B 5 B 7 K 6 = B 1 B 4 B 6 B 7 K 7 = B 2 B 3 B 6 B 7 Sonç 8: Kümenin eleman sayısını arttırabilmemiz için t 1 çift sayı olmak zorndadır t 1 =2t 2 için n (K 8 ) = n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y )=4t 1 n(k 8 )=8t 2 ve k 2 =7t 2 B drmda n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 )=k 2 =7t 2 ve n(y)=8t 2-7t 2 =t 2 blnr Sonç 9: Yeni birleştirilen küme t 2 elemanlı olmalıdır Yeni kümeleri olştrmak için önceden kllandığımız kümeleri aşağıdaki gibi iki ayrık denk kümeye parçalarız i=1, 2, 3, 4, 5, 6, 7 için Y i *= B i \ Y i ise Y i * Y i =B i olr Kolaylık olması açısından Y İ =C 2i-1 ve Y i *=C 2i dersek, B 1 = C 1 C 2 B 2 = C 3 C 4 B 3 = C 5 C 6 B 4 = C 7 C 8 B 5 = C 9 C 10 B 6 = C 11 C 12 B 7 = C 13 C 14 olr Şimdi K 8 ile daha önceki 7 kümeyi simetrik fark işlemine tabi ttarsak aşağıdaki gibi (*) özelliğini sağlayan 15 küme elde edilir 8

9 K 1 = C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 K 2 = C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 K 3 = C 1 C 2 C 3 C 4 C 9 C 10 C 11 C 12 K 4 = C 1 C 2 C 5 C 6 C 9 C 10 C 13 C 14 K 5 = C 3 C 4 C 7 C 8 C 9 C 10 C 13 C 14 K 6 = C 1 C 2 C 7 C 8 C 11 C 12 C 13 C 14 K 7 = C 3 C 4 C 5 C 6 C 11 C 12 C 13 C 14 K 8 = C 1 C 3 C 5 C 7 C 9 C 11 C 13 C 15 K 9 = C 2 C 4 C 6 C 8 C 9 C 11 C 13 C 15 K 10 = C 1 C 3 C 6 C 8 C 10 C 12 C 13 C 15 K 11 = C 2 C 4 C 5 C 7 C 10 C 12 C 13 C 15 K 12 = C 2 C 3 C 6 C 7 C 10 C 11 C 14 C 15 K 13 = C 1 C 4 C 5 C 8 C 10 C 11 C 14 C 15 K 14 = C 2 C 3 C 5 C 8 C 9 C 12 C 14 C 15 K 15 = C 1 C 4 C 6 C 7 C 9 C 12 C 14 C 15 Sonç 10: K 8 kümesini önceki 7 kümeyle simetrik fark işlemine sokarsak yeni 7 küme elde ederiz Sonç 11: K 1, K 2,, K 15 kümeleri içerisinde i=1,2,15 için her bir C i kümesi 8 kez kllanılmıştır ve n(c i )=s tir 72+1 = ( )2 +1 = B şekilde G kümesinin eleman sayısını (*) özelliğini sağlayacak şekilde arttırmaya devam edersek, k = 2 1 s, s tek ise n(g) max = k = 2 2 s, s tek ise n(g) max = 2(2 1 +1) + 1 k = 2 3 s, s tek ise n(g) max = 2( ) + 1 k = 2 t s, s tek ise n(g) max = 2(2 t t ) +1=2-1 blnr Sonç 12: G kümelerini b şekilde yazmaya devam edersek, k=2 t s ve s tek için n(g)=2-1 olacak şekilde bir küme G kümesi elde edilir 9

10 Sonç 13: k=2 t s ve s tek için n(g)=2-1 oldğnda, her biri s elemanlı ve ayrık olan C 1, t C 2,, C 2-1 kümeleri vardır öyleki, her K i G kümesi K i = C i1 C i2 C i2 şeklinde yazılır Her bir C i kümesi G nin elemanları içinde 2 t kez görülür Sonç 14: G kümesi k elemanlı kümelerden olşan ve (*) özeliğini sağlayan bir küme olsn k=2 t s ve s tek için n(g) max = 2-1 İspat: Sonç 12 den dolayı, k=2 t s ve s tek için G kümesinin (*) özelliğini sağlayan 2-1 elemanlı bir altkümesi blnr B küme {K 1, K 2,,K 2-1 } olsn G kümesinin {K 1, K 2,,K 2-1 } elemanları dışında bir B eleman içerdiğini kabl edip bir çelişki blalım Sonç 13 ten dolayı her biri s elemanlı C 1, C 2,, C 2-1 kümeleri vardır öyleki, her K i kümesi K i = C i1 C i2 C t i2 şeklinde yazılır ve herbir C i kümesi 2 t kez görülür B drmda: B = X 1 X 2 X 3 X 2-1 X, X i C i ve X C i = şeklindedir G Şimdi her i=1,, 2-1 için n(b K i ) =2 t-1 t s ve B K i = X i1 X i2 X i2 X ij {X 1, X 2,,X 2-1 } dir şeklindedir, brada B K 1, B K 2,, B K 2-1 elemanlarında her bir X j kümesi 2 t kez görülür, çünkü C j kümeleri {K 1, K 2,,K 2-1 } elemanları içinde 2 t kadar görülmektedir B drmda aşağıdaki denklemler blnr n(b K 1 ) =n(x 11 )+n(x 12 )++n(x 12 t )= 2 t-1 s n(b K 2 ) =n(x 21 )+n(x 22 )++n(x 22 t )= 2 t-1 s n(b K 2-1 ) =n(x (2-1)1 )+n(x (2-1)2 )++n(x (2-1)2 t )= 2 t-1 s Şimdi b denklemleri taraf tarafa toplarsak ve X ij {X 1, X 2,,X 2-1 } oldğn kllanırsak: 2 t [n(x 1 )+n(x 2 )++n(x 2-1 )]=(2-1) 2 t-1 s t 1 t-1 (2 + -1)2 s [n(x 1 )+n(x 2 )++n(x 2-1 )]= = t 2 10 (2 t+ 1-1) s 2 blnr B bir çelişkidir, çünkü son eşitliğin sol tarafı bir tamsayıdır, ancak (2-1) ve s sayıları tek sayı oldğndan eşitliğin sağ tarafı bir tam sayı değildir Demek ki böyle bir B kümesi yoktr Dolayısıyla n(g) max = 2-1 dir Örnek: k=28 için (*) koşln sağlayan bir G kümesinin eleman sayısı en çok kaç olabilir? 28=2 2 7 oldğndan G kümesinin elaman sayısı en çok =7 olr

11 (*) koşln sağlayan bir kümeyi büyütmek: Eleman sayısı 2-1 olan ve (*) koşln sağlayan bir G kümesine yeni bir eleman ekleyip, b yeni eleman ile G kümesindeki elemanlarla simetrik fark işlemine tabi ttarsak, eleman sayısı olan ve (*) koşln sağlayan bir küme elde edilir Bn aşağıda şekilde açıklayalım G kümesinin elemanlarına K 1, K 2,, K 2-1 ve yeni eklenen elemana K 2 diyelim K 1 K tane eleman var + K 2-1 K 2 (Yeni eklenen küme) 1 = K 2 +1 =K 1 K tane eleman var K = K 2-1 K 2 Bn bir örnekle açıklayalım Örnek: k=48=2 3 3 için (*) koşln sağlayan kümelerin eleman sayısı 1, 3, 7, 15 olabilir B drmda 1 elemanlı kümeden 3 elemanlı küme, 3 elemanlı kümeden 7 elemanlı küme, 7 elemanlı kümeden 15 elemanlı küme ykarıda açıklandığı gibi yeni eleman ekleyip simetrik fark işlemi yglanıp elde edilir 11

12 5 SONUÇLAR: G kümesi elemanları k elemanlı kümeler olan ve (*) koşln sağlayan bir küme olsn k= 2 t s, s tek sayı olacak şekilde yazalım 1) G kümesinin eleman sayısını t belirlemektedir 2) Her t+ 1 için n(g) = 2-1 olacak şekilde bir G kümesi vardır Yani n(g) in alabileceği değerler: 1, 3, 7, 15, 31,, 2-1 3) n(g) max = 2-1 4) Koşl sağlayan G kümelerini elde etmek için bir yöntem blyorz 5) Eleman sayısı 2-1 olan ve (*) koşln sağlayan bir G kümesine yeni bir eleman ekleyip, b yeni eleman ile G kümesindeki elemanları simetrik fark işlemine tabi ttarsak, eleman sayısı olan ve (*) koşln sağlayan bir küme elde edilir 6 TEŞEKKÜR: B projenin hazırlanmasında bana yardımcı olan danışman öğretmenim Sayın Defne TABU ya, okl yönetimine, okl arkadaşlarım Mert YAŞİN ve Umt BOZKURT a, okl dışından destek aldığımız İYTE Matematik Bölümünden Dr Engin BÜYÜKAŞIK a ve benden desteklerini esirgemeyen aileme teşekkür ederim 7 KAYNAKÇA:

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

ÜNİFORM DAİRESEL KESİTLİ BORU AKIŞLARINDA KİNETİK ENERJİ VE MOMENTUM DÜZELTME FAKTÖRLERİNİN DEĞİŞİMİ

ÜNİFORM DAİRESEL KESİTLİ BORU AKIŞLARINDA KİNETİK ENERJİ VE MOMENTUM DÜZELTME FAKTÖRLERİNİN DEĞİŞİMİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Veri-İletişim Ağları İçin Tasarlanan Optimal H Akış Denetleyicisinin Performans Seviyesi ve Kararlılık Payları

Veri-İletişim Ağları İçin Tasarlanan Optimal H Akış Denetleyicisinin Performans Seviyesi ve Kararlılık Payları Veri-İletişim Ağları İçin Tasarlanan Optimal H Akış Denetleyicisinin Perormans Seviyesi ve Kararlılık Payları Hakkı Ulaş Ünal ve Altğ İtar Elektrik-Elektronik Mühendisliği Bölümü Anadol Üniversitesi, 647

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

KAFKASYA ÜNİVERSİTELER BİRLİĞİ ELEKTRONİK YABANCI UYRUKLU ÖĞRENCİ SINAVI KILAVUZU. www.kunibyos.com

KAFKASYA ÜNİVERSİTELER BİRLİĞİ ELEKTRONİK YABANCI UYRUKLU ÖĞRENCİ SINAVI KILAVUZU. www.kunibyos.com KAFKASYA NİVERSİTELER BİRLİĞİ 2015 ELEKTRONİK YABANCI UYRUKLU ÖĞRENCİ SINAVI KILAVUZU www.knibyos.com www.knib.com Sayın Rektörüm, 11 Kasım 2009 tarihinde 3 ülkeden 7 üniversitenin bir araya gelmesiyle

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

BÖLÜM 5: MATEMATİKSEL KARTOGRAFYA HARİTA PROJEKSİYONLARI KURAMI

BÖLÜM 5: MATEMATİKSEL KARTOGRAFYA HARİTA PROJEKSİYONLARI KURAMI Kartografya Ders Not Bölüm 5 BÖLÜM 5: MATEMATİKSEL KATOGAFYA HAİTA POJEKSİYONLAI KUAMI Türkay Gökgöz (www.yildiz.ed.tr/~gokgoz) 5 Kartografya Ders Not Bölüm 5 İÇİNDEKİLE 5. Harita Projeksiyonlarında Deformasyon.

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı

AKIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ

AKIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ KIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ ÇORUM-05 ) DENEY CİHZININ ŞEMSI B) CİHZD KULLNILN MLZEMELER SNO MLZEMENİN DI DEDİ MRKSI E ÖZELLİĞİ S tankı 50x50x50 mm, 5 litre Sirkülasyon oması larko NO 3 entürimetre

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ Özel Bahçeşehir Fen Teknoloji Lisesi Başakşehir/İSTANBUL Projenin Adı: Bir Polinomun

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 003 004 005 006 007 008 009 010 011 ÖSS-YGS 1 - - 1 1 1 - - - - YAŞ PROBLEMLERĐ Belli bir yıl sonra herkesin yaşı aynı miktarda artar Đki kişinin yaşları toplamı t yıl sonra t artar, t yıl önce

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

ÇÖZÜMLÜ SORULAR. ÇÖZÜM : Öncelikle kesitlerdeki hız değerleri bulunmalıdır. 3 kesitindeki hızı : V V

ÇÖZÜMLÜ SORULAR. ÇÖZÜM : Öncelikle kesitlerdeki hız değerleri bulunmalıdır. 3 kesitindeki hızı : V V ÇÖZÜMLÜ SORULR SORU. Şekildeki yatay Y bağlantısı s debisini eşit alarak ikiye ayırmaktadır. kesitindeki hacimsel debi Q = 0, m /sn ve = 7 ka ise sistemdeki kayıları ihmal edi ve syn özül ağırlığını 9790

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

Değişken Yönlü Dizi Hoparlör

Değişken Yönlü Dizi Hoparlör İletişim Sistemleri Değişken Yönlü Dizi Hoparlör Değişken Yönlü Dizi Hoparlör www.boschsecrity.com/tr Benzersiz ses kalitesi ve konşma anlaşılırlığı Zorl ortamlar için hızlı çözüm Akıllı modüler tasarım,

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Katı Yakıtlı Buhar Kazanında Yakma Fanının Bulanık Mantık Denetleyici ile Kontrolü

Katı Yakıtlı Buhar Kazanında Yakma Fanının Bulanık Mantık Denetleyici ile Kontrolü KSÜ Fen ve Mühendislik Dergisi, 11(1), 2008 52 KSU Jornal of Science and Engineering, 11(1), 2008 Katı Yakıtlı Bhar Kaanında Yakma Fanının Blanık Mantık Denetleyici ile Kontrolü Hasan Rıa ÖZÇALIK 1, Ali

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

+ + + + + + + + + + + + Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım. Etkinlik: Tam Sayılarla Toplama işlemi

+ + + + + + + + + + + + Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım. Etkinlik: Tam Sayılarla Toplama işlemi Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım Doğal sayılarla; Toplama işlemi Çıkarma işlemi Bankaların müşterilerine verdiği hesap cüzdanlarını incelediniz mi? Bu cüzdanlarda yazan sayıların ve bu

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

ÖZEL EGE LİSESİ GRAFİKLER

ÖZEL EGE LİSESİ GRAFİKLER ÖZEL EGE LİSESİ GRAFİKLER HAZIRLAYANLAR Arda Can ÖZENSOY Kerem ERTEN Melis ÖZTÜRK Melis BALIOĞLU Burak KİŞİN Deniz ÖNER Rehber Öğretmen: H. Necmi YÜCEL 2002-2003 Öğretim Yılı TEŞEKKÜR Bu proje çalışmamızda

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

Değişken Yönlü Dizi Hoparlör

Değişken Yönlü Dizi Hoparlör İletişim Sistemleri Değişken Yönlü Dizi Hoparlör Değişken Yönlü Dizi Hoparlör www.boschsecrity.com/tr Benzersiz ses kalitesi ve konşma anlaşılırlığı Akıllı modüler tasarım, gömme montaj olanağı EASE desteği

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI x 5 6. 0 x 4x 5 x denklemin çözüm kümesi aşağıdakilerden hangisidir? 5 5 4. 6 6... a ise, a kaçtır? A) B) 4 C) 6 D) 8 E) 0 A) B), C) 5, D) 5 E) 5. m 9m m m işleminin sonucu kaçtır?. (6) x x y y (4. ) eşitliği

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 113-124

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 113-124 EÜFBED - Fe Bilimleri Estitüsü Dergisi Cilt-Sa: 4- Yl: 3-4 STURM LİOUVİLLE FARK OERATÖRÜNÜN SEKTRAL ÖZELLİKLERİ SECTRAL ROERTIES OF THE STURM LIOUVILLE DIFFERENCE OERATOR Ateki ERYILMAZ * e Bileder AŞAOĞLU

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE 2012 ÖNSÖZ Bu kitap Çanakkale Onsekiz Mart Üniversitesi Matematik Bölümünde lisans dersi olarak Cebirden

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Oğz ŞİMŞEK EĞRİSEL GENİŞ BAŞLIKLI SAVAK ÜZERİNDEN GEÇEN AÇIK KANAL AKIMININ DENEYSEL VE TEORİK ANALİZİ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

MATEMAT K 1 ÜN TE II KÜMELER

MATEMAT K 1 ÜN TE II KÜMELER ÜN TE II KÜMELER 1. TANIM 2. KÜMELER N GÖSTER M a) Liste yöntemi ile gösterimi b) Venn flemas ile gösterimi c) Ortak özelik yöntemi ile gösterimi 3. KÜMELER N KARfiILAfiTIRILMASI a) Kümenin elaman say

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA PROJE ADI KATLAMA YÖNTEMİ İLE EŞKENAR ÜÇGEN VEALTIGENDE

Detaylı

Cebir Notları. Kümeler TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Kümeler TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler TEST I 1. s(a) = 13 s(a \ B) = 7 s(a B) = 23 ise, s(b) nedir? A) 6 B) 7 C) 10 D) 13 E) 16 7. Üç basamaklı 5 ve 7 ile tam bölünebilen,

Detaylı

"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir.

Bütün kümelerin kümesi, X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in Alt kümeleri kümesi de X'in alt kümesidir. Matematik Paradoksları: Doğru Parçası Paradoksu: Önce doğru parçasının tarifini yapalım: Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir? Nokta: Kalemin

Detaylı

Bir fabrika nasıl çalışır? Örneğin; HAMMADDENİN İŞLENEREK ÜRÜNE DÖNÜŞMESİ (İŞLEM) ÜRÜNÜN ÇIKIŞI (ÇIKIŞ) HAMMADDE GİRİŞİ (GİRİŞ)

Bir fabrika nasıl çalışır? Örneğin; HAMMADDENİN İŞLENEREK ÜRÜNE DÖNÜŞMESİ (İŞLEM) ÜRÜNÜN ÇIKIŞI (ÇIKIŞ) HAMMADDE GİRİŞİ (GİRİŞ) ALGORİTMA-3 Hatırlayalım! Önceki ders, günlük hayatta kararlar alırken veya herhangi bir şey yaparken, aslında adım adım düşündüğümüzü öğrendik. Ancak bizler çok zeki canlılar olduğumuz için bu düşünme

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız.

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız. 9BÖLÜM DENKLEMLER DENKLEMLER TEST 1 1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. Sözel İfade Matematiksel İfade Orhan ın yaşının dört eksiği Bir sayının sekiz fazlası Cebimdeki

Detaylı

ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ

ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ T.C MİLLİ EĞİTİM BAKANLIĞI ÖZEL EGE LİSESİ TÜRKÇE YILLIK PROJE ÇALIŞMASI ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ HAZIRLAYANLAR Dilay BİÇER Engin YAZAR Aslı SAĞGÜL Sınıf/ Şube : 4/B Rehber Öğretmen :

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

2009 Kasım. www.guven-kutay.ch KALDIRMA SİSTEMİ VİNÇ MOTORLARI. 40-2-4a. M. Güven KUTAY. 40-2-4a-vinc-motorlari.doc

2009 Kasım. www.guven-kutay.ch KALDIRMA SİSTEMİ VİNÇ MOTORLARI. 40-2-4a. M. Güven KUTAY. 40-2-4a-vinc-motorlari.doc 2009 Kasım KALDIRMA SİSTEMİ VİNÇ MOTORLARI 40-2-4a M. Güven KUTAY 40-2-4a-vinc-motorlari.doc İ Ç İ N D E K İ L E R 1 Kaldırma Sistemi... 1.3 1.4 Vinç motorları... 1.3 1.4.1 Doğr akım elektrik motor...

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

AÇIK KANAL AKIMLARINDA HIZ DAĞILIMININ ENTROPY YÖNTEMİ İLE İNCELENMESİ. Mehmet Ardıçlıoğlu. Ali İhsan Şentürk. Galip Seçkin

AÇIK KANAL AKIMLARINDA HIZ DAĞILIMININ ENTROPY YÖNTEMİ İLE İNCELENMESİ. Mehmet Ardıçlıoğlu. Ali İhsan Şentürk. Galip Seçkin AÇIK KANAL AKILARINDA HIZ DAĞILIININ ENTROPY YÖNTEİ İLE İNCELENESİ ehmet Ardıçlıoğl Yard. Doç. Dr., Erciyes Üniv. ühendislik Fak. İnşaat üh. Böl. Kayseri, Tel: 352 4378, Fax: 9 352 4375784 E-mail: mardic@erciyes.ed.tr

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

Örnek: 3 harfi takip eden 3 rakam bulunan altı karakterli kaç adet ruhsat plakası olabilir?

Örnek: 3 harfi takip eden 3 rakam bulunan altı karakterli kaç adet ruhsat plakası olabilir? 2 Kombinatorik Teori 2.1 Kombinatorik ve temel sayma kuralları Tanım: Matematiğin "sayma" temeline dayanan dalı. Kombinatorik nesnelerin düzeninin incelenmesidir. Kombinatoriğin en önemli alanı, belirli

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı