ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ"

Transkript

1 ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE TABU 2010 İZMİR

2 İÇİNDEKİLER SAYFA NO: PROJENİN ADI 3 PROJENİN AMACI 3 GİRİŞ 3 YÖNTEM 3 SONUÇLAR 12 TEŞEKKÜR 12 KAYNAKÇA 12 2

3 1 PROJENİN ADI: ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ 2 PROJENİN AMACI Projenin esas amacı; elemanları denk kümeler olan ve farklı iki elemanının simetrik farkını içeren kümeleri yaratabilmek, b kümelerin eleman sayılarını ve b sayılardan en büyüğünü veren formülü blp ispatlamak 3 GİRİŞ: Her biri dört elemanlı n kümeden, hangi farklı ikisini alırsak alalım,b iki kümeden yalnızca birine ait olan tüm elemanlardan olşan küme,başlangıçtaki n kümeden birine eşitse, n en çok kaçtır? B sor 2009 TÜBİTAK UMO 1aşama sınavında sorlmştr B sordan yola çıkarak dört elemanlı kümeler yerine, k elemanlı kümeleri alıp, n nin en büyük değerine laşabilmek 4 YÖNTEM: Gözlem ve doğrdan ispat yöntemiyle formüle laştım ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ Tanım: A ve B iki küme olmak üzere, A ve B nin simetrik farkı A B=(A\B) (B\A) şeklinde tanımlanır Simetrik Fark İşleminin Özellikleri: A, B, C üç tane küme olsn 1 A B=B A 2 A (B C)=(A B) C 3 A A=Ø 4 A Ø=A 5 A B=A C B=C Tanım: G bir küme olsn Bir k tam sayısı için G kümesi; 1 A G n(a)=k 2 Her farklı A, B G için, A B G koşllarını sağlarsa, G kümesi (*) özelliğini sağlar diyelim 3

4 B çalışmada k sayısı her zaman, A G için, A nın eleman sayısını yani n(a) yı gösterecektir B drmda 2 özellikden dolayı her farklı A, B G için n(a B)= 2 k olmalıdır Not: TÜBİTAK sors b tanıma göre k=4 için (*) özelliğini sağlayan G kümesinin en çok kaç elemanlı olacağı sorsna denktir k sayısına bağlı olarak (*) özelliğini sağlayan G kümesinin eleman sayısı Şimdi G kümesinin eleman sayısının k tam sayısına bağlı olarak nasıl değiştiğini inceleyeceğiz 1 Drm: k tek ise: k tek ise (*) özelliğini sağlayan G kümesinin eleman sayısı, her farklı A, B G için k n(a B)= bir tam sayı olmadığından, en çok 1 dir 2 Örneğin; k=5 ise, (*) özelliğini sağlayan bir kümenin eleman sayısı en çok 1 dir 2 Drm: k çift ise: k çift ise (*) özelliğini sağlayan 3 elemanlı G kümesi aşağıdaki gibi olştrlabilir k=2s diyelim B drmda A 1, A 2, A 3 ayrık ve n(a 1 ) =n(a 2 )= n(a 3 )=s olarak alınırsa; K 1 = A 1 A 2 K 2 = A 1 A 3 K 3 = A 2 A 3 kümeleri için G= {K 1, K 2, K 3 } kümesi (*) özelliğini sağlamaktadır Brada i, j= 1, 2, 3 için n (K i ) = 2s ve i j için n( K i K j )= s dir Şimdi G kümesinin elemanlarını artırabilir miyiz? Bn inceleyelim K 1 = A 1 A 2 K 2 = A 2 A 3 şeklindeydi K 3 = A 1 A 3 Ykarıdaki kümelerden farklı bir K 4 kümesi varsa her i=1,2,3 için n(k i K 4 ) = 2 k =s olr 4

5 A) K 4 kümesini K 1, K 2, K 3 ün elemanlarıyla olştrmaya çalışalım Her i = 1, 2, 3 için X i Ai şekilde ve K 4 = X 1 X 2 X 3 ise, G nin (*) özelliğini sağlaması için K 1 K 4 = X 1 X 2 K 2 K 4 = X 2 X 3 K 3 K 4 = X 1 X 3 n(x 1 )+ n(x 2 ) = s n(x 2 )+ n(x 3 ) = s n(x 1 )+ n(x 3 ) = s B denklemleri taraf tarafa toplarsak, 2[n(X 1 ) + n(x 2 ) + n(x 3 )] = 3s (1) 2s= 3s Çelişki B drmda aşağıdaki sonc elde ederiz Sonç 1: Sadece elimizdeki elemanları kllanarak G nin eleman sayısını arttıramıyorz B) Her i= 1, 2, 3 için X A i olacak şekilde K 4 = X 1 X 2 X 3 X seçelim n(k 4 ) =2s, n(x 1 X 2 X 3 ) = k 1 olsn 3s (1) nmaralı eşitlikten 2k 1 = 3s k 1 = 2 Sonç 2: Böyle bir K 4 kümesi blabilmemiz için s çift sayı olmalı Örnek: k = 6 = 23 için (*) özelliğini sağlayan bir G kümesinin eleman sayısı en çok 3 olabilir Böyle bir G kümesi aşağıdaki gibidir A 1 ={1,2,3}, A 2 ={4, 5, 6}, A 3 ={7, 8, 9} olmak üzere; K 1 = A 1 A 2 K 2 = A 2 A 3 G = {K 1, K 2, K 3 } K 3 = A 1 A 3 Şimdi s çift olsn ve K 4 kümesini blmaya çalışalım s= 2t 1 olsn B drmda n(k 4 ) =2s= 4t 1 olr n(x 1 ) + n(x 2 ) + n(x 3 ) = 3t 1 olr n(x) = 4t 1 3t 1 = t 1 n(x 1 )+ n(x 2 ) =2t 1 n(x 2 )+ n(x 3 ) = 2t 1 Bradan n(x 1 ) = n(x 2 ) = n(x 3 )=t 1 blnr n(x 1 )+ n(x 3 ) = 2t 1 5

6 i=1,2,3 için, X i * = A i \ X i olarak tanımlayalım n(a i ) = s = 2t 1 oldğndan aşağıdaki sonc blrz Sonç 3: X 1, X 1 *, X 2, X 2 *, X 3, X 3 * ve X kümelerinin eleman sayıları eşittir A) ve B) den aşağıdaki sonc elde ederiz Sonç 4: K 4 kümesini olştrmak için her i= 1, 2, 3 için X A i bir X kümesi kllanmalıyız ve n(x)= t 1 şeklinde Şimdi K 4 kümesini olştrp, (*) özelliğini kllanarak G nin aşağıdaki gibi 7 elemanı elde edilir K 1 = X 1 X 1 * X 2 X 2 * K 2 = X 2 X 2 * X 3 X 3 * K 3 = X 1 X 1 * X 3 X 3 * K 4 = X 1 X 2 X 3 X K 5 = (K 1 K 4 ) = X 1 * X 2 * X 3 X K 6 = (K 2 K 4 ) = X 1 X 2 * X 3 * X K 7 = (K 3 K 4 ) = X 1 * X 2 X 3 * X Simetrik farkın A B A = B özelliğinden i=1, 2, 3, 4, 5, 6, 7 ve i j için K i K j G dir Sonç 5: i=1, 2, 3 için K i K 4 işleminde K i deki yıldızlı kümeler K 4 te blnmadığı için j=5,6,7 için K j kümesine geçer K i ve K 4 kümelerinin ortak olmayan yıldızsız elemanı ve yeni eklenen X elemanı K j e geçer O zaman X kümesi ve i=1,2,3 için X i, X i * kümeleri K 1,,K 7 içinde aynı sayıda kllanılmıştır Sonç 6: Yeni elemanları elde etmek için K 4 ü diğer kümelerle simetrik fark işlemine tabi ttarsak, elimizde daha önce 3 küme blndğndan işlem soncnda 2(2+1)+1 = 7 küme elde edilir Kolaylık olması açısından B 1, B 2, B 3, B 4, B 5, B 6, B 7 ayrık kümelerini aşağıdaki gibi alırsak B 1 =X 1 B 2 =X 1 * B 3 =X 2 B 4 =X 2 * B 5 =X 3 B 6 =X 3 * B 7 = X K 1 = B 1 B 2 B 3 B 4 K 2 = B 3 B 4 B 5 B 6 K 3 = B 1 B 2 B 5 B 6 K 4 = B 1 B 3 B 5 B 7 K 5 = B 2 B 4 B 5 B 7 K 6 = B 1 B 4 B 6 B 7 K 7 = B 2 B 3 B 6 B 7 şeklinde olr 6

7 3 Drm Şimdi G kümesinin elemanlarını arttırabilir miyiz? Bn inceleyelim A) B drmda G kümesinin K 1, K 2, K 3, K 4, K 5, K 6, K 7 elemanlarından farklı olan bir K 8 elemanı var mıdır? n(k i )=4t 1 demiştik i= 1, 2, 3, 4, 5, 6, 7 için Y i B i için K 8 = Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 olrsa, K 8 K 1 = Y 1 Y 2 Y 3 Y 4 n (Y 1 )+ n (Y 2 )+ n (Y 3 )+ n (Y 4 )=2t 1 K 8 K 2 = Y 3 Y 4 Y 5 Y 6 n (Y 3 )+ n (Y 4 )+ n (Y 5 )+ n (Y 6 )=2t 1 K 8 K 3 = Y 1 Y 2 Y 5 Y 6 n (Y 1 )+ n (Y 2 )+ n (Y 5 )+ n (Y 6 )=2t 1 K 8 K 4= Y 1 Y 3 Y 5 Y 7 n (Y 1 )+ n (Y 3 )+ n (Y 5 )+ n (Y 7 )=2t 1 K 8 K 5 = Y 2 Y 4 Y 5 Y 7 n (Y 2 )+ n (Y 4 )+ n (Y 5 )+ n (Y 7 )=2t 1 K K 8 6= Y 1 Y 4 Y 6 Y 7 n (Y 1 )+ n (Y 4 )+ n (Y 6 )+ n (Y 7 )=2t 1 K 8 K 7 = Y 2 Y 3 Y 6 Y 7 n (Y 2 )+ n (Y 3 )+ n (Y 6 )+ n (Y 7 )=2t 1 B denklemleri taraf tarafa toplarsak, 4[n(Y 1 ) + n(y 2 ) + n(y 3 ) + n(y 4 ) + n(y 5 ) + n(y 6 ) + n(y 7 )] = 14t 1 (2) 16t 1 = 14t 1 Çelişki Demek ki elimizdeki elemanları kllanarak G nin eleman sayısını arttıramıyorz B) G nin eleman sayısını arttırabilmek için i= 1, 2, 3, 4, 5, 6, 7 için Y i B i ve Y B i = şeklinde bir Y kümesi olmalıdır K 8 = Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y n (K 8 ) = n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y )=4t 1 n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 )=k 2 olsn (2) nol eşitlikten 4k 2 =14t 1 7t k 2 = 1 blnr 2 Sonç 7: k=4s ve s tek ise (*) özelliğini sağlayan kümenin eleman sayısı en çok 7 dir TÜBİTAK sorsnn cevabı s = 1 için Sonç 7 den çıkmaktadır 7

8 Örnek: k = 12 = için (*) özelliğini sağlayan bir G kümesinin eleman sayısı en çok 7 olabilir Böyle bir G kümesi aşağıdaki gibidir B 1 ={1, 2, 3}, B 2 ={4, 5, 6}, B 3 ={7, 8, 9}, B 4 ={10, 11, 12} B 5 ={13, 14, 15}, B 6 ={16, 17, 18}, B 7 ={19, 20, 21} olmak üzere; K 1 = B 1 B 2 B 3 B 4 K 2 = B 3 B 4 B 5 B 6 K 3 = B 1 B 2 B 5 B 6 K 4 = B 1 B 3 B 5 B 7 G = {K 1, K 2, K 3, K 4, K 5, K 6, K 7 } K 5 = B 2 B 4 B 5 B 7 K 6 = B 1 B 4 B 6 B 7 K 7 = B 2 B 3 B 6 B 7 Sonç 8: Kümenin eleman sayısını arttırabilmemiz için t 1 çift sayı olmak zorndadır t 1 =2t 2 için n (K 8 ) = n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y )=4t 1 n(k 8 )=8t 2 ve k 2 =7t 2 B drmda n(y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 )=k 2 =7t 2 ve n(y)=8t 2-7t 2 =t 2 blnr Sonç 9: Yeni birleştirilen küme t 2 elemanlı olmalıdır Yeni kümeleri olştrmak için önceden kllandığımız kümeleri aşağıdaki gibi iki ayrık denk kümeye parçalarız i=1, 2, 3, 4, 5, 6, 7 için Y i *= B i \ Y i ise Y i * Y i =B i olr Kolaylık olması açısından Y İ =C 2i-1 ve Y i *=C 2i dersek, B 1 = C 1 C 2 B 2 = C 3 C 4 B 3 = C 5 C 6 B 4 = C 7 C 8 B 5 = C 9 C 10 B 6 = C 11 C 12 B 7 = C 13 C 14 olr Şimdi K 8 ile daha önceki 7 kümeyi simetrik fark işlemine tabi ttarsak aşağıdaki gibi (*) özelliğini sağlayan 15 küme elde edilir 8

9 K 1 = C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 K 2 = C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 K 3 = C 1 C 2 C 3 C 4 C 9 C 10 C 11 C 12 K 4 = C 1 C 2 C 5 C 6 C 9 C 10 C 13 C 14 K 5 = C 3 C 4 C 7 C 8 C 9 C 10 C 13 C 14 K 6 = C 1 C 2 C 7 C 8 C 11 C 12 C 13 C 14 K 7 = C 3 C 4 C 5 C 6 C 11 C 12 C 13 C 14 K 8 = C 1 C 3 C 5 C 7 C 9 C 11 C 13 C 15 K 9 = C 2 C 4 C 6 C 8 C 9 C 11 C 13 C 15 K 10 = C 1 C 3 C 6 C 8 C 10 C 12 C 13 C 15 K 11 = C 2 C 4 C 5 C 7 C 10 C 12 C 13 C 15 K 12 = C 2 C 3 C 6 C 7 C 10 C 11 C 14 C 15 K 13 = C 1 C 4 C 5 C 8 C 10 C 11 C 14 C 15 K 14 = C 2 C 3 C 5 C 8 C 9 C 12 C 14 C 15 K 15 = C 1 C 4 C 6 C 7 C 9 C 12 C 14 C 15 Sonç 10: K 8 kümesini önceki 7 kümeyle simetrik fark işlemine sokarsak yeni 7 küme elde ederiz Sonç 11: K 1, K 2,, K 15 kümeleri içerisinde i=1,2,15 için her bir C i kümesi 8 kez kllanılmıştır ve n(c i )=s tir 72+1 = ( )2 +1 = B şekilde G kümesinin eleman sayısını (*) özelliğini sağlayacak şekilde arttırmaya devam edersek, k = 2 1 s, s tek ise n(g) max = k = 2 2 s, s tek ise n(g) max = 2(2 1 +1) + 1 k = 2 3 s, s tek ise n(g) max = 2( ) + 1 k = 2 t s, s tek ise n(g) max = 2(2 t t ) +1=2-1 blnr Sonç 12: G kümelerini b şekilde yazmaya devam edersek, k=2 t s ve s tek için n(g)=2-1 olacak şekilde bir küme G kümesi elde edilir 9

10 Sonç 13: k=2 t s ve s tek için n(g)=2-1 oldğnda, her biri s elemanlı ve ayrık olan C 1, t C 2,, C 2-1 kümeleri vardır öyleki, her K i G kümesi K i = C i1 C i2 C i2 şeklinde yazılır Her bir C i kümesi G nin elemanları içinde 2 t kez görülür Sonç 14: G kümesi k elemanlı kümelerden olşan ve (*) özeliğini sağlayan bir küme olsn k=2 t s ve s tek için n(g) max = 2-1 İspat: Sonç 12 den dolayı, k=2 t s ve s tek için G kümesinin (*) özelliğini sağlayan 2-1 elemanlı bir altkümesi blnr B küme {K 1, K 2,,K 2-1 } olsn G kümesinin {K 1, K 2,,K 2-1 } elemanları dışında bir B eleman içerdiğini kabl edip bir çelişki blalım Sonç 13 ten dolayı her biri s elemanlı C 1, C 2,, C 2-1 kümeleri vardır öyleki, her K i kümesi K i = C i1 C i2 C t i2 şeklinde yazılır ve herbir C i kümesi 2 t kez görülür B drmda: B = X 1 X 2 X 3 X 2-1 X, X i C i ve X C i = şeklindedir G Şimdi her i=1,, 2-1 için n(b K i ) =2 t-1 t s ve B K i = X i1 X i2 X i2 X ij {X 1, X 2,,X 2-1 } dir şeklindedir, brada B K 1, B K 2,, B K 2-1 elemanlarında her bir X j kümesi 2 t kez görülür, çünkü C j kümeleri {K 1, K 2,,K 2-1 } elemanları içinde 2 t kadar görülmektedir B drmda aşağıdaki denklemler blnr n(b K 1 ) =n(x 11 )+n(x 12 )++n(x 12 t )= 2 t-1 s n(b K 2 ) =n(x 21 )+n(x 22 )++n(x 22 t )= 2 t-1 s n(b K 2-1 ) =n(x (2-1)1 )+n(x (2-1)2 )++n(x (2-1)2 t )= 2 t-1 s Şimdi b denklemleri taraf tarafa toplarsak ve X ij {X 1, X 2,,X 2-1 } oldğn kllanırsak: 2 t [n(x 1 )+n(x 2 )++n(x 2-1 )]=(2-1) 2 t-1 s t 1 t-1 (2 + -1)2 s [n(x 1 )+n(x 2 )++n(x 2-1 )]= = t 2 10 (2 t+ 1-1) s 2 blnr B bir çelişkidir, çünkü son eşitliğin sol tarafı bir tamsayıdır, ancak (2-1) ve s sayıları tek sayı oldğndan eşitliğin sağ tarafı bir tam sayı değildir Demek ki böyle bir B kümesi yoktr Dolayısıyla n(g) max = 2-1 dir Örnek: k=28 için (*) koşln sağlayan bir G kümesinin eleman sayısı en çok kaç olabilir? 28=2 2 7 oldğndan G kümesinin elaman sayısı en çok =7 olr

11 (*) koşln sağlayan bir kümeyi büyütmek: Eleman sayısı 2-1 olan ve (*) koşln sağlayan bir G kümesine yeni bir eleman ekleyip, b yeni eleman ile G kümesindeki elemanlarla simetrik fark işlemine tabi ttarsak, eleman sayısı olan ve (*) koşln sağlayan bir küme elde edilir Bn aşağıda şekilde açıklayalım G kümesinin elemanlarına K 1, K 2,, K 2-1 ve yeni eklenen elemana K 2 diyelim K 1 K tane eleman var + K 2-1 K 2 (Yeni eklenen küme) 1 = K 2 +1 =K 1 K tane eleman var K = K 2-1 K 2 Bn bir örnekle açıklayalım Örnek: k=48=2 3 3 için (*) koşln sağlayan kümelerin eleman sayısı 1, 3, 7, 15 olabilir B drmda 1 elemanlı kümeden 3 elemanlı küme, 3 elemanlı kümeden 7 elemanlı küme, 7 elemanlı kümeden 15 elemanlı küme ykarıda açıklandığı gibi yeni eleman ekleyip simetrik fark işlemi yglanıp elde edilir 11

12 5 SONUÇLAR: G kümesi elemanları k elemanlı kümeler olan ve (*) koşln sağlayan bir küme olsn k= 2 t s, s tek sayı olacak şekilde yazalım 1) G kümesinin eleman sayısını t belirlemektedir 2) Her t+ 1 için n(g) = 2-1 olacak şekilde bir G kümesi vardır Yani n(g) in alabileceği değerler: 1, 3, 7, 15, 31,, 2-1 3) n(g) max = 2-1 4) Koşl sağlayan G kümelerini elde etmek için bir yöntem blyorz 5) Eleman sayısı 2-1 olan ve (*) koşln sağlayan bir G kümesine yeni bir eleman ekleyip, b yeni eleman ile G kümesindeki elemanları simetrik fark işlemine tabi ttarsak, eleman sayısı olan ve (*) koşln sağlayan bir küme elde edilir 6 TEŞEKKÜR: B projenin hazırlanmasında bana yardımcı olan danışman öğretmenim Sayın Defne TABU ya, okl yönetimine, okl arkadaşlarım Mert YAŞİN ve Umt BOZKURT a, okl dışından destek aldığımız İYTE Matematik Bölümünden Dr Engin BÜYÜKAŞIK a ve benden desteklerini esirgemeyen aileme teşekkür ederim 7 KAYNAKÇA:

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2 . SINIF MTEMTİK FONKSİYONLRD İŞLEMLER- ÇKEY NDOLU LİSESİ MTEMTİK ÖLÜMÜ . ÜNİTE.. FONKSİYONLRD DÖRT İŞLEM Neler öğreneceksiniz? Fonksiyonlarda dört işlem yani toplama çıkarma, çarpma ve bölmeyi öğreneceksiniz.

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ÜNİFORM DAİRESEL KESİTLİ BORU AKIŞLARINDA KİNETİK ENERJİ VE MOMENTUM DÜZELTME FAKTÖRLERİNİN DEĞİŞİMİ

ÜNİFORM DAİRESEL KESİTLİ BORU AKIŞLARINDA KİNETİK ENERJİ VE MOMENTUM DÜZELTME FAKTÖRLERİNİN DEĞİŞİMİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

İSTANBUL III. BİLİM OLİMPİYATI

İSTANBUL III. BİLİM OLİMPİYATI İSTANBUL III. BİLİM OLİMPİYATI MATEMATİK SBELIAN Bu çalışma notunda İstanbul Bilim Olimpiyatı matematik sorularının bir bölümünün soru metinleri ve çözümleri verilmiştir. Soruların tamamının yayın hakkı

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

Veri-İletişim Ağları İçin Tasarlanan Optimal H Akış Denetleyicisinin Performans Seviyesi ve Kararlılık Payları

Veri-İletişim Ağları İçin Tasarlanan Optimal H Akış Denetleyicisinin Performans Seviyesi ve Kararlılık Payları Veri-İletişim Ağları İçin Tasarlanan Optimal H Akış Denetleyicisinin Perormans Seviyesi ve Kararlılık Payları Hakkı Ulaş Ünal ve Altğ İtar Elektrik-Elektronik Mühendisliği Bölümü Anadol Üniversitesi, 647

Detaylı

KÜMELER 05/12/2011 0

KÜMELER 05/12/2011 0 KÜMELER 05/12/2011 0 KÜME NEDİR?... 2 KÜMELERİN ÖZELLİKLERİ... 2 KÜMELERİN GÖSTERİLİŞİ... 2 EŞİT KÜME, DENK KÜME... 3 EŞİT OLMAYAN (FARKLI) KÜMELER... 3 BOŞ KÜME... 3 ALT KÜME - ÖZALT KÜME... 4 KÜMELERDE

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır. 0.1 GRUPLAR Tanım 1 A kümesi boştan farklıolmak üzere işlemine göre aşağıdaki koşulları gerçekliyorsa (A, ) ikilisine bir Grup denir. 1. kapalılık özelliğine sahiptir, yani her x, y A için x y A olur.

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö)

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö) İÜ Fen Fakültesi Matematik Bölümü Diferansiel Denklemler I (örgün iö) Ekim04 Ödevler - Çalışma Sorları - Arasınav Hazırlık Sorları Hazırlaan: YrdDoçDr Serkan İLTER http://avesistanbledtr/ilters/dokmanlar

Detaylı

KAFKASYA ÜNİVERSİTELER BİRLİĞİ ELEKTRONİK YABANCI UYRUKLU ÖĞRENCİ SINAVI KILAVUZU. www.kunibyos.com

KAFKASYA ÜNİVERSİTELER BİRLİĞİ ELEKTRONİK YABANCI UYRUKLU ÖĞRENCİ SINAVI KILAVUZU. www.kunibyos.com KAFKASYA NİVERSİTELER BİRLİĞİ 2015 ELEKTRONİK YABANCI UYRUKLU ÖĞRENCİ SINAVI KILAVUZU www.knibyos.com www.knib.com Sayın Rektörüm, 11 Kasım 2009 tarihinde 3 ülkeden 7 üniversitenin bir araya gelmesiyle

Detaylı

2009 Ceb ır Soruları

2009 Ceb ır Soruları Genç Balkan Matemat ık Ol ımp ıyatı 2009 Ceb ır Soruları c www.sbelian.wordpress.com sbelianwordpress@gmail.com 2009 yılında Bosna Hersek te yapılan JBMO sınavında ki shortlist sorularının cebir kısmının

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

BÖLÜM 5: MATEMATİKSEL KARTOGRAFYA HARİTA PROJEKSİYONLARI KURAMI

BÖLÜM 5: MATEMATİKSEL KARTOGRAFYA HARİTA PROJEKSİYONLARI KURAMI Kartografya Ders Not Bölüm 5 BÖLÜM 5: MATEMATİKSEL KATOGAFYA HAİTA POJEKSİYONLAI KUAMI Türkay Gökgöz (www.yildiz.ed.tr/~gokgoz) 5 Kartografya Ders Not Bölüm 5 İÇİNDEKİLE 5. Harita Projeksiyonlarında Deformasyon.

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR...

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR... İçindekiler 1. BÖLÜM: KÜMELERDE TEMEL KVRMLR, KÜMELERDE İŞLEMLER... 10. KÜMELERDE TEMEL KVRMLR... 10 B. SONLU, SONSUZ VE BOŞ KÜME... 12 C. KÜMELERİN EŞİTLİĞİ... 14 D. LT KÜME, ÖZ LT KÜME... 14 E. KÜMELERDE

Detaylı

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI 1-60) Dört çocuk, Ahmet, Ferit, Berk ve Mehmet koşu yarışı yapıyorlar. Yarışma sonucunda, Ahmet, "Ben birinci ve sonuncu

Detaylı

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler KÜME KVRMI Kümenin tanım yoktur. undan dolayı kümeyi tanıtmaya çalışalım. Küme kavramında bir topluluk, bir kolleksiyon ifadesi vardır.

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

AKIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ

AKIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ KIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ ÇORUM-05 ) DENEY CİHZININ ŞEMSI B) CİHZD KULLNILN MLZEMELER SNO MLZEMENİN DI DEDİ MRKSI E ÖZELLİĞİ S tankı 50x50x50 mm, 5 litre Sirkülasyon oması larko NO 3 entürimetre

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir? 1. 36 x A) [- 6, ] B) [- 6, 6 ] C) [, 36] D) [, 36 ] E) [- 36, ] 5. x + 4x + 4 > A) (, ) B) - } C) D) R E) R - {- } 6. x + 8x + 16. x x 8 < aşağıdalerden hangisidir? A) (- 4, ) B) (-, ) C) (- 4, ) A) {

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR ÖZEL EGE LĠSESĠ ġeklġndekġ ĠFADELERĠN SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR HAZIRLAYAN ÖĞRENCĠ: Ersin ĠSTANBULLU DANIġMAN ÖĞRETMEN: Defne TABU ĠZMĠR 2013 ĠÇĠNDEKĠLER 1.

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1.

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1. SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin çözümlenmiş biçimidir? A) ab B) a0b C) a0b0 D) ab0 E) ab00 1000a 10b 1000.a 100.0 10.b 1.0 a0b0 Doğru Cevap:

Detaylı

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ - ZONGULDAK 7 NİSAN 2012

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ - ZONGULDAK 7 NİSAN 2012 OYAK TÜBİTAK BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI OYAK MATEMATİK YARIŞMASI FİNAL SINAVI ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

TEST - 1 ÖDEV TESTİ elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin. 1. A = {1, {2}, {1, 2}, 3, Ø} kümesi için aşağıdakilerden

TEST - 1 ÖDEV TESTİ elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin. 1. A = {1, {2}, {1, 2}, 3, Ø} kümesi için aşağıdakilerden 10 Kümeler ÖDEV TESTİ TEST - 1 6. 5 elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin sayısına eşit olan bir kümenin en az 6 elemanlı kaç alt kümesi vardır? ) 24 ) 28 C) 37 D) 38 E) 42 1. = {1,

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1.

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1. Bölüm 7 Karmaşık Sayılar Karmaşık sayılar gerçel sayıların genişlemesiyle elde edilen daha büyük bir kümedier. Genişleme şu gereksemeden doğmuştur: x 2 = +1 denklemimin çözümü +1, 1 sayılarıdır ve R içindedir.

Detaylı

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER.

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER. YILLAR 00 00 00 00 006 007 008 009 00 0 ÖSS-YGS - - - - - / - /LYS EŞĐTSĐZLĐKLER =y,,, y,,, < y y,,, > y,,, y (tarif et ) ÖZELLĐKLER ) > veya < 0

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Küme Temel Kavramları

Küme Temel Kavramları Kümeler Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ Özel Bahçeşehir Fen Teknoloji Lisesi Başakşehir/İSTANBUL Projenin Adı: Bir Polinomun

Detaylı