PERMUTASYON A B C B C A C A B C B C A B A ABC ACB BAC BCA CAB CBA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "PERMUTASYON A B C B C A C A B C B C A B A ABC ACB BAC BCA CAB CBA"

Transkript

1 PERMUTASYON Pemutsyo, elli syıdki eselei i sı içeiside fklı şekillede düzelemesidi. Öek olk A, B, C gii üç kitp i ft kç fklı şekilde sılili? O A B C B C A C A B Olmk üzee ğç diygmı ile kolylıkl çözüleili. Ağç diygmıd okuck kümele şu şekilde sılı ABC ACB BAC BCA CAB CBA C B C A B A

2 Diğe i yötem ise kutu diygmı metodudu. Ptiklik çısıd u yötem dh kullışlıdı. Toplmd düşüüle f üç kitp lcktı, iici kitı y sold y otd yd sğd olmk üzee üç şekilde yeleştieiliiz. İkici kitı ise iici kitp ile ilikte iki fklı şekilde yeleştieiliiz. Biici ve ikici kitplı yeleştiilmelei soucud tek oş kl yee üçücü kitı yeleştieiliiz. Bu kutuldki fklı yeleştime syılıı çpımı ize toplm yeleştiileilme syısıı veecekti. = xx = 6

3 Çpım Pesii Eğe i işlem şekilde ypıliliyos ve u ypıldıkt so ikici i opesyo şeklide ypıliliyo ve u işlemle k ıcı opesyo kd öylece teklıyos, u işlemle toplm olk ( k ) şeklide ypılili demekti. Öek. Alı plk umlıd üç hf ve tek heli iki syı ulu i ilde kç te plksı çıkılili? (Hf syısı lıck) xxx0x0=.800

4 Öek.,,, ve syılı veilmiş olsu. Buld heli kç syı yzılili? tek olmyck =... = 0 tek olili = 6

5 Pemütsyo Fomüllei Fktöyel (!) 7 kişi i sıd kitp i ft cisim i sıd.(-).(-)... Şeklide sılili. Bu duumd fktöyel (!),!=.(-).(-)...=.(-)! Teoem: te esei vey syıı pemutsyou fktöiyeldi. P =! fklı esede tesii pemutsyou P olu.

6 Teoem : te ese içeiside kdıı pemutsyolı (tek olmmsı kydıyl) P =!/(-)! Öek. 7 fklı kitpt tesi i f kç fklı şekilde dizileili? = 7 P = 7!/(7-)! = 0 Öek. İSTANBUL kelimeside hfli kç fklı kelime oluştuulili? 8P = 8!/(8-)! = =670

7 KOMBİNASYONLAR Öek. A, B, C ve D gii döt fklı kitpt tesii sısı düşüüleek vey sısı kmksızı kç şekilde seçeiliiz? Pemutsyou yi kitplı sılıı d göz öüe lımsı duumud P =!/(-)! = Sıı hes ktılmmsı duumud çok fklı i duum oty çıkmktdı. Bu duumd sdece mümkü olilecek döt duum vdı. ABC, ABD, ACD, BCD Bu duumd öeği ACB yi symıyouz. Çükü f yeleştiilme sısı öemli olmdığıd ABC ile uu yı kul ediyouz. Bu duumd yukıd sıl listedeki he seçime kitpt ü komisyou diyouz.

8 Komisyou şu şekilde gösteiyouz. ( ) C vey vey C C = Öemli Not (,) Pemutsyod he i elemı sısı syılı. Bşk i ifde ile pemutsyo fklı dizilimlei göz öüde uludu lt kümelede oluşu. Fkt komisyod sı syılmz, elemı o kümede ye lmsı yetelidi yi sdece elemı kümede olup olmdığıı göz öüde uludu sııldıılmış lt kümele topluluğudu. Pemutsyod içsel değişim vdı, m komisyod içsel değişim yoktu

9 N elemlı kümei sıy kılmksızı elemlı lt küme syısı C vey ( ), Öek: Bi {A, B, C, D} kümesii elemlı lt küme syısı edi? C = Komisyo-Pemutsyo İlişkisi Yukıd htılcğı gii A, B, C, D kitplıı -lü komisyou ABC, ABD, ACD, BCD olduğuu söylemiştik. Yie htılcğı gii he lü lt küme fklı şekilde olmk kydıyl! Şeklide düzeleeili. Böylece (!) pemutsyouu elde edeiz. C.!= P C.!=..

10 Teoem: syıd esei -li komisyolıı syısı C =!/!(-)! İspt: C.! = P =!/(-)! Fomülü ile pemutsyo ve komisyo sıdki ilişki veileilmektedi. İki tfı! ye ölümesiyle C =!/! (-)! C = P /! Olk elde edilecekti.

11 Öek: 00C = 00!/ (!. 98!) = ( !)/(!.98!) = (00.99)/ = 90 C =!/! (-)! = C =!/! (-)! = /0! = Teoem de çıkıl souç: ese içide - komisyolı syısı komisyolıı syısı eşitti. C - =( )!/! (-)! = ( ) ( ) = ( ) 0 0 ( ) = ( )

12 Öek. ktlık i iç oyuud ktlık kç fklı el seçileili? ( ) =!/(! 9!) = Öek. evli çiftte kç fklı şekilde kişilik i komite seçili?. Hekes dy olili. Komite kdı ve ekekte oluşck şekilde c. Eğe eşle yı komitede olmzs kç fklı şekilde komite seçimi olu?. 8 8!!! 6

13 . kdı ( ) yi 6 fklı şekilde seçileili. Bulı heii içi ( ) ekekte ekek seçileili, yi fklı şekilde. Çpım pesiie göe ( ). ( ) =6x = c. Kı-koc çiftii seçmek içi, kl üyeyi de seçmek içi 6 yol vdı. Yi içide i kı-koc olck şekilde 6 x = fklı şekilde komite seçili. Bu syıyı toplm seçim syısı ol 6 d çıktısk, içide kı-koc olmyck şekilde komite seçim syısıı uluuz; 6- =

14 Pscl Kulı Olsılıkl kumıı çıkış edei, Pscl' kumz Chevlie de Mee tfıd zı soulı yöeltilmesiydi. E öemli göevi de elli iki kğıt oyuu oyuyodu. Bud tvl zlıı, şekillei yı ol yı ekli ilyelei öemi üyüktü. Bu ğlı olk, ülü Pscl üçgei doğdu. Pscl'ı u üçgei, dh soki yılld çok kullıldı. Özellikle sei çılımlı ve iom çılımı u yötemle kolylıkl uluu. Blise Pscl yıllı sıd yşmış Fsız düşüüü. Ayı zmd üyük i mtemtikçi ol, Toicelli deeyi üzeie esele yz ve i hesp mkiesi icd etmiş ol Pscl'ı temel esei ölümüde so yyımlmış ol Düşücele'di. O, 6 yılıd dii i tecüe yşmış, hytıı ud soki döemie, ilimsel çlışmlıd çok, di ve Tı kousudki göüş ve ttışmlı dmgsıı vumuştu. Bşk i deyişle Pscl deist i hümizmi, syoel i kuşkuculuğu ve özgü düşücei egeme olduğu i çğd ve toplumd, Tı'ı ve tısl kyı geekliliğiive gücüü gösteme çsı içide olmuştu. 6 yılıd Tité du tigle ithmétique (Aitmetik Üçgei Ypısı) isimli eseii yzk Pskl üçgei olk dldııl iom ktsyılıı ulmy yy yötemi geliştidi. Pskld yüzyıl öce çili i mtemtikçi, Qi hedıd ol Yg Hui, yı çlışmlı ypmıştı.

15 Teoem İspt: + esede te ese kısıtlmsız olk syıd seçim vei. Bu + ese içide elli i eseyi düşüelim. Bu ese seçimi içide olus geiye kl - ese toplm listede kl ese içide syıd seçili. Eğe u ese dışıd ıkılıs, geiye kl esede syıd ese syıd seçilidi. Toplm seçme syısı u ikisii toplmıd ietti çükü şk seçim mümkü değildi.

16 =, = içi..!.! = 6, = içi 7.6..! (..).!

17 Hepsi Fklı Olmy Neselei Pemutsyou Bu duumd olilecek pemutsyo syısı zlcktı. A, B, C! = 6 fklı hfli kelime vei A, A, A Bi te hfli kelime vei AKSARAY kelimesideki hflei hepsi fklı olsydı 7 hfli 7! Kelime veecekti fkt u kelime içide te A v, ul fklı hfle olsydı ulı pemutsyou! Olcktı, fkt yı hfle olmsıd dolyı toplmd oluşck kelime syısıd! oıd zlm olmlıdı. X.! = 7! X = 7!/! = 80

18 ! Teoem: Hepsi iiide fklı olmy eselei pemutsyou!!!... k!... k AKSARAY öeğide;, A=, K=,, S=,, R=,, Y= olcktı. Teoemi soucu: iki fklı ese içi pemutsyol, eğe i kümei syıd elemı syıd i cis ve - syıd şk i cis elemd oluşuyos ulı hepsii pemutsyou!!( )! Bilidiği gii!!( )! (! )!!

19 Öek. EQUATIONS kelimesideki hflede, sesli hfle yı sı içide (E, U, A, I, O) olmk ştıyl kç fklı 9 hfli kelime tüetileili? Çözüm. Sesli hflei iileie göe sısı değişmeyeceği içi seslile kedi lıd pemutsyo ypmz, ud dolyı yı hf kul edilile. Bu duumd polem 9 hfi i yı kul edileek pemutsyou ulmk şeklie döüşü. 9!!!!!! 0 Çözüm. Bu polemde 9 hfi 9 yei dolduck şekilde sılmsı isteiyo. Sesli hflei yelei C(9,) syıd seçileili. Bul seçildikte so seslile (e, u,, i, o) tek şekilde sılı. Sessiz hfle de kl yede! Şeklide sılı. Toplm sılm syısı 9 9!!! 9!!!! 0

20 BİNOM TEOREMİ İkili olililiği, olylı elili süedeki olililikleide i tesii k kee oty çıkmsı duumuu kç te olduğuu ulmy y Not: Olililik, olsılıklı oluşum tek syılıı ifde ede. Tm syıl ile ilgilidi. Fkt olsılık 0 ile sıd değişi. (+) 0 = (+) = + ) ( ) ( 6 ) ( Bu çılımlı çıktileceği fomül vey kul edi?,...,,...,,,,,,, Bu çılımlı ktsyılı ele olcktı?

21 (+), çılımıd değişkelei öüe gelecek ol ktsyıl iom teoemi yi Pscl üçgei ile kolylıkl uluilecekti ( ) 6,,,,,

22 Ptik yklşım: c 8 Buu lmı öeği i leti 8 kee ız ypmmsı ve kee ız ypmsı olililiğii (c) ulmmız y; 8!.!! 0 c 0 6 ) (

23 ...! ) (...! ) ( ) ( ) ( 0 0 Teoem: Biom Teoemi, pozitif i tmsyı ise

24 Bu duumd (+) 00 de olyıı 9 def yşm olililiği kçtı? c 9 c = 00!/(9!.!) c = !/(9!...) = = Öek. (+x) ü çıız ( )!... (! )... Fomülüü kullısk

25 ) ( x x x x x = 6 + x + x + 8x + x Öek. (-x ) i çıız = ve = -x ) ( 0 0 ) ( x x x x x x

26 Polem: 0... olduğuu gösteiiz Çözüm: Biom fomülü ütü ve değelei içi geçeli olduğud ( )... 0 Polem. (p+q) 7 i çılımıd p ve q u deecelei (üslei) e olu? Çözüm. üs içi + teim vdı. Bu yüzde k ıcı teim içi p ve q u teimleii vee fomülle şuldı p (-k+) ve q (k-)

27 Polem. (+x) 000 i çılımıd 00 ücü teim e olu? Çözüm. C(000, 99)x 99

28 İHTİMAL HESAPLARINA GİRİŞ Htılcğı gii ojektif yklşımd olyı oluşumu tecüe vey ilgi olk hehgi i müdhle ulummktdı. Bu p ve z tışlı e iyi öekle olk veileili. P tışıd yzı vey tu gelmesi ihtimli eşit kul edili. Ayı şekilde zd,,,,, 6 yüz ulumktdı. Z tışıd d hehgi i yüzde ulu syıı gelme ihtimli ütü yüzle içi eşit olmktdı. Z tıldığıd u syılı he ii eşit olsılıkt/ihtimlde geli. Buu ede öyle kul edeiz? Buu içi üç ede syılili Pı ve zı homojeliği kul edilmektedi. Ştl müdhle edeilme şsımızı olmmsıd Şu kd ypıl tecüelede uu eşit ihtimlde olduğu soucu ulşılmsıd.

29 İki p def tıldığıd şğıdki tlodki duuml oty çıkmktdı Duum İlk p İkici p Yzı Yzı Yzı Tu Tu Yzı Tu Tu Bu tloy göe eşit ihtimlli duum oty çıkıyo. İhtimlle teoiside he p tışıı ötekii soucud ğımsız olduğu kul edilmektedi.

30 Eşit ihtimlli duumlı söz kousu olduğu ll şuldı P tışı gii iiii etkilemeye souçl ship i oly duumud Deeysel duumlı kşılştımd i temel oty koymk içi (mesel yı temellee dylı modellei vediği souçlı kşılştıılmsı vey iki p tışıd. ve. ihtimli 00 p tışı içi kşılştıılmsıd) Duumlı eşit ihtimlli olmdığıı ildiğimiz olyld yeteli yklşık çözümle ulmk istediğimizde. Öekleme çlışmlıd (stgele syı üetme) ve diğe deey çlışmlıd tesdüfi öeklemeye ulşmd.

31 Deey kvmı: Bu kvm yzı-tu ve z tm gii olyl uygulildiği gii dh eligi ilimsel ve tıi deeyle içi de kullılmktdı. Deey yı zmd sım olk t ifde edileili. Dh öcede elitiğimiz gii i çok deeyi vey olyı değelediilmeside ihtiml hesplı kullılmktdı. Öek veecek olusk, 0 kişi içide kişiyi seçmek i deeydi ki C(0,) vey 060 fklı komisyo demekti (0 kişide he defsıd e kişi olk) Böyle i öeği tesdüfi olk seçmek demek, he i komisyou 060 d i şsı v demekti. İhtiml şsı i ölçüsü olk kul edilmesie ğme dh öcede epeyce hsedildiği gii elisizlikle içeiside öeklemele tıkç elililiğe yklşılmktdı.

32 P tışıd tu gelmesii ihtimli /di. Semolik olk ifde edecek olusk P(tu) = ½ Z tışıd olu yüzü gelme ihtimli P(üç) = /6 Yukıd veile öekte hsedile 0 kişide elli üç kişiyi (A, B, C) seçme ihtimli : P(A, B, C) = /060 Geel ifde: P( seçile) seçilesyı toplmsyı

33 Tif: Bi olyı ihtimli, Eğe i deey fklı ve eşit ihtimlli souç veiyos ve uld m tesi i A olyı tekül ediyos, A ı ihtimli m A P ) ( A ı değilii olk lımsı duumud A ) ( ) ( A P m m A P A ve ı ğıl şslı A lehie şsl olk ifde edili. A m m A P A P Alehieşsl ) ( ) (

34 P()=/6 P(>)=/6=/ P(<)=/6=/ P(tek)=/6=/ P(çift)=/6=/ Öek: yüzü kımızı, yüzü yeşil i küp tıldığıd kımızı lehie şs / di. İki souçlu i deeyde eğe A olyı lehie şsl / ise P( A), P( A) Öek. Bi z tıldığıd ) gelmesi ihtimli, ) de üyük gelmesi, c) te küçük gelmesi, d) tek syı, e) çift syı gelmesi ihtimli edi?

35 İSTANBUL kelimeside tesdüfi olk i hf seçilise Sesli hf olm ihtimli ( P(sesli)=/8) Sessiz hf olm ihtimli ( P(sessiz)=/8) M hfii olm ihtimli ( P(M)=0/8)

36 Süekli Akıld Tutulmsı Geekli Kull Kıscsı ihtiml (olsılık), göz öüde tutul öğe syısıı toplm öğe syısı oı şeklide ifde edilmektedi. Bu tım çeçeveside geçeli kull; İhtiml değei sl egtif olmz İhtiml değei i o olduğud u değe sıfı ile i sıddı (0 P(A) Bi kümei öğeleii ihtiml toplmı e eşitti. Yi temel kümei ihtimli e eşitti (P(S)=)

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI

ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI V. Ulusl Üetim Aştımlı Sempozyumu, İstbul Ticet Üivesitesi, 25-27 Ksım 2005 ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI Tme EREN Kııkkle Üivesitesi

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

Başlangıç değerleri. olduğundan iterasyona devam!

Başlangıç değerleri. olduğundan iterasyona devam! ESKİŞEHİR OSMANGAZİ ÜNİVERSİESİ Mühedl Mmlı Fülte İşt Mühedlğ Bölümü E-Pot: ogu.hmet.topcu@gml.com Web: http://mmf.ogu.edu.t/topcu Blgy Detel Nüme Alz De otlı Ahmet OPÇU m X X X.5.5.5.5.75 -.5.5.875.75

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Ösöz Değerli Öğreciler, Bu fsiül ortöğretimde bşrıızı yüseltmeye, üiversite giriş sıvlrıd yüse pu lmız yrdımcı olm içi özele hzırlmıştır. Koulr lmlı bir bütü oluşturc şeilde hücrelere yrılr işlemiştir.

Detaylı

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir.

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir. I İSİMLR tı isimlein İsimlendiilmesi ve Özeliklei şğıdki şekilde, tnlı sekizgen dik pizmsı veilmişti. Pizml tnlındki çokgene ve diklikeğiklik duumun göe ' ' ' ' isim lıl., ' ' ' ', dikdötgenleine ynl yüzey

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Çubukta açılan delikler

Çubukta açılan delikler YTÜ İş Müh. Böl. Çlik Ypıl I D Nolı Y. Doç. D. Dvim ÖZHENDEKCİ ÇEKME ÇUBUKLRI Ki zou olk ylız l oğulu çmy muz kl ll çm çuuklı i; kf ili çm çuuklı, il, kıl, v. u ü şıyıı ll ö öilili. Çm çuuklı y çok çlı

Detaylı

TG 3 ÖABT ORTAÖĞRETİM MATEMATİK

TG 3 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ 9 Mat TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun testlein tamamının

Detaylı

FIRÇASIZ DOĞRU AKIM MOTOR SİSTEMİNİNİN DENEYSEL OLARAK GERÇEKLEŞTİRİLMESİ VE SİMÜLASYONU

FIRÇASIZ DOĞRU AKIM MOTOR SİSTEMİNİNİN DENEYSEL OLARAK GERÇEKLEŞTİRİLMESİ VE SİMÜLASYONU FRÇASZ DOĞRU AKM MOOR SİSEMİNİNİN DENEYSE OARAK GERÇEKEŞİRİMESİ VE SİMÜASYONU Es KANDEMİR 1 H.ık DURU 2 Si ÇAMUR 3 Biol ARİFOĞU 4 Esoy BEŞER 5 Elektik Mühendisliği Bölümü Mühendislik Fkültesi Koceli Ünivesitesi,

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY FİZ2 FİZİK-II Ank Ünivesitesi Fen Fkültesi Kimy Bölümü 24-25 Bh Yıyılı Bölüm-4 Ank Aysuhn OZANSOY Bölüm 4. Elektiksel Potnsiyel. Elektiksel Potnsiyel Eneji 2. Elektiksel Potnsiyel ve Potnsiyel Fk 3. Noktsl

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

JEOTERMAL REZERVUARLARIN MODELLENMESİ

JEOTERMAL REZERVUARLARIN MODELLENMESİ 233 JEOTERMAL REZERVUARLARIN MODELLENMESİ Hüly SARAK Abduhmn SATMAN ÖZET Litetüde jeoteml ezevu dvnışlını modelleyen çeşitli modelle mevcuttu. Bunl üetim debisi zlm yöntemi, boyutsuz ezevu modellemesi

Detaylı

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425 Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

"DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ

DEMOKRATİK KATILIM PLATFORMU TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" trfındn 49, Türkiye Jeoloji Kurultyı

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

ğ ş ş ğ ö Ğ ş ö Ü ö ğ ğ ö Ş Ü ş ş ğ ö ş şş Ö ş ş Ş Ö Ü ş ş ğ ş ş ş ş ğ ğ ğ ğ ş ö Ğ ş ş ğ ş ö Ğ Ç Ç ğ Ş Ş ş ğ Ş ö ğ ş ö ğ ö ş ğ Ç ğ ğ ğ ğ ö ş ğ Ç ö ş ğ Ş ğ Ş ğ ğ ğ ğ ğ ğ ş ş ö ö Ş Ş ş ö ş ş Ş ş ş ş ö ö

Detaylı

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ

tepav PARA POLİTİKASINDA YENİ ARAYIŞLAR ve TCMB 2 Ocak2012 R201202 RAPOR Türkiye Ekonomi Politikaları Araştırma Vakfı GİRİŞ RAPOR Ocak R epav Tükiye Ekoomi Poliikalaı Aaşıma Vakfı Faih ÖZATA Diekö, TEPAV Fias Esiüsü PARA POLİTİASINDA ENİ ARAIŞLAR ve TCMB GİRİŞ Tükiye Cumhuiye Mekez Bakası TCMB ı Nisa de öemli değişiklikle yapıla

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir.

Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir. Mtemtik üns, 2004 Güz Geometi Köflesi Mustf Y c gcimustf@hoo.com iklik Mekezi i üçgenin üç üksekli i dim tek noktd kesifli. u nokt üçgenin diklik mekezi deni. = iklik mekezi genelde ile gösteili. Üçgen

Detaylı

İ İ İ İ İ İ İ İ İ İ İ İ ö ç ç ü Ş ö ö ç ç ö ç Ö ö ç ü Ö ö İ ü ö Ö İ ü ö ç ö ö ç ö ö ö ü ü ü ç ö ö ü ö ü ü ü ü ü ö ü ö ü ö ö Ö ö ü ö ç ü ö ö ö ö Ö Ö ç ç ç ü ö İ İç çü ö ç ü ö ç ö ö ö İ ç ç ç ç ç ö ö ö ç

Detaylı

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği

Detaylı

Ekonomik Büyüme Teorisine Katkı **

Ekonomik Büyüme Teorisine Katkı ** Jounl of Economic nd Politicl Economy www.ijepe.com Volume Septeme 4 Iue Ekonomik Büyüme Teoiine Ktkı ** By Roet M. SOLOW **. Giiş üm teoi, tmmen doğu olmyn vyıml ğlıdı. Teoiyi oluştun T d udu. Bşılı i

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

EGM96 JEOPOTANSİYEL MODELİ,TG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ KARŞILAŞTIRILMASI

EGM96 JEOPOTANSİYEL MODELİ,TG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ KARŞILAŞTIRILMASI Selçuk Üivesitesi Jeodezi ve Fotogameti Müedisliği Öğetimide 30. Yõl Semozyumu16-18 Ekim 00 Koya SUNULMUŞ BİLDİRİ EGM96 JEOPOTANSİYEL MODELİTG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

In Primary Health Care Childhood Immunization Services Costs, Practices l

In Primary Health Care Childhood Immunization Services Costs, Practices l e A þ t ý m In Pimy Helth Ce Childhood Immuniztion Sevices Costs, Pctices l n i j i O O i g in Biinci Bsmk Sğlık Hizmetleinde Çocukluk Çğı Bğışıklm Hizmetlei Mliyetlei, Uygulmlı h c s Re l Çocukluk Çğı

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK ve TEST ÇÖZÜMLERİ 10. IIF KOU ALATIMLI 2. ÜİTE: ELEKTRİK VE MAYETİZMA 4. Konu MAYETİZMA ETKİLİK ve TET ÇÖZÜMLERİ 2 Ünite 2 Elektrik ve Manyetizma 2. Ünite 4. Konu (Manyetizma) A nın Çözümleri 3. 1. Man ye tik kuv vet ler,

Detaylı

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER KTI ÝSÝMLR KTI İSİMLR YILLR 1966 1967 1968 1969 1970 1971 197 197 197 1975 1976 1977 1978 1979 1980 1981 198 198 198 1985 1986 1987 1988 1989 1990 1991 199 1995 1996 1997 1998 1999 001 001 00 00 00 005

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Günlük Bülten. 22 Mart 2013. S&P Güney Kıbrıs ın kredi notunu düşürdü. Yurtiçi beyaz eşya satışları Şubat ta geçen yılın %10 üzerinde gerçekleşti

Günlük Bülten. 22 Mart 2013. S&P Güney Kıbrıs ın kredi notunu düşürdü. Yurtiçi beyaz eşya satışları Şubat ta geçen yılın %10 üzerinde gerçekleşti X U1 US D/ TRY (S ğ t f ) Mt 13 Cum Günlük Bülten İMKB veilei İMKB 1 8,373.9 Piys Değei-TÜM ($m) 319,91.9 Hlk Açık Piys Değei-TÜM ($m) 91,4.4 Günlük İşlem Hcmi-TÜM ($m) 1,61.47 Yutdışı piysl Bosl Kpnış

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜ T BSNC ODE SORU - DEİ SORURN ÇÖZÜERİ... Şe kil - e : Şe kil - e :. olu F i. F F e ifl mez. CEV D Tuğllın e biinin ğılığın iyelim. Sistemlein e uyulıklı bsınç kuvvetlei ğılıklın eşitti. F F F Bun

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol Yerel Topluluklr ve Yönetimler Arsınd Sınır-Ötesi Đşirliği Avrup Çerçeve Sözleşmesine Ek Protokol Strsourg 9 Xl 1995 Avrup Antlşmlrı Serisi/159 Yerel Topluluklr vey Yönetimler rsınd Sınır-ötesi Đşirliği

Detaylı

Liderlik ve Yönetim Tarzı Raporu

Liderlik ve Yönetim Tarzı Raporu Liderlik ve Yönetim Trzı Rporu Myıs 15 GİZLİ Liderlik ve Yönetim Trzı Rporu Giriş Myıs 15 Giriş LYTR, yönetii seçimi ve yönetim eerileri geliştirme ile ilgili kişilik konulrın odklnır. Bu rpor, profesyonel

Detaylı

SAYI KÜMELERİ. Örnek...1 :

SAYI KÜMELERİ. Örnek...1 : SAYILAR SAYI KÜMELERİ RAKAM S yı l r ı i f d e e t m ek i ç i n k u l l n d ı ğ ı m ız 0,,,,,,6,7,8,9 semollerine rkm denir. DOĞAL SAYILAR N={0,,,...,n,...} k üm e s i n e d o ğ l s yı l r k üm e s i d

Detaylı

l Acil Servisde Geriatrik Hasta / Elderly Patients in Emergency Department Orhan Akpınar 1, Kenan Ahmet Türkdoğan 2, Mücahit Kapçı 3, Ali Duman 3

l Acil Servisde Geriatrik Hasta / Elderly Patients in Emergency Department Orhan Akpınar 1, Kenan Ahmet Türkdoğan 2, Mücahit Kapçı 3, Ali Duman 3 e in A þ t ý m Use of Emegency Deptment by Eldely Ptients l n i j i O O i g Geitik Hstlın Acil Sevisi Kullnımı h c s Re l Acil Sevisde Geitik Hst / Eldely Ptients in Emegency Deptment Ohn Akpın 1, Kenn

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5 Komisyon LES EŞİT ĞRILIK ve SYISL DYLR TMMI ÇÖZÜMLÜ 10 DENEME ISBN 97-605-36-1-5 Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem kdemi Bu kitın sım, yyın ve stış hklrı Pegem kdemi Yy. Eğt. Dn.

Detaylı

H A S T A N E E N F E K S İY O N L A R IN I Ö NLEM E. E L İF C O Ş K U N E n fe k s iy o n K o n tr o l H e m ş ir e s i

H A S T A N E E N F E K S İY O N L A R IN I Ö NLEM E. E L İF C O Ş K U N E n fe k s iy o n K o n tr o l H e m ş ir e s i H A S T A N E E N F E K S İY O N L A R IN I Ö NLEM E E L İF C O Ş K U N E n fe k s iy o n K o n tr o l H e m ş ir e s i H ip o k r a t (M.Ö. 4 6 0-3 7 0 ) Ö n c e lik le z a r a r v e r m e 2 F lo r e

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

Lineer Olmayan DC Servo Motorun Bulanık Mantık Denetleyici ile Hız Denetimi. Nonlinear DC Servo Motor Speed Control with Fuzzy Logic Controller

Lineer Olmayan DC Servo Motorun Bulanık Mantık Denetleyici ile Hız Denetimi. Nonlinear DC Servo Motor Speed Control with Fuzzy Logic Controller Eleco 2014 Elektik Elektonik ilgisy ve iyomedikl Mühendisliği Sempozyumu, 27 29 Ksım 2014, us Linee Olmyn DC Sevo Motoun ulnık Mntık Denetleyici ile Hız Denetimi Nonline DC Sevo Moto Speed Contol with

Detaylı

BÖLÜM 2 D YOT MODELLER

BÖLÜM 2 D YOT MODELLER BÖLÜM YOT MOELLER.1. Bi diyodu liee olmaya davaıı lei yöde kutulamı bi joksiyouu akım-geilim kaakteistii gei bi bölgede ekil-.1 deki gibi üstel bi deiim göstei. cak, geek küçük geekse büyük akımlaa dou

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

ü İ ı ü İ ı İ üı İ ı ı ığı ı ı ı İ ü ü ü ı Ç İş İ ı ı ş ş ç ı ı Ü ı ı Ü ş ğı ç İ İ ö ü ü ı ı Ü ığı ı Ü ğı ı ş ü ü ü ğ ı ü ü ü ç ı ı ı ı Ü Ü ı ü ü ü ı çı ü öğ ç ü ü öğ ğ ıı ü ş ı ı ğ öğ ı ı ı öğ ş ığı ı

Detaylı

Veri, Sayma ve Olasılık. Test / 30. soru 1. soru 5. soru 2. soru 6. soru 3. soru 7. soru 8. soru 4

Veri, Sayma ve Olasılık. Test / 30. soru 1. soru 5. soru 2. soru 6. soru 3. soru 7. soru 8. soru 4 Test / 0 soru soru Bir zr t ld nd üste gelen sy n n tek oldu u ilindi ine göre, sy n n sl sy olm Bir çift zr t ld nd üste gelen sy lr n toplm n n 0 oldu u ilindi ine göre, zrlrdn irinin olm soru soru Bir

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

Günlük Bülten. 26 Mart 2013. TCMB bugün saat 14:00'da faiz kararını açıklayacak

Günlük Bülten. 26 Mart 2013. TCMB bugün saat 14:00'da faiz kararını açıklayacak X U10 0 US D/ TRY (S ğ t f ) 26 Mt 2013 Slı Günlük Bülten İMKB veilei İMKB 100 82,765.6 Piys Değei-TÜM ($m) 321,134.8 Hlk Açık Piys Değei-TÜM ($m) 91,731.9 Günlük İşlem Hcmi-TÜM ($m) 1,258.63 Yutdışı piysl

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

Velilere Yönelik Soru Formu

Velilere Yönelik Soru Formu Velilere Yönelik Soru Formu Eğitim Stndrtlrı Pilot Çlışmsı 4. Sınıf Mtemtik Okul Sınıf Öğrenci Sevgili veliler, Sevgili velyet shipleri, Çocuğunuzun sınıfı, mtemtik eğitim stndrtlrın ilişkin bir pilot

Detaylı

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar 6 th Itertiol Advced Techologies Symposium (IATS 11), 16-18 My 2011, Elzığ, Turkey Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA Ortmıd Gerçekleştirilmesi İ. Soy, T. Tucer, Y. Ttr Firt Üiversitesi

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı