: ASENKRON MOTORLARDA V / F ORANI TUTULARAK HIZ AYARI YAPILMASI SAYFA 1 ASENKRON MOTORLAR GENEL BİLGİ SAYFA 2 ASENKRON MOTORLARIN ÇALIŞMA PRENSİBİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download ": ASENKRON MOTORLARDA V / F ORANI TUTULARAK HIZ AYARI YAPILMASI SAYFA 1 ASENKRON MOTORLAR GENEL BİLGİ SAYFA 2 ASENKRON MOTORLARIN ÇALIŞMA PRENSİBİ"

Transkript

1 1 Konu : ASENKRON MOTORLARDA V / F ORANI TUTULARAK HIZ AYARI YAPILMASI İÇİNDEKİLER SAYFA 1 ASENKRON MOTORLAR GENEL BİLGİ SAYFA 2 ASENKRON MOTORLARIN ÇALIŞMA PRENSİBİ SAYFA 5 ASENKRON MOTORLARDA V/ F ORANI SABİT TUTARAK HIZ AYARI YAPILMASI SAYFA 6 STATORA UYGULANAN GERİLİM FREKASININ DEĞİŞTİRİLMESİ SAYFA 13 DİNAMİK FREKANS DEĞİŞTİRİCİLER SAYFA 13 1 SENKRON FREKANS DEĞİŞTİRİCİ KULLANMAK SAYFA ASENKRON FREKANS DEĞİŞTİRİCİ

2 2 KULLANMAK SAYFA 18 ASENKRON FREKANS DEĞİŞTİRİCİNİN ASENKRON MOTORLA TAHRİKİ SAYFA SERBEST UYARTIMLI FREKANS DEĞİŞTİRİCİ SAYFA YARI İLETKEN ( TRİSTÖR VEYA IZGARA AYARLI GAZLI REDRESÖRLERİ ) KULLANMAK ASENKRON MOTORLAR GENEL BİLGİ GİRİŞ Elektrik enerjisinin kural olarak üç fazlı A.C. şeklinde üretim, tasıma ve dağıtımı A.C. motorların elektrikle tahrikinde geniş ölçüde kullanılmalarının başlıca nedeni olmuştur. Elektrikle tahrik sisteminde kullanılan şönt ve seri karakterislikli pek çok çeşit A.C. motoru vardır. Özellikle yapısı basit ve ucuz, pratik olduğu için son derece kullanışlı olduğundan dolayı irili ufaklı bir çok tahrikte üç fazlı asenkron motorlar kullanılır. Üç fazlı asenkron motor üç fazlı dağıtım sisteminde dengeli endüktif bir yük teşkil eder. Asenkron motorun farklı iki yapısı vardır. 1 - ) Kısa devre rotorlu ( Sincap Kafesli ) asenkron motorlar 2 - ) Rotoru sargılı ( Bilezikli ) asenkron motorlar Bu iki tip asenkron motorun statorlarını tamamen aynı, yalnız rotorların yapı tarzları farklıdır. Normal olarak statorlarında yıldız veya üçgen olarak bağlanabilen üç fazlı bir sargı mevcuttur. Kısa devre rotorlu asenkron motorun rotorunda kısa devre halinde sincap kafesli ;

3 3 bilezikli tip asenkron motorun rotorunda ise kural olarak yıldız bağlı üç fazlı diğer bir sargı bulunur. Her iki tip asenkron motorda üç fazlı stator sargısının uçları ( üç giriş ile üç çıkış ) bir bağlantı kutusuna bundan ayrı olarak sadece rotoru sargılı üç fazlı asenkron motorun yıldız bağlı olan rotor sargısının sadece üç giriş ucu bilezik ve fırça takımı üzerinden diğer bir bağlantı kutusuna taşınmıştır. Çünkü asenkron motorlarda Us = k * F1 * ø bağıntısından anlaşılacağı gibi manyetik alanın değişmesi için U / f oranın sabit olması gerekmektedir. Demek ki primer şebeke frekansı ile birlikte şebeke gerilimi de aynı oran dahilinde değiştirildiğinde motorun manyetik alanı ve netice olarak devrilme momenti ve yüklenilebilirlik kabiliyeti sabit kalır. Aslında düşük frekanslarda statordaki gerilim düşümünün artmasından dolayı devrilme momentinde bir miktar düşme görülür. Endüstride birçok makinesi, değişik birkaç dönme sayısı yada çoğu zaman sürekli hız ayarı yapılabilen motora ihtiyaç gösterir. Tahrik motorlarına olan bu talep tahrik makinelerine olan ihtiyacı artırmıştır. Elektrik enerjisinin üretilmesi ile birlikte elektrik makineleri önem kazanmıştır. Elektriğin kolayca taşınması, istenildiği zaman kullanılması, elektrik makinelerin verimini diğer makinelere göre yüksek olusu, elektrikle çalışan makinelerin daha fazla kullanılmasını şağlamıştır. Günümüzde endüstride en çok kullanılan hareketli elektrik makinesi asenkron motorlardır. Çalışma ilkesi bakımından bu makinelere endüksiyon makinesi de denilebilir. Ucuz olması, fırça ve kollektörün bulunmaması nedeni ile az arıza yaparak çalışmaları daha sık uygulamalarda kullanılmalarına sebep olmuştur. Alternatif akım makinelerinden olan asenkron motorların üretimleri doğru akım makinelerine göre daha ucuz ama kontrol edilmeleri daha zor ve pahalıdır. Bir asenkron makinenin devir sayısı kontrolü için ( mil momenti sabit kalmak ) şartı ile diğer asenkron makineye yada güç elektroniği elemanlarına ihtiyaç vardır. Gelişmiş birçok ayar sistemi arasında son

4 4 yıllarda endüstride yaygın olarak kullanılan kontrollü diyotlar ( tristörler ) asenkron motor hız ayarı alanında hiç kuşkusuz yeni bir çığır açmıştır. ASENKRON MOTORLARIN ÇALIŞMA PRENSİBİ Asenkron motorlar stator ve rotordan ibaret olup stator ve rotor üzerine açılan oluklara yerleştirilen sargılardan oluşur. Stator üzerine yerleştirilen sargılar ya üçgen şeklindeki sargılardan yada yıldız bağlı sargılardan oluşmaktadır. Stator sargılarından geçen akım alternatif akım olduğundan manyetik devrede periyodik olarak değişen bir alan meydana getirir. Bu alana alternatif alan denir. Bu alternatif alanı fourier serisi ile yazmak mümkündür. Alternatif alanın her bir harmoniğini iki döner alana ayırabiliriz. Bu döner alanlardan birisi saat ibresi yönünde dönüyorsa diğeri saat ibresi tersi yönünde döner ve her ikisinin de dönüş açısal hızı aynıdır. Üç fazlı asenkron motorlarda birbirinden 120 derecelik farklı olan akımlar stator sargılarından geçerek üç adet alternatif alan meydana getirecektir. Üç alternatif alanın sadece birinci harmoniğini dikkate alırsak altı adet döner alan meydana gelir. Bu altı adet döner alandan üçü saat ibresi yönünde, üçü de saat ibresinin tersi yönündedir. Bunların açısal hızları aynı olup Ws tir. Sağa doğru dönen döner üç alan çakışık olarak döndüğü taktirde sola döner alanlar arasında 120 derecelik faz farkı olduğu için bileşke değeri sıfır olur, ve motor sağa doğru dönen çakışık üç döner alanın oluşturduğu moment ile sağa doğru döner. bu açıklamadan anlaşılabileceği gibi stator sargılarından geçen akımlar Ws açısal hızı ile döner stator alanı oluşturur. Motora ilk gerilim uygulandığı anda motor duracaktır. ns hızıyla dönen stator döner alanı durmakta olan rotor iletkenini aynı hızda keser ve rotor alternatif gerilimin oluşmasını sağlar. Bu gerilim frekansı f1 olup bu değer şebeke frekansına eşittir. Motor senkron devir sayısında dönseydi bu taktirde senkron devirde dönen stator alanı rotor iletkenlerini kesmeyecekti. Son uçta rotor sargılarında alternatif gerilim meydana gelmeyecektir. Akım geçmeyince döndürme momenti de sıfır olacaktır. Bu nedenle rotor devir sayısı

5 5 senkron devir sayısını altında olacaktır. Bu açıklamadan anlaşılacağı gibi asenkron motorun motor halinde çalışması halinde rotorun senkron devirde dönmesi mümkün değildir. Rotor senkron devirde daha küçük olan ve yük ile değişen devirde döner. Elektrik ile tahrikte geniş bir uygulama alanına sahip olan asenkron motor esas itibariyle şönt karekterislikli sabit devir sayılı bir tahrik makinesidir. Genellikle motor olarak kullanılmakla birlikte bazı koşulların sağlanması ile birlikte generatör olarak çalışabilirler. Asenkron motorlar eş zamanlı olmayan makinelerden, yani stator sargılarının oluşturduğu döner alan hızı ile rotorun dönme hızı birbirinden farklıdır. Rotor dönme hızı motor çalışmada asenkron hızdan küçük, generatör çalışmada ise senkron hızdan büyüktür. İşletme özellikleri bakımından doğru akım şönt motoru ile boy ölçüşebilecek şekilde değilse bile sürekli devir sayısı ayar imkanına sahiptir. Bir, iki, üç ve çok fazlı olarak imal edilebilirler. En fazla kullanılan motorların birisi yukarıda da belirtildiği gibi kısa devre rotorlu veya sincap kafesli asenkron motor ve de rotoru sargılı veya bilezikli asenkron motorlardır. Bilezikli asenkron makinelerin rotor oluklarına genellikle üç fazlı sargılar yerleştirilir. Üç fazlı rotor sargısı yıldız olarak bağlanır ve yıldız noktası dışarı çıkartılmaz. Mil üzerine bağlı ve milden yalıtılmış üç bilezik rotor ile birlikte döner. Bilezikler üzerinde sabit duran fırçalar yardımı ile dış kaynaktan gerilimi ve frekansı değiştirilebilen gerilim uygulanabildiği gibi sargılara dışarıdan empedansa bağlanabilir. Rotor bileziklerine yol alam direnci bağlayarak yol alam akımı sınırlayarak yol alam direnci büyütülebilir. Ayrıca rotora frekans ve güç faktörü kontrolü yapılabilir. Rotoru sargılı asenkron makinelere uygulanan bu kontrol sistemi sincap kafesli motora uygulanan hız kontrolün den daha ucuzdur. Bununla rotor sargıları rotorda oldukça yer kapladığı için sincap kafesli motorlara göre bilezikli asenkron motorlardan daha az güç elde edilir. Sincap kafesli asenkron motorların statorlarında döner alan oluşturan sargılar vardır. Rotor kısa devre çubuklarının oluşturduğu hacim sincap kafesinkine benzediği için motora bu isim verilmiştir. Normal çalışma şartlarında rotor çubuklarında endüklenen gerilim 10 V altındadır.

6 6 Bu yüzden kısa devre çubukları rotor saç paketinden yalıtılmaz. Rotorda yalıtkan malzeme için yer kaplanmadığı için bu motorda birim hacime düşen güç bilezikli asenkron motorlardan daha fazladır. Bilezikli asenkron motorlarda rotorun sargılı olması ile bileziklerin getirdiği avantaj devir sayısının kolaylıkla ayarlanmasını kalkış momentinin değiştirilebilmesi üstünlüğünü sağlar. Sincap kafesli makinede ise rotor sayısı yerine kısa devre edilmiş iletken çubukların bulunuşu makinenin hem kalkış momentini, hem de devir sayısı ayarı yapabilme yeteneklerini kısıtlamaktadır. Bu nedenle sincap kafesli makineler daha çok kalkış momenti değişmeyen ve devir sayısı mümkün olduğu kadar sabit olan iş makinelerinin tahrikinde kullanılır. Ancak yapım kolaylığından dolayı bilezikli makineye göre iki kat daha ucuzdur. ASENKRON MOTORLARDA V/ F ORANINI SABİT TUTARAK HIZ AYARININ YAPILMASI GİRİŞ: Asenkron motorlarda normal çalışma bölgesinde dönme sayısı sabit kalmaktadır. Endüstride birçok iş makinası, değişik birkaç dönme sayısı ya da çoğu zaman sürekli hız ayarı yapılabilen motorlara ihtiyaç gösterir. Ayrıca hava kirlenmesi nedeni ile elektrik motorlu taşıt araçlarında, yakıt bataryası almak ve elektrik motorunun kullanılması öngörülmektedir. Asenkron motorun ucuz olması fırça ve kollektorunun bulunmaması nedeni ile az arıza yaparak çalışma olanağının bulunması, bu motorların yaygın olarak kullanılmasına ve hız ayarının gene asenkron motorlar yardımı ile yapılmasına yol açmıştır. Geliştirilmiş birçok ayar yöntemi arasında son yıllarda endüstride yaygın olarak kullanılan kontrollu diyotlar ( Tristör ) asenkron motorların hız ayarı alanında, hiç kuşkusuz yeni bir uygulama alanı açmıştır. Elektrikle tahrikte önemli bir uygulama alanına sahip bulunan üç fazlı asenkron motor esas itibariyle şönt karakteristikli sabit devir sayılı bir tahrik makinasıdır. İşletme özellikleri bakımından her ne kadar doğru akım şönt

7 7 motoru ile bot ölçüşecek boyutta değilse de kademeli ve sürekli devir sayısı ayar imkanlarına sahiptir. Bu nedenle devir sayısı ayarı istenen bazı tahrik sistemlerinde de kullanılmaktadır. ASENKRON MOTORLARDA HIZ AYAR İLKELERİ Asenkron motorlarda hız ayar ilkeleri aşağıdaki gibi sıralanabilir. 1-) Statora uygulanan gerilim frekansının değiştirilmesi 2-) Statora uygulanan gerilim değerinin değiştirilmesi 3-) Stator sargısı kutup sayısının değiştirilmesi 4-) Rotora bağlanan direncin değiştirilmesi 5-) Rotor sargılarına dış kaynaktan uygun gerilim uygulanması STATORA UYGULANAN GERİLİM FREKANSININ DEĞİŞTİRİLMESİ Bir asenkron motorun senkron hızı yada teorik boşta çalışma hızı stator sargılarına uygulana gerilimin frekansı fσ ve kutup sayısı 2p olduğuna göre aşağıdaki bağlantı ile verilir. nσ= 60*fσ p o halde asenkron motorun senkron hızı belli bir p kutup sayısında stator gerilimin fσ frekansı ile değiştirilip kontrol edilebilir. Frekansı değiştirerek yapılan hız kontrolun da asenkron motorun momentinin maksimum değerinin sabit kalması sağlanır. Bu amaç için Vσ/fσ oranı yaklaşık olarak sabit tutulur, gerçekten statora uygulanan gerilim Vσ ; yaklaşık olarak statorda endüklenen Eσ gerilimine eşit kabul edilebilir. Vσ ~ Eσ Statorda endüklenen gerilim ise : Eσ = K*fσ*Ø ( K sabit ) dır. Moment ise : M = λ* Ø *sin Ø *I ve maksimum moment için : I = Eσ Σ XσØ I = Eσ K*fσ*(LσØ+LrØ)

8 8 M = λ ( Eσ )² sin Ø K fσ olarak verilir. Buradan momentin maksimum değerinin yaklaşık olarak sabit kalması için Eσ / fσ nin yada (Øσ) in sabit kalması gerekir. O halde statora uygulanan gerilim frekansını değiştirerek hız ayarı yapılırken, gerilim kaynağının Vσ / fσ oranı sabit tutulur ve öylelikle momentin maksimum değeri sabit tutulmuş olur. Bu amaç için statora uygulan gerilim kaynağı özel bir gerilim kaynağı olmalıdır. Bu özellikte olan gerilim kaynakları su yollarla elde edilir. a) Hızı değiştirilebilen bir senkron generatörün uyarma akımı sabit tutulursa Vσ / fσ oranı sabit tutulmuş ve aynı zamanda Vσ geriliminin frekansı da ayarlanmış olur. b) Son zamanlarda geliştirilmiş olan tristörlü özel inverterler kullanılarak hem Vσ geriliminin frekansı değiştirilir ve hem de Vσ / fσ de sabit tutulur. c) Rotoru sargılı asenkron motorun rotor gerilimi de frekansı değiştirilebilen bir gerilimdir ve hız kontrol unda kullanılabilir. Asenkron motorun bu yöntemle yapılan hız kontrolü ve momentin maksimum değerinin sabit tutulması, doğru akım serbest uyarmalı motorunun Ward Leonard düzeni ile hız ayarına benzemektedir. Şekil 1 de stator frekansının değiştirilmesi ile yapılan hız kontrol una ilişkin M=f(n) karakteristiği gösterilmiştir. Şekil 1 Asenkron motorun stator gerilimi frekansının değiştirilmesi ve Vσ/fσ in sabit tutulması halinde moment -dönme sayısı karakteristikleri

9 9 Hızı değiştirilebilen bir senkron generatör yardımı ile asenkron motorun Vσ / fσ oranı sabit olması koşulu altında hız kontrolu pratikte büyük bir uygulama alanı bulmaz. Çünkü her asenkron motor için hızı ayarlanabilen bir asenkron generatöre ihtiyaç vardır. Asenkron motorun bu yolla hız kontrolu yapılırken, öte yandan hızı kontrol edilen bir tahrik makinesi sağlanmak zorunluluğu doğmaktadır. Bununla beraber buhar türbini ile çalışan bazı gemilerde pervaneleri tahrik eden sincap kafesli asenkron motorlar, hızı ayarlanabilen buhar türbinin tahrik ettiği senkron generatöre bağlanabilir. Böylece asenkron motorun hız ayarı yapılabilir. Sincap kafesli asenkron motorlar ucuz ve az arıza yaptıklarından çoğu zaman değişken frekanslı kaynaklar pahalı olsa da frekans değiştirerek yapılan hız kontrolu uygulama alanı bulabilmektedir. Ayrıca rüzgar tünellerinde uçak modellerini kontrol etmek için yüksek hızlı sincap kafesli asenkron motorlar kullanılır. Bunun için statora 50 Hz e göre yüksek frekanslı gerilim uygulanır. Statora uygulanan gerilim frekansını değiştirilmesinde asenkron motorun senkron hızı belirli bir p kutup sayısında stator gerilimin fσ frekansı ile değiştirilip kontrol edilebilir. Normal yükleme sınırları içinde kalmak koşulu ile kontrol edilen devir sayısı yük momentinden bağımsızdır. Şekil 2 Asenkron motorda gerilim frekansı parametre olmak üzere momentin devir sayısı ile değişmesi

10 10 Asenkron motorlarda frekansı değiştirerek yapılan hız kontrolunda, asenkron motorun devrilme momentinin değerinin sabit kalması sağlanır. Bu amaç için Vσ / fσ oranı sabit tutulur. Buradan M(max)=( Vσ )² olduğu hatırlanır. fσ Vσ / fσ ile devrilme momenti arasındaki bu bağlantıdan dolayı frekans büyüdükçe uygulan gerilimin etkin değeri değişmezse devrilme momenti küçülür. Yani hava aralığındaki akı yoğunluğu azalır. Aynı şekilde düşük hızlara indikçe de devrilme momenti yükselir. Bu ise stator artması gibi bir sakınca yaratır. Oysa devrilme momentinin sabit tutulması yani frekans değerine f2 = u2 f1 u1 olacak şekilde bir u stator gerilimi karşı düşürüp moment hız karakteristiklerini hız düştükçe sola doğru paralel olarak kaydırmak motorun hızını senkron hızla sıfır değeri arasında değiştirmek mümkün olur. Buradan görüldüğü gibi asenkron makineye uygulanan gerilim ve ya akımın frekansını değiştirerek yapılan hız kontrolu hem geniş bir kontrol aralığı sağlaması hem de hız kontrol bölgesinde devrilme momentinin sabit tutulmasına olanak verdiğinden en uygun yöntemdir. Pratikte bu hız kontrol yönteminin sağladığı güç elektroniği devreleri, besleme biçimlerine göre iki gruba ayrılırlar. a) Doğrudan şebekeden çevirici b) Dolaylı olarak şebekeden çevirici a)doğrudan şebekeden çevirici adından anlaşılacağı gibi birinci gruba dahil olup bir frekanstaki giriş gerilimini başka bir frekanstaki değişen gerilime çevrilir. Diğer frekans çeviricilere göre en önemli farkı bu gerilim ve frekans değiştirme işlemi giriş gücünde doğrudan yapılmasıdır. Çevirme işlemi, tristör elemanlarının uygun tetiklenmesi ile gerçekleşir. Frekans çeviricinin çalışma ilkesi istenen frekansta çıkış gerilimi oluşturacak şekilde giriş geriliminden yararlanarak tristörlerin uygun

11 11 anlarda tetiklenmesine dayanır. Bu amaçla çeviricinin her fazına birbirine zıt paralele bağlı iki tane üç fazlı tam dalga kontrollu doğrultucu bağlanır. Bu doğrultuculardan biri çıkış akımın yarı periyodunda, diğeri ise negatif yarı periyodunda doğrultma ve evirme modunda çalışarak istenen frekansta çıkış gerilimi temel bileşen yanında harmonikleride kapsar. Çıkışta elde edilen frekans şebeke frekansının altındadır. Bu nedenle düşük devir sayılarında çalışmak söz konusudur. Dolaylı olarak kullanılan çeviricilerde dolaylı olarak düşük frekanslarda çalışma dalga şeklinin kare şeklinde olması asenkron motorlarda olumsuz etki yapar. Bundan dolayı üç faz için toplam 36 tristör kullanıldığından maliyet açısından olumsuz oluşu büyük güçlü motorların düşük hızlarda kullanılması hali için uygundur. Şekil 3 50 Hz lik sabit frekanslı alternatif gerilim kaynağı kullanarak değişken frekanslı (0-40 Hz) bir gerilim kaynağı veren cycloconverter dener doğrudan frekans değiştirici ile asenkron motorun ayarı Beslemesi dolaylı olarak şebekeden sağlanan rekans çeviriciler şekil 4 de görüldüğü gibi dört kısımdan oluşur. 1- Doğrultucu

12 12 2- Ara devre 3- Çevirici 4- Kontrol ünitesi Doğrultucu Ara Devre Evirici Motor Kontrol Ünitesi Şekil 4 Frekans çeviricinin çalışma ilkesi Frekans çeviriciler kullanılan ara devre tipine göre iki ana grupta toplanabilir. Ara devre sadece seri bir endüktanstan oluşuyorsa çevirici akım ara devreli olarak tanımlanır. Doğrultucu tarafından motor akımının kontrol edildiği bu düzen bir motorlu tahrik sistemleri için elverişlidir. Akım ara devreli çeviriciler alan zayıflama bölgesinde kullanılmaya uygun değildir. a) Akım ara devreli b) Kontrollu doğrultucu ile denetlenebilen gerilim ara devreli c) Doğru akım kıyıcı ile denetlenebilen gerilim ara devreli d) D.G.M. lu sabit ara devreli

13 13 Özellik Akım ara Gerilim ara Gerilim ara St. Gerilim ara devreli dev. (kontr. Doğ.) dev. (D.A kıyıcılı) dev. (DGM) Salımın momentleri f<5 Hz te f<5 Hz te f<5 Hz te minimum fazla fazla fazla Ağır yükte kalkış iyi kötü kötü çok iyi Ani yükte davranış iyi orta orta çok iyi Kontrol hızı iyi orta orta çok iyi Şebeke kesintisinde olanaksız olanaklı olanaklı olanaklı kısa süreli çalışma Frenleme Ek devre ek evirici veya frenleme direnci gerekli gereksiz Güç faktörü 0-0,9 frekans 0-0,9 frekans yaklaşık bir yaklaşık bir ve yüke bağlı ve yüke bağlı Çok motorlu tahrik uygun değil uygun uygun uygun sistemine uygunluk Tablo 1 de çeşitli frekans çeviricilerin karşılaştırılması yapılmıştır. Asenkron ve senkron motorlarda 50 Hz lik frekansla erişeli bilecek maksimum devir sayısı 3000d/d dır. Halbuki bazı tezgah ve makinelerde ; örneğin marangoz tezgahları ve delme makinelerinde çok daha yüksek devir sayısına ihtiyaç vardır. Buna karşılık bazı tahriklerde de ; örneğin hadde tesisleri, taşıma yolları, seri halinde çalışan bazı tezgahlar, matbaa ve tekstil makinelerde düşük devir sayıları kullanılır. Asenkron ve senkron motorların primer şebeke frekansını değiştirerek devir sayılarını geniş bir alan içinde iki yönlü sıhhatli bir şekilde ve stabil olarak ayarlamak mümkündür. Yüksek hızlı tezgahlarda 150/300 Hz, hadde ve gemilerin tahrikinde 15/60 Hz arasında değişen frekanslara ihtiyaç duyulmaktadır. Düşük hızlı tahriklerde de 5 Hz lik frekanslar kullanılır. Asenkron motorların devir sayısı ayarında çoğu zaman yüklenilebilirlik kabiliyetinin değişmemesi istenir. Bu ise primer şebeke frekansı değiştirirken manyetik lanın sabit tutulması ile gerçekleşir. Bilindiği gibi asenkron motorlarda : Vσ =c * fσ *Ø bağıntısı geçerlidir. Buna göre manyetik alanın değişmemesi için ;

14 14 Vσ =c * Ø = sabit fσ oranını sabit kalması gerekir. Buradan primer şebeke frekansı ile birlikte şebeke gerilimi de aynı oran dahilinde değiştirildiği taktirde, motorun manyetik alanı ve netice olarak devrilme momenti ve yüklenilebilirlik kabiliyeti sabit kalır. Aslında düşük frekanslarda stator gerilimi düşümünün artmasından dolayı devrilme momentinde bir miktar düşme görülür. Şekil 5 Şebeke frekans ve gerilimin aynı oran kabilinde değiştirildiği asenkron motorlarda n= f(m) karakteristikleri Şekil 5 de primer şebeke frekans ve şebeke gerilimini birlikte aynı oran dahilinde değiştirildiği bir asenkron motorda elde edilen (n = f(m) ) ayar karakteristiği gösterilmiştir. Üç fazlı asenkron ve senkron motorların primer şebeke frekansını değiştirerek devir sayısı ayarı dinamik ve statik frekans değiştiricileri gerektirir. Aşağıda bu maksatla en fazla kullanılan frekans değiştirme sistemleri ele alınacaktır. DİNAMİK FREKANS DEĞİŞTİRİCİLER Uygulamalarda, üç fazlı asenkron ve senkron motorların devir sayıları ayarı için dinamik frekans değiştirici olarak daha çok senkron ve

15 15 asenkron frekans değiştiriciler (motor ve generatör grupları ) ile serbest uyartımlı frekans değiştirici kullanılır. 1-) Senkron Frekans Değiştirici Kullanmak senkron ve asenkron frekans değiştiriciler daha çok yüksek güçlü tahriklerde ; örneğin gemiler, seri halinde çalışan makineler ve hadde tesislerinde kullanılır. Özellikle düşük frekans doneleri için uygundur. Gemilerde frekans değiştirici olarak büyük güçlü bir senkron alternatör ile tahrik makinası olarak devir sayısı geniş sınırlar içinde ekonomik olarak değişebilir bir ısı kuvvet makinası ; çoğunlukla bir buhar türbini kullanılır. Türbine gönderilen buhar çoğunlukla kısıldıkça devir sayısı ile birlikte alternatörün frekansı ve bir netice geminin pervanelerini tahrik eden senkron ve asenkron motorların devir sayıları düşer. Türbinin devir sayısını değiştirirken alternatörün ikazı sabit tutulursa frekansla birlikte gerilimi de aynı oran dahilinde değişeceği için esas tahrik motorunun devrilme momenti yaklaşık olarak sabit kalır. Sanayide seri halinde çalışan makineler ve hadde tesislerinde çok sayıda tahrik motorunun devrini birlikte kontrol etmek için senkron frekans değiştiriciyi tahrik etmek üzere belirli güçlere kadar stator veya rotorundan beslenen üç fazlı kolektörlü şönt motor ( Schrage-Richter motoru ) büyük güçler için kural olarak WARD- LEONARD tahriki kullanılır.

16 16 Şekil 6 W-L Ayar sistemi ile ayar edilen büyük güçlü bir senkron frekans değiştiricinin esas bağlantı şeması Şekil 6 da frekans değiştiricinin tahrik makinesi olarak WARD- LEONARD sisteminin kullanıldığı büyük güçlü bir senkron değiştiricinin üç fazlı asenkron motorları (esas tahrik motorlarını ) içine alan esas bağlantı şeması gösterilmiştir. Bu bağlantı şemasında FD senkron frekans değiştirici, TM2 bunun tahrik makinesi,tm1 de D.A. kontrol generatörün tahrik makinesi, İD ikaz dinamosu, M1, M2, M3, devir sayısı ayarlanan üç fazlı asenkron motorlar (esas tahrik motorları ) dır. Böyle bir tahrik sisteminde FD nin gücü tahrik motorları güçleri toplamına eşittir. Tahrik makinesi olarak bir ısı kuvvet makinesi kullanılması halinde ayar sisteminin toplam gücü esas tahrik motorları toplam gücünün %300 ne, WARD-LEONARD sistemi kullanıldığı taktirde %500 ne ulaşır. Bu nedenle böyle bir ayar sisteminin verimi düşük, tesis ve işletme giderleri yüksektir. Buna karşılık ayar aralığı oldukça geniş ayrıca ayar sürekli ve stabildir. Alternatörün devir sayısı ve frekansı değiştirilirken ikaz akımı sabit tutulmak suretiyle üç fazlı asenkron ve senkron motorun devri geniş bir alanda değişirken devrilme momenti yaklaşık olarak sabit kalır., yüklenilebilirlik kabiliyeti değişmez.

17 17 Şekil 7 Üç fazlı bilezikli tip asenkron makinenin frekans değiştirici olarak kullanılması 2-) Asenkron Frekans Değiştirici Kullanmak Üç fazlı asenkron motorların kademeli ve sürekli devir sayısı ayarı için asenkron frekans değiştiriciler de kullanılır. Şekil 7 de asenkron frekans değiştirici olarak kullanılan üç fazlı bilezikli bir asenkron makinenin esas bağlantı şeması gösterilmiştir. Burada FD asenkron frekans değiştirici, TM tahrik makinesi, M devir sayısı ayarlanan motordur. Frekans değiştirici, tahrik makinesi tarafından döner alan yönünde ; ntm = 60 *fσ =nsfd p senkron devir sayısı ile döndürülürse sekonder frekansı f2fd= f1m ; döner alana zıt yönde ise nsfd hızıile tahrik edilirse f2fd = f1m = 2f1 olur. Buradan frekans değiştiricinin devir sayısı + nsfd ile - nsfd arasında değiştirilerek f 2fd sekonder frekansı 0 ila 2f1 arasında ayarlanır. arasında ; f 2fd = f1 Asenkron frekans nsf ntm nsf değiştiricinin sekonder ve primer frekansları bağıntısı yazılabilir. Frekans değiştiricilerin sekonderinden beslenen esas tahrik motorunun boşta ideal devir sayısı ise ; n = f2fd nsm = nsfd - ntm n sm olur. f1 nsfd

18 18 Bu denklemlerde nsm M esas tahrik motorunun f1 şebeke frekansındaki senkron devir sayısıdır. Asenkron frekans değiştiricilerin sekonder gerilimi frekansla orantılı değiştiği için devir sayısı ayarlanan M tahrik motorunun döner alanı ve devrilme momenti yaklaşık olarak sabit kalır. Asenkron frekans değiştiricileri güç kayıpları hesaba katılmadığı taktirde esas güçler için ; Pm = Pfd + Ptm bağıntısı yazılabilir. Buradan M tahrik motoruna verilen güç frekans değiştiricinin stator döner alan gücü ile tahrik makinesinin mil gücü toplamına eşittir. Diğer taraftan bilindiği gibi kayıplar hesaba katılmadığı taktirde bir asenkron makinenin stator döner alan gücü ile rotor mekanik gücünün döndürme momentine göre ifadeleri ; P fd = 2π *nsfd Mfd, P tm = 2π * n tm Mfd olum güçlerin bu değerleri önceki formüllerde yerine konursa ; Pm = 2π *nm Mm = 2π ( nsfd ntm ) Mfd bağıntısı elde edilir. Bu denklemler ile frekans değiştirici ve devir sayısı ayar edilen M tahrik motoru momentleri arasında ; Mfd = nsm Mm nsfd bağıntısına ulaşılır. Bu denklem, frekans değiştirici döndürme momentinin motor milinde ki yük momenti ile orantılı değiştiğini, ayarlanan sekonder frekansına bağlı olmadığını gösteren önemli bir neticedir. Şekil 8 de yük momentinin sabit değeri için esas güçlerin ( P, Ptm Pm güçlerinin ) f2fd / f1 frekanslar oranına bağlı olarak değişimleri gösterilmiştir. Frekanslar oranının 0 ile 2 arasında değişen ayar alanı için ; Pfd = Ptm = Pm/2 olup tesisin toplam gücü tahrik motoru gücünün 2 katıdır. Bu bakımdan asenkron frekans değiştirici kullanmak senkron frekans değiştiriciye göre daha avantajlıdır.

19 19 Şekil 8 Yük momentinin sabit değeri için asenkron frekans değiştirici kullanarak devir sayısı ayarında güçlerin değişimi Tahrik makinesi olarak, sürekli devir sayısı ayarı için belirli güçlere kadar aynı şebekeden beslenen üç fazlı kolektörlü alternatif akım şönt motoru büyük güçlerde WARD-LEONARD tahriki kullanılır. Kademeli devir sayısı ayarı ile yetinildiği taktirde, tahrik makinesi kural olarak çok kutup sayısına haiz üç fazlı k.d. rotorlu bir asenkron motordur. Şekil 9 da WARD-LEONARD sistemiyle tahrik edilen büyük güçlü bir asenkron frekans değiştiricinin esas bağlantı şeması gösterilmiştir. Bu bağlantının normal bağlantıdan olan farkı, rotorun f1 frekanslı şebekeye bağlanışı, statorun ise sekonder olarak kullanılmasıdır. Bu bağlantıda vantlı gücün yanında, gerek Fd gerekse M tahrik motorları döner alanları için lüzumlu reaktif güç FD nin rotorundan statora aktarılır. Burada sekonder frekansı yine FD nin devri değiştirilerek ayarlanır. Sükunet durumunda f2fd = f1 dir. Sekonder frekansını f1 üstünde daha büyük bir değere ayarlamak için frekans değiştirici rotor döner alan yönünde daha küçük frekanslar için rotor döner alanına zıt

20 20 yönde çevrilir. Böyle bir ayar sistemiyle tahrik motorlarının devir sayıları birlikte sıhhatli ve stabil olrak geniş bir alan içinde ayarlanabilir. Ayar oranı 10:1 hatta 12:1 e kadar çıkar. Şekil 9 daki montaj şeklinde 0 ile 2f1 arasındaki frekans ayar alanı için tesisin toplam gücü devir sayıları ayarlanan esas tahrik motorları toplam gücünün 4 katıdır. Bundan dolayı bu ayar sisteminde kuruluş ve işletme maliyetleri oldukça yüksektir. ŞEKİL 9 WARD LEONARD ayar sistemiyle tahrik edilen bir asenkron frekans değiştiricinin esas bağlantı şeması ASENKRON FREKANS DEĞİŞTİRİCİNİN ASENKRON MOTORLA TAHRİKİ Kademeli devir sayısının yeterli olduğu tahriklerde kural olarak asenkron frekans değiştirici kutup sayısı değişebilen ( iki, üç, veya dört devirli ) k.d. rotolu bir senkron motorla tahrik edilir. Burada asenkron tahrik makinesi için iki farklı besleme şekli mümkündür.: a) Doğrudan doğruya primer şebekeden besleme

21 21 b) Frekans değiştiricinin sekonderinden besleme gösterilmiştir. Şekil 10 da her iki besleme şekline ait esas bağlantı şemaları Şekil 10 Asenkron frekans değiştiricinin a) Primer şebekeden b) Sekonder şebekeden beslenen asenkron motorla tahriki İlk olarak ilk bağlantı sekli etüt edilirse : Kayıplar hesaba katılmadığı taktirde üç fazlı TM asenkron tahrik makinesi asenkron frekans değiştiriciyi boşta senkron devir sayısı ile tahrik eder. Asenkron frekans değiştirici ve asenkron tahrik makinesinin çift kutup sayıları sıra ile Pfd ve Ptm ile gösterilirse her iki makinenin senkron devir sayıları : nsfd = 60 f1 Ptm Olup ve nstm = 60 f1 Ptm boşta yaklaşık nstm devir sayısı ile çevrilen frekans değiştiricinin dönüş yönüne bağlı olrak sekonder ve primer frekansları arasında : f2 = ( 1+(-) Pfd ) f1 Ptm bağıntısı elde edilir. Buna göre devir sayısı ayarlanan M tahrik motorunun ( veya tahrik motorlarının ) boşta ideal devir sayısı : nm =( 1+(-) Pfd ) nsm Ptm olur. Burada nm tahrik makinesinin f1 frekanslı şebekeye direkt bağlantısındaki - senkron devir sayısıdır.

22 22 TM tahrik makinesi asenkron frekans değiştiriciyi döner alan yönünde çeviriyorsa yukarıdaki denklemlerde parantez içindeki işaret döner alana zıt yönde tahrik ediliyorsa + dır. Asenkron frekans değiştirici tek devreli kd rotorlu bir asenkron motorla tahrik edildiği taktirde üç devir sayısı kademesi, kutup değiştirme sayısı k olan çok devirli bir asenkron motorla tahrik halinde 3k+1 devir sayısı kademesi elde edilir. Örneğin çift kutup sayısı Pfd =1 asenkron frekans değiştirici çift kutup sayısı Ptm =2 olan tek devirli olan bir asenkron makine ile tahrik edilirse elde edilen devir sayısı kademeleri nm / nsm = 0, ,5 olur. Çift kutup sayıları 2 ve 4 olan çift devirli bir asenkron tahrik makinesi kullanıldığında nm / nsm = 0,5 0,75 0, ,125 1,25 2 devir sayısı kademesi elde edilir. Şimdi şekil 10 daki ikinci bağlantı ele alınırsa : Bu ikinci bir bağlantı şeklinde TM tahrik makinesi asenkron frekans değiştiricinin sekonderinden beslenmektedir. Kayıplar hesaba katılmadığı taktirde bu bağlantı şeklinde esas güçler arasında : Pfd + Ptm = P2fd = Pm + Ptm veya Pfd = Pm = P2fd - Ptm Bağıntısı yazılabilir. Diğer taraftan Pfd = 2π nsfd Mfd 60 Pm = 2π nm Mm ve ; 60 P2fd = 2π ( nsfd ntm ) Mfd 60 Ptm = 2π ntm Mfd dir. 60 Bu bağıntılardan nm, tahrik makinesinin devir sayısı olup, şayet tahrik makinesi frekans değiştiriciyi döner alan yönünde çeviriyorsa ntm pozitif, döner alan ters yönde çeviriyorsa negatiftir.

ASENKRON MAKİNELER. Asenkron Motorlara Giriş

ASENKRON MAKİNELER. Asenkron Motorlara Giriş ASENKRON MAKİNELER Asenkron Motorlara Giriş İndüksiyon motor yada asenkron motor (ASM), rotor için gerekli gücü komitatör yada bileziklerden ziyade elektromanyetik indüksiyon yoluyla aktaran AC motor tipidir.

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05 EELP212 DERS 05 Özer ŞENYURT Mayıs 10 1 BĐR FAZLI MOTORLAR Bir fazlı motorların çeşitleri Yardımcı sargılı motorlar Ek kutuplu motorlar Relüktans motorlar Repülsiyon motorlar Üniversal motorlar Özer ŞENYURT

Detaylı

Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır.

Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır. ASENKRON MOTORLARDA HIZ AYARI ve FRENLEME Haftanın Amacı: Asenkron motorun hız ayar ve frenleme tekniklerinin kavranmasıdır. Giriş Bilindiği üzere asenkron motorun rotor hızı, döner alan hızını (n s )

Detaylı

22. ÜNİTE SENKRON MOTORLAR

22. ÜNİTE SENKRON MOTORLAR 22. ÜNİTE SENKRON MOTORLAR KONULAR 1. YAPISI VE ÇALIŞMA PRENSİBİ 2. YOL VERME YÖNTEMLERİ 3. KULLANILDIĞI YERLER Herhangi bir yükü beslemekte olan ve birbirine paralel bağlanan iki altematörden birsinin

Detaylı

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ 1 ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ Üç Fazlı Asenkron Motorlarda Döner Manyetik Alanın Meydana Gelişi Stator sargılarına üç fazlı alternatif gerilim uygulandığında uygulanan gerilimin frekansı ile

Detaylı

3 FAZLI ASENKRON MOTORLAR

3 FAZLI ASENKRON MOTORLAR 3 FAZLI ASENKRON MOTORLAR 3 FAZLI ASENKRON MOTORLAR Üç fazlı AC makinelerde üretilen üç fazlı gerilim, endüstride R-S-T (L1-L2- L3) olarak bilinir. R-S-T gerilimleri, aralarında 120 şer derece faz farkı

Detaylı

Elektromekanik Kumanda Sistemleri / Ders Notları

Elektromekanik Kumanda Sistemleri / Ders Notları İkincisinde ise; stator düşük devir kutup sayısına göre sarılır ve her faz bobinleri 2 gruba bölünerek düşük devirde seri- üçgen olarak bağlanır. Yüksek devirde ise paralel- yıldız olarak bağlanır. Bu

Detaylı

ELEKTRİKSEL EYLEYİCİLER

ELEKTRİKSEL EYLEYİCİLER ELEKTRİKSEL EYLEYİCİLER Eyleyiciler (Aktuatörler) Bir cismi hareket ettiren veya kontrol eden mekanik cihazlara denir. Elektrik motorları ve elektrikli sürücüler Hidrolik sürücüler Pinomatik sürücüler

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

3. Bölüm: Asenkron Motorlar. Doç. Dr. Ersan KABALCI

3. Bölüm: Asenkron Motorlar. Doç. Dr. Ersan KABALCI 3. Bölüm: Asenkron Motorlar Doç. Dr. Ersan KABALCI 1 3.1. Asenkron Makinelere Giriş Düşük ve orta güç aralığında günümüzde en yaygın kullanılan motor tipidir. Yapısal olarak çeşitli çalışma koşullarında

Detaylı

DC Motor ve Parçaları

DC Motor ve Parçaları DC Motor ve Parçaları DC Motor ve Parçaları Doğru akım motorları, doğru akım elektrik enerjisini dairesel mekanik enerjiye dönüştüren elektrik makineleridir. Yapıları DC generatörlere çok benzer. 1.7.1.

Detaylı

1. BİR FAZLI ASENKRON MOTORLAR

1. BİR FAZLI ASENKRON MOTORLAR 1. BİR FAZLI ASENKRON MOTORLAR Bir fazlı yardımcı sargılı motorlar Üniversal motorlar 1.1. Bir fazlı yardımcı sargılı motorlar 1.1.3. Yardımcı Sargıyı Devreden Ayırma Nedenleri Motorun ilk kalkınması anında

Detaylı

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören 04.12.2011 AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören İçerik AA Motorlarının Kumanda Teknikleri Kumanda Elemanları na Yol Verme Uygulama Soruları 25.11.2011 2 http://people.deu.edu.tr/aytac.goren

Detaylı

Anma güçleri 3 kw tan büyük olan motorların üç fazlı şebekelere bağlanabilmeleri için üç fazlı olmaları gerekir.

Anma güçleri 3 kw tan büyük olan motorların üç fazlı şebekelere bağlanabilmeleri için üç fazlı olmaları gerekir. Elektrik motorlarında yol verme işlemi Motorun rotor hızının sıfırdan anma hızına hızına ulaşması için yapılan işlemdir. Durmakta olan motorun stator sargılarına gerilim uygulandığında endüklenen zıt emk

Detaylı

Elektrik Makinaları I SENKRON MAKİNALAR

Elektrik Makinaları I SENKRON MAKİNALAR Elektrik Makinaları I SENKRON MAKİNALAR Dönen Elektrik Makinaları nın önemli bir grubunu oluştururlar. (Üretilen en büyük güç ve gövde büyüklüğüne sahip dönen makinalardır) Generatör (Alternatör) olarak

Detaylı

ÜÇ FAZLI ASENKRON MOTORLAR

ÜÇ FAZLI ASENKRON MOTORLAR 1 ÜÇ FAZLI ASENKRON MOTORLAR Üç Fazlı Asenkron Motorlar Üç fazlı asenkron motorlar, stator sargılarına uygulanan elektrik enerjisini mekanik enerjiye çevirerek milinden yüke aktarırlar. Rotor ise gerekli

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

ASENKRON MOTORLARA YOL VERME

ASENKRON MOTORLARA YOL VERME 1 ASENKRON MOTORLARA YOL VERME Üç Fazlı Asenkron Motorlara Yol Verme Yöntemleri Kısa devre rotorlu asenkron motorlar sekonderi kısa devre edilmiş transformatöre benzediklerinden kalkış anında normal akımlarının

Detaylı

Bilezikli Asenkron Motora Yol Verilmesi

Bilezikli Asenkron Motora Yol Verilmesi Bilezikli Asenkron Motora Yol Verilmesi 1. GİRİŞ Bilezikli asenkron motor, sincap kafesli asenkron motordan farklı olarak, rotor sargıları dışarı çıkarılmış ve kömür fırçaları yardımıyla elektriksel bağlantı

Detaylı

Yumuşak Yol Vericiler - TEORİ

Yumuşak Yol Vericiler - TEORİ Yumuşak Yol Vericiler - TEORİ 1. Gerilimi Düşürerek Yolverme Alternatif akım endüksiyon motorları, şebeke gerilimine direkt olarak bağlandıklarında, yol alma başlangıcında şebekeden Kilitli Rotor Akımı

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

Elektromekanik Kumanda Sistemleri / Ders Notları

Elektromekanik Kumanda Sistemleri / Ders Notları 10. MOTORLARIN FRENLENMESİ Durdurulacak motoru daha kısa sürede durdurmada veya yükün yer çekimi nedeniyle motor devrinin artmasına sebep olduğu durumlarda elektriksel frenleme yapılır. Kumanda devrelerinde

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 02

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 02 DERS 02 Özer ŞENYURT Mart 10 1 DA DĐNAMOSUNUN ÇALIŞMA PRENSĐBĐ Dinamolar elektromanyetik endüksiyon prensibine göre çalışırlar. Buna göre manyetik alan içinde bir iletken manyetik kuvvet çizgilerini keserse

Detaylı

ÖZGÜR Motor & Generatör

ÖZGÜR Motor & Generatör DAHLENDER MOTOR Statora sargılarının UVW ve XYZ uçlarından başka, sargı ortalarından uçlar çıkararak ve bunların bağlantıları yapılarak çift devir sayısı elde edilir. Bu bağlantı yöntemine, Dahlender bağlantı

Detaylı

İÇİNDEKİLER. BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ

İÇİNDEKİLER. BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ İÇİNDEKİLER BÖLÜM-1-ÜÇ FAZLI ASENKRON MOTORLARIN YAPISI VE ÇALIġMA PRENSĠBĠ Asenkron motorların endüstrideki önemi Turmetre ile asenkron motorun devrinin ölçülmesi ve kayma deneyi Senkron hız, Asenkron

Detaylı

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ 1 ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ Buna göre bir iletkende gerilim indüklenebilmesi için; Bir manyetik alan olmalıdır. (Sabit mıknatıs yada elektromıknatıs ile elde edilir.) İletken manyetik alan

Detaylı

9. ÜNİTE KOLLEKTÖRLÜ ALTERNATİF AKIM MOTORLARI

9. ÜNİTE KOLLEKTÖRLÜ ALTERNATİF AKIM MOTORLARI 9. ÜNİTE KOLLEKTÖRLÜ ALTERNATİF AKIM MOTORLARI KONULAR 1. Bir Fazlı Kollektörlü Alternatif Akım Motorları 2. Repülsiyon Motorları 3. Üç Fazlı Kollektörlü Alternatif Akım Motorları 9.1. Bir Fazlı Kollektörlü

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04 İNÖNÜ ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖL. 26 ELEKTRİK MAKİNALARI LABORATUARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 26-04. AMAÇ: Üç-faz sincap kafesli asenkron

Detaylı

SABİT MIKNATISLI MOTORLAR ve SÜRÜCÜLERİ

SABİT MIKNATISLI MOTORLAR ve SÜRÜCÜLERİ SABİT MIKNATISLI MOTORLAR ve SÜRÜCÜLERİ 1-Step Motorlar - Sabit mıknatıslı Step Motorlar 2- Sorvo motorlar - Sabit mıknatıslı Servo motorlar 1- STEP (ADIM) MOTOR NEDİR Açısal konumu adımlar halinde değiştiren,

Detaylı

Elektrik Motorları ve Sürücüleri

Elektrik Motorları ve Sürücüleri Elektrik Motorları ve Sürücüleri Genel Kavramlar Motor sarımı görüntüleri Sağ el kuralı bobine uygulanırsa: 4 parmak akım yönünü Başparmak N kutbunu gösterir N ve S kutbunun oluşumu Manyetik alan yönü

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ MEKATRONİK EĞİTİMİ BÖLÜMÜ BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR

SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ MEKATRONİK EĞİTİMİ BÖLÜMÜ BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR Step (Adım) Motorlar Elektrik enerjisini açısal dönme hareketine çeviren motorlardır. Elektrik motorlarının uygulama alanlarında sürekli hareketin (fırçalı

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

ASENKRON MOTORLARIN YAPISI VE ÖZELLİKLERİ ASENKRO MOTORLARIN YAPISI VE ÇALIŞMA PRENSİBİ

ASENKRON MOTORLARIN YAPISI VE ÖZELLİKLERİ ASENKRO MOTORLARIN YAPISI VE ÇALIŞMA PRENSİBİ ASENKRON MOTORLARIN YAPISI VE ÖZELLİKLERİ ASENKRO MOTORLARIN YAPISI VE ÇALIŞMA PRENSİBİ Giriş Asenkron motorlar, endüstride en fazla kullanılan elektrik makineleridir. Çalışma ilkesi bakımından asenkron

Detaylı

Çok sayıda motor şekilde gibi sadece bir durumunda başlatma kontrol merkezi ile otomatik olarak çalıştırılabilir.

Çok sayıda motor şekilde gibi sadece bir durumunda başlatma kontrol merkezi ile otomatik olarak çalıştırılabilir. 7.1.4 Paket Şalter İle Bu devredeki DG düşük gerilim rölesi düşük gerilime karşı koruma yapar. Yani şebeke gerilimi kesilir ve tekrar gelirse motorun çalışmasına engel olur. 7.2 SIRALI KONTROL Sıralı kontrol,

Detaylı

Elektrik Makinaları I

Elektrik Makinaları I Elektrik Makinaları I Yuvarlak rotorlu makina, fazör diyagramları, şebekeye paralel çalışma,reaktif-aktif güç ayarı,gerilim regülasyonu,motor çalışma Generatör çalışması için indüklenen gerilim E a, uç

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

6. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI

6. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI 6. ÜNİTE DOĞRU AKIM MAKİNALARININ DEVREYE BAĞLANTI ŞEMALARI KONULAR 1. Doğru Akım Jeneratörleri (Dinamolar) 2. Doğru Akım Jeneratörlerinin Paralel Bağlanması 3. Doğru Akım Motorları GİRİŞ Bir iletkende

Detaylı

BİR FAZLI ASENKRON MOTORLARIN ÇEŞİTLERİ, YAPISI VE ÇALIŞMA PRENSİBİ

BİR FAZLI ASENKRON MOTORLARIN ÇEŞİTLERİ, YAPISI VE ÇALIŞMA PRENSİBİ BİR FAZLI ASENKRON MOTORLARIN ÇEŞİTLERİ, YAPISI VE ÇALIŞMA PRENSİBİ Genellikle üç fazlı alternatif akımın bulunmadığı yerlerde veya küçük güçlü olduklarından işyerlerinde bir fazlı kolon hattına bağlanırlar

Detaylı

MA İNAL NA ARI A NDA ELE E K LE TRİK

MA İNAL NA ARI A NDA ELE E K LE TRİK 3.0.01 KALDIRMA MAKİNALARINDA ELEKTRİK DONANIMI VE ELEKTRİK MOTORU SEÇİMİ Günümüzde transport makinalarının bir çoğunda güç sistemi olarak elektrik tahrikli donanımlar kullanılmaktadır. 1 ELEKTRİK TAHRİKİNİN

Detaylı

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ 1. Temel Teori (Şönt Uyarmalı Motor) DC şönt motorlar hızdaki iyi kararlılıkları dolayısıyla yaygın kullanılan motorlardır. Bu motor tipi seri

Detaylı

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR Teorik Bilgi Deney de sabit çıkış gerilimi üretebilen diyotlu doğrultucuları inceledik. Eğer endüstriyel uygulama sabit değil de ayarlanabilir bir gerilime

Detaylı

Elektrik Makinaları I. Yuvarlak rotorlu makinada endüvi (armatür) reaksiyonu, eşdeğer devre,senkron reaktans

Elektrik Makinaları I. Yuvarlak rotorlu makinada endüvi (armatür) reaksiyonu, eşdeğer devre,senkron reaktans Elektrik Makinaları I Yuvarlak rotorlu makinada endüvi (armatür) reaksiyonu, eşdeğer devre,senkron reaktans Stator sargıları açık devre şekilde, rotoru sabit hızla döndürülen bir senkron makinada sinüs

Detaylı

İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ ELEKTRİK MAKİNALARI LABORATUVARI

İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ ELEKTRİK MAKİNALARI LABORATUVARI İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ ELEKTRİK MAKİNALARI LABORATUVARI DENEY 1 BİR FAZLI TRANSFORMATÖR DENEYLERİ DENEY 1 BİR FAZLI TRANSFORMATÖR DENEYLERİ I GİRİŞ

Detaylı

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta E sınıfı DC kıyıcılar; E sınıfı DC kıyıcılar, çift yönlü (4 bölgeli) DC kıyıcılar olarak bilinmekte olup iki adet C veya iki adet D sınıfı DC kıyıcının birleşiminden oluşmuşlardır. Bu tür kıyıcılar, iki

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112 (ELP211) ) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112 (ELP211) ) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ 12. Motor Kontrolü Motorlar, elektrik enerjisini hareket enerjisine çeviren elektromekanik sistemlerdir. Motorlar temel olarak 2 kısımdan oluşur: Stator: Hareketsiz dış gövde kısmı Rotor: Stator içerisinde

Detaylı

ELEKTRİK MAKİNALARI LABORATUVARI FİNAL/BÜTÜNLEME SORULARI İÇİN ÖRNEKLER (Bunlardan farklı sorular da çıkabilir.)

ELEKTRİK MAKİNALARI LABORATUVARI FİNAL/BÜTÜNLEME SORULARI İÇİN ÖRNEKLER (Bunlardan farklı sorular da çıkabilir.) ELEKTRİK MAKİNALARI LABORATUVARI FİNAL/BÜTÜNLEME SORULARI İÇİN ÖRNEKLER (Bunlardan farklı sorular da çıkabilir.) 1) Etiketinde 4,5 kw ve Y 380V 5A 0V 8,7A yazan üç fazlı bir asenkron motorun, fazlar arası

Detaylı

ASENKRON MOTORLARIN KISA TANITIMI. Bu bölümde kısaca motorlar ve kullanılan terimler tanıtılacaktır.

ASENKRON MOTORLARIN KISA TANITIMI. Bu bölümde kısaca motorlar ve kullanılan terimler tanıtılacaktır. ASENKRON MOTORLARIN KISA TANITIMI Bu bölümde kısaca motorlar ve kullanılan terimler tanıtılacaktır. MOTOR PARÇALARI 1. Motor Gövdesi 2. Stator 3. Stator sargısı 4. Mil 5. Aluminyum kafesli rotor 6.

Detaylı

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri MOTOR KORUMA RÖLELERİ Motorlar herhangi bir nedenle normal değerlerinin üzerinde akım çektiğinde sargılarının ve devre elemanlarının zarar görmemesi için en kısa sürede enerjilerinin kesilmesi gerekir.

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

ENDÜKTİF REAKTİF AKIM NEDİR?

ENDÜKTİF REAKTİF AKIM NEDİR? ENDÜKTİF REAKTİF AKIM NEDİR? Elektrodinamik sisteme göre çalışan transformatör, elektrik motorları gibi cihazlar şebekeden mıknatıslanma akımı çekerler. Mıknatıslanma akımı manyetik alan varken şebekeden

Detaylı

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek KAPASİTE FAKTÖRÜ VE ENERJİ TAHMİNİ Kapasite faktörü (KF) bir santralin ne kadar verimli kullanıldığını gösteren bir parametredir. Santralin nominal gücü ile yıllık sağladığı enerji miktarı arasında ilişki

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

2. Bölüm: Rüzgar Enerjisi Dönüşüm Sistemleri ve Yapıları

2. Bölüm: Rüzgar Enerjisi Dönüşüm Sistemleri ve Yapıları 2. Bölüm: Rüzgar Enerjisi Dönüşüm Sistemleri ve Yapıları Doç. Dr. Ersan KABALCI AEK-204 Rüzgar Enerjisi ile Elektrik Üretimi 2.1. Rüzgar Enerjisi Dönüşüm Sistemlerine Giriş Rüzgar enerjisinin elektriksel

Detaylı

Şekil1. Geri besleme eleman türleri

Şekil1. Geri besleme eleman türleri HIZ / KONUM GERİBESLEME ELEMANLARI Geribesleme elemanları bir servo sistemin, hızını, motor milinin bulunduğu konumu ve yükün bulunduğu konumu ölçmek ve belirlemek için kullanılır. Uygulamalarda kullanılan

Detaylı

İNVERTER ENTEGRELİ MOTORLAR

İNVERTER ENTEGRELİ MOTORLAR İNVERTER ENTEGRELİ MOTORLAR ENTEGRE MOTOR ÇÖZÜMLERİ Günümüzde enerji kaynakları hızla tükenirken enerjiye olan talep aynı oranda artmaktadır. Bununla beraber enerji maliyetleri artmakta ve enerjinin optimum

Detaylı

1.6. RÜZGÂR TÜRBİNLERİNDE KULLANILAN ELEKTRİK MAKİNALARI

1.6. RÜZGÂR TÜRBİNLERİNDE KULLANILAN ELEKTRİK MAKİNALARI 1.6. RÜZGÂR TÜRBİNLERİNDE KULLANILAN ELEKTRİK MAKİNALARI Kanatların fonksiyonu, rüzgâr kinetik enerjisini dönen mil gücüne çevirerek generatörün dönmesini ve böylece elektrik gücünü üretmektedir. Akü şarjı

Detaylı

SENKRON MAKİNA. Senkron generatörün rotoru yukarıda ifade edildiği gibi DC-uyartımlı elektromıknatıs olabileceği gibi sabit mıknatıslı da olabilir.

SENKRON MAKİNA. Senkron generatörün rotoru yukarıda ifade edildiği gibi DC-uyartımlı elektromıknatıs olabileceği gibi sabit mıknatıslı da olabilir. SENKRON MAKİNA Senkron makinenin rotor sargıları (alan sargıları) harici bir kaynak vasıtası ile fırça-bilezik sistemi üzerinden DC akım uyartımına tabi tutulur. Rotor sargıları türbin kanatları tarafından

Detaylı

ASENKRON VE SENKRON MAKİNELER

ASENKRON VE SENKRON MAKİNELER 1 ASENKRON VE SENKRON MAKİNELER 2 ASENKRON MAKİNELER Senkron ve Asenkron Kavramı Alternatif akım makinelerinin isimlendirilmesi ürettikleri döner manyetik alanın (stator manyetik alanı), döner mekanik

Detaylı

1.Endüksiyon Motorları

1.Endüksiyon Motorları 1.Endüksiyon Motorları Kaynak: John Storey, How real electric motors work, UNIVERSITY OF NEW SOUTH WALES - SYDNEY AUSTRALIA, http://www.phys.unsw.edu.au/hsc/hsc/electric_motors.html Her modern evde endüksiyon

Detaylı

9. Güç ve Enerji Ölçümü

9. Güç ve Enerji Ölçümü 9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde

Detaylı

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Koruma Röleleri AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Trafolarda meydana gelen arızaların başlıca nedenleri şunlardır: >Transformatör sargılarında aşırı yüklenme

Detaylı

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DERE E KISA DERE KARAKTERİSTİKERİ DENEY 4-04. AMAÇ: Senkron jeneratör olarak çalışan üç faz senkron makinanın

Detaylı

Şekil 8. Bir rüzgâr türbininin maruz kaldığı rüzgâr kanalı boyunca oluşan rüzgâr hızları. Rotor kanatlarının yakaladığı mekanik güç (Türbin gücü)

Şekil 8. Bir rüzgâr türbininin maruz kaldığı rüzgâr kanalı boyunca oluşan rüzgâr hızları. Rotor kanatlarının yakaladığı mekanik güç (Türbin gücü) 1.5. RÜZGÂRDAN YAKALANAN GÜÇ (MEKANİK GÜÇ) Kanatları kesen rüzgârın tamamı rotorda mekaniksel güce dönüşmez. Rüzgârın kinetik enerjisinden elde edilen mekaniksel güç ifadesi için rotor verimi hesaplanmalıdır.

Detaylı

ÜÇ-FAZ SENKRON MAKİNANIN SENKRONİZASYON İŞLEMİ VE MOTOR OLARAK ÇALIŞTIRILMASI DENEY 324-06

ÜÇ-FAZ SENKRON MAKİNANIN SENKRONİZASYON İŞLEMİ VE MOTOR OLARAK ÇALIŞTIRILMASI DENEY 324-06 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON MAKİNANIN SENKRONİZASYON İŞEMİ E MOTOR OARAK ÇAIŞTIRIMASI DENEY 4-06. AMAÇ: Senkron jeneratörün kaynağa paralel senkronizasyonu

Detaylı

ÜÇ FAZLI MOTORLARIN BİR FAZLI OLARAK ÇALIŞTIRILMASI

ÜÇ FAZLI MOTORLARIN BİR FAZLI OLARAK ÇALIŞTIRILMASI 1 ÜÇ FAZLI MOTOLAI Bİ FAZLI OLAAK ÇALIŞTIILMASI Üç fazlı şebekenin bulunmadığı yerlerde veya özel olarak üç fazlı motorlar bir fazlı olarak çalıştırılırlar. Bunun için motorun yıldız ve üçgen bağlı oluşuna

Detaylı

Güç Elektroniği. Yüke verilen enerjinin kontrolü, enerjinin açılması ve kapanması ile ayarlanmasını içerir.

Güç Elektroniği. Yüke verilen enerjinin kontrolü, enerjinin açılması ve kapanması ile ayarlanmasını içerir. Güç Elektroniği GÜÇ ELEKTRONİĞİNİN TANIMI Güç Elektroniği, temel olarak yüke verilen enerjinin kontrol edilmesi ve enerji şekillerinin birbirine dönüştürülmesini inceleyen bilim dalıdır. Güç Elektroniği,

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04 EELP1 DERS 04 Özer ŞENYURT Nian 10 1 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 3 ASENKRON MOTORLAR Endütride en azla kullanılan motorlardır. Doğru akım motorlarına

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112 (ELP211) ) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112 (ELP211) ) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

ELEKTRİK MÜHENDİSLERİ ODASI GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ

ELEKTRİK MÜHENDİSLERİ ODASI GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ ELEKTRİK MÜHENDİSLERİ ODASI EMO ANKARA ŞUBESİ İÇ ANADOLU ENERJİ FORUMU GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ EMO ŞUBE : KIRIKKALE ÜYE : Caner FİLİZ HARMONİK NEDİR? Sinüs formundaki

Detaylı

Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir.

Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir. GÜÇ KAYNAKLARI Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir. Konumuz elektronik olduğu için biz elektronik

Detaylı

5. ÜNİTE ASENKRON MOTORLARI

5. ÜNİTE ASENKRON MOTORLARI 5. ÜNİTE ASENKRON MOTORLARI KONULAR 1. Asenkron Motorların Yapısı 2. Çalışma Prensibi 3. Asenkron Motorlara Yol Verme 4. Asenkron Motorlarda Kayıplar ve Verim 5. Asenkron Motor Çeşitleri GİRİŞ Sanayi tesislerinde

Detaylı

ÜNİTE 5 TEST SORU BANKASI (TEMEL ELEKTRONİK)

ÜNİTE 5 TEST SORU BANKASI (TEMEL ELEKTRONİK) ÜNİTE 5 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRAFO SORULARI Transformatörün üç ana fonksiyonundan aşağıdakilerden hangisi yanlıştır? a) Gerilimi veya akımı düşürmek ya da yükseltmek b) Empedans uygulaştırmak

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken

Detaylı

I-D.C. SERVO MOTORLAR

I-D.C. SERVO MOTORLAR I-D.C. SERVO MOTORLAR D.C servo motorları, genel olarak bir D.C. motoru olup, motora gerekli D.C. aşağıdaki metotlardan elde edilir. 1- Bir elektrik yükselteçten. 2- A.C. akımın doyumlu reaktörden geçirilmesinden.

Detaylı

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN 60641-2 Çalışma Frekansı. 50-60 Hz.

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN 60641-2 Çalışma Frekansı. 50-60 Hz. BİR ve İKİ FAZLI İZOLASYON TRANSFORMATÖR Bir ve İki fazlı olarak üretilen emniyet izolasyon transformatör leri insan sağlığı ile sistem ve cihazlara yüksek güvenliğin istenildiği yerlerde kullanılır. İzolasyon

Detaylı

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI 2. Bölüm: Diyot Uygulamaları Doç. Dr. Ersan KABALCI 1 Yük Eğrisi Yük eğrisi, herhangi bir devrede diyot uygulanan bütün gerilimler (V D ) için muhtemel akım (I D ) durumlarını gösterir. E/R maksimum I

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

Doğru Akım Motorları

Doğru Akım Motorları 08.05.2012 Doğru Akım Motorları Yrd. Doç. Dr. Aytaç Gören İçerik Doğru Akım Elektrik Motorları Doğru Akım Motorlarının Kısımları ve Özellikleri Güç Hesabı Adım (Step) Motorlar Servo Motorlar Lineer Servo

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işığı Takip Eden Kafa 2 Nolu Proje Proje Raporu Hakan Altuntaş 11066137 16.01.2013 İstanbul

Detaylı

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM KONDANSATÖRLER

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM KONDANSATÖRLER BÖLÜM KONDANSATÖRLER AMAÇ: İklimlendirme ve soğutma kompresörlerinde kullanılan kalkış (ilk hareket) ve daimi kondansatörleri seçebilme ve bağlantılarını yapabilme. Kondansatörler 91 BÖLÜM-7 KONDANSATÖRLER

Detaylı

KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ

KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ 1. AMAÇ: Endüstride kullanılan direnç, kapasite ve indüktans tipi konum (yerdeğiştirme) algılama transdüserlerinin temel ilkelerini açıklayıp kapalı döngü denetim

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

RÜZGÂR ENERJİSİNDE KULLANILAN ASENKRON JENERATÖRLER

RÜZGÂR ENERJİSİNDE KULLANILAN ASENKRON JENERATÖRLER RÜZGÂR ENERJİSİNDE KULLANILAN ASENKRON JENERATÖRLER 1 Meltem APAYDIN 2 Arif Kıvanç ÜSTÜN 3 Mehmet KURBAN 4 Ümmühan BAŞARAN FİLİK Anadolu Üniversitesi İki Eylül Kampüsü Mühendislik-Mimarlık Fakültesi 26555,

Detaylı

ELEKTRİK ELEKTRONİK TEKNOLOJİSİ ELEKTRİKLİ EV ALETLERİNDE A.C. MOTORLAR 522EE0094

ELEKTRİK ELEKTRONİK TEKNOLOJİSİ ELEKTRİKLİ EV ALETLERİNDE A.C. MOTORLAR 522EE0094 T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK ELEKTRONİK TEKNOLOJİSİ ELEKTRİKLİ EV ALETLERİNDE A.C. MOTORLAR 522EE0094 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim

Detaylı

7. ÜNİTE SENKRON GENARATÖRLER

7. ÜNİTE SENKRON GENARATÖRLER 7. ÜNİTE SENKRON GENARATÖRLER KONULAR 1. Senkron Generatörler ve genel Yapıları 2. Alternatörlerin Çalışması ve Gerilim Regülasyonu 3. Alternatörlerin Uyartılması 4. Senkron Generatörlerin Paralel Bağlanması

Detaylı

T.C BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK MAKİNALARI DENEY FÖYÜ

T.C BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK MAKİNALARI DENEY FÖYÜ T.C BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK MAKİNALARI DENEY FÖYÜ (Balıkesir-2013) İÇİNDEKİLER Deney No 1: YABANCI UYARTIMLI D.C ŞÖNT DİNAMONUN

Detaylı

Bir fazlı AA Kıyıcılar / 8. Hafta

Bir fazlı AA Kıyıcılar / 8. Hafta AC-AC Dönüştürücüler AC kıyıcılar (AC-AC dönüştürücüler), şebekeden aldıkları sabit genlik ve frekanslı AC gerilimi isleyerek çıkışına yine AC olarak veren güç elektroniği devreleridir. Bu devreleri genel

Detaylı

ELEKTRİK ELEKTRONİK TEKNOLOJİSİ

ELEKTRİK ELEKTRONİK TEKNOLOJİSİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK ELEKTRONİK TEKNOLOJİSİ DOĞRU AKIM MOTORLARI 522EE0123 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

Senkron Motorun Kalkınma Durumu

Senkron Motorun Kalkınma Durumu 1 SENKRON MOTORLAR Senkron Motorların Çalışma Prensipleri Senkron makine generatör olarak çalıştırılabildiği gibi, eğer kutuplar bir DC kaynaktan beslenip, endüvi (stator) sargılarına da alternatif gerilim

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 293 3. BASKI

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 293 3. BASKI DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 293 3. BASKI ÖNSÖZ Bu kitap, Dokuz Eylül Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümünde lisans eğitimi ders programında verilen

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİKFAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİKFAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİKFAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI KONTROL KUMANDA ELEMANLARI DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ

Detaylı

TEK FAZLI DOĞRULTUCULAR

TEK FAZLI DOĞRULTUCULAR ELEKTRĠK-ELEKTRONĠK ÜHENDĠSLĠĞĠ GÜÇ ELEKTRONĠĞĠ LABORATUAR TEK FAZL DOĞRULTUCULAR Teorik Bilgi Pek çok güç elektroniği uygulamasında, giriş gücü şebekeden alınan 50-60 Hz lik AC güç şeklindedir ve uygulamada

Detaylı

RÜZGAR ENERJİSİ. Anahtar sözcükler: Rüzgar Enerjisi, Rüzgar Türbini, Elektriksel Dönüşüm Sistemleri, Jeneratör.

RÜZGAR ENERJİSİ. Anahtar sözcükler: Rüzgar Enerjisi, Rüzgar Türbini, Elektriksel Dönüşüm Sistemleri, Jeneratör. RÜZGAR ENERJİSİ Küçük güçlü sistemlerde eskiden çok kullanılan doğru akım (DA) jeneratörü, günümüzde yerini genellikle senkron veya asenkron jeneratörlere bırakmıştır. Bu jeneratörler, konverterler yardımıyla

Detaylı