EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan"

Transkript

1 EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD 1

2 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin doğruluğunu ölçmek Yeni bir yöntem geliştirmek Müdahalelerin etkinliğini ölçmek 2

3 Bilimsel Yöntem Gözlem Hipotez Gerçekleme Genelleme 3

4 Veri Kaynakları Rutin kayıtlar Standart formlar Laboratuvar kayıtları Poliklinik kayıtları Taramalar Dolaylı kaynaklar Epidemiyolojik araştırmalar 4

5 Sorular.. Sorular Kaç ameliyat yapayım? Hangi dosyaları seçeyim? Kaç fare kesmeliyim? Kontrol grubumda sayı ne olmalı? Kimleri kapsam dışı bırakayım? Hepsine USG yapmalımıyım?.. 5

6 Veri Toplama Doğruluk Zaman Maliyet İş Gücü 6

7 Veri Toplama Yöntemleri Tam Sayım Örnekleme 7

8 Tam sayım Kitledeki deneklerin tümünden veri toplama yöntemi Yararları Verinin tam doğru olması Zorlukları Maliyet fazlalığı Süre uzunluğu İşgücü bulma zorluğu Derleme, değerlendirme zorluğu ve uzunluğu 8

9 Örnekleme ve Örneklem Örnekleme; Örneklem almak için yapılan işlemler Evrende bulunabileceği düşünülen bazı özellikleri incelemek için evrenden alınan az sayıda kişi, madde, materyal v.b. topluluğu örneklem Bir tüp kan almak Çorbadan bir kaşık almak 9

10 Örnekleme Kitleden seçilmiş bir gruptan veri toplama yöntemi Zorlukları Tam ve doğru bilgiye ulaşma zorluğu Yararları Maliyeti azaltması Süre kısalığı Fazla işgücü gerektirmemesi Derleme, değerlendirme kolaylığı 10

11 Örneklemenin önemi Örneklemin temsil yeteneği örneklem büyüklüğü örneklem evrendeki dağılıma çeşit ve oran yönünden benzerliği olasılıklı örnekleme yöntemi taraf tutmama Örneklem hatası örneklem büyüklüğü arttıkça uygun örnekleme yöntemi ile 11

12 Örneklemden Yararlanma Koşulları Uygun Örneklem Büyüklüğü Uygun Örnekleme Yöntemi 12

13 Örneklem büyüklüğü Örneklem birim sayısı arttıkça örneklemin evreni temsil gücü artar İncelenecek olayın toplumda görülme sıklığı, ortalaması, sapma ve yanılma düzeyi ile formülle hesaplanır Her zaman en çok birey/denek mi alınmalı??? 13

14 Uygun Örnekleme Yöntemi Örneklemede temel amaç seçilen örneklemin kitleyi temsil edebilecek özellikte olması Örneklemin kitleyi tümüyle temsil etmesi beklenir! Ancak bu gerekli değildir. Örneklemin, kitleyi ulaşmak istediğimiz bilgide farklılık yaratabilecek etkenler yönünden temsil edebilecek özellikte olması yeterlidir! 14

15 Uygun Örnekleme Yöntemi Örneklemede Rasgelelik Örneklemede Rasgelelik, kitledeki her deneğe örnekleme seçilme yönünden eşit şans verilmesidir. Bu şansın eşitlenememesi durumunda; örneklemeden elde edilecek sonuçlardaki hatalar rasgele olmayacağı için sonuçlar yanlı olur. 15

16 Nasıl seçmeli? Sabah gelenler-----öğleden sonra gelenler Pazartesi gelenler-----salı gelenler A kliniğine başvuranlar-----b kliniğine başvuranlar Yazı/tura.. 16

17 Randomize Çalışma Tasarımı Ulaşılabilecek hasta sayısı Gerçekte incelenen hasta sayısı Dahil edilen hasta sayısı Randomize edilen hasta sayısı Tedavi Bulgu İstatistik analiz Sonuç Kontrol Bulgu 17

18 Örnekleme Yöntemleri Olasılıksız Örnekleme Olasılıklı Örnekeleme Kota Örneklemesi Kartopu Örneklemesi B. Rasgele Örnekleme Tabakalı Örnekleme Küme Örneklemesi 18

19 Olasılıklı Örnekleme Yöntemleri Olasılıklı örnekleme yöntemlerinde örnekleme seçilecek örnek birimlerine eşit şans verilir Örnek birimlerine eşit şans verilerek kitledeki değişkenliğin örneklemde korunması sağlanır Böylece örneklemin kitleyi temsil yeteneği artırılmış olur Kitledeki her örnek birimine örnekleme seçilme yönünden eşit şans verebilmek için kitledeki birimler arasından rasgele seçim yapılır Rasgeleliği sağlayabilmek için rasgele sayılar tablosu yada rasgele sayı üreten bilgisayar yazılımlarından yararlanılır 19

20 Basit rasgele örnekleme yöntemi Evrendeki birimler listelenir, numaralanır, rasgele sayılar tablosu kullanılarak seçilir Bireylerin eşit olasılıkla seçilme şansı vardır Evren çok büyük değilse kolay olur, evren büyükse listeleme ve seçim zordur İncelenen özellik evrendeki bireylerin kimi özelliklerine göre farklılık gösteriyorsa kullanılmamalı Bireyler geniş alanda dağılmış oturuyorlarsa, tek tek bulmak zordur 20

21 Tabakalı rasgele örnekleme yöntemi İncelenen özellik deneklerin herhangi bir özelliğine göre değişiklik gösteriyorsa kullanılır Tabakalardaki birimler kendi içinde homojen olmalı, kendi aralarında heterojen olmalıdır Tabakalardan orantılı seçim yapılması analizleri kolaylaştırır 21

22 Tabakalı rasgele örnekleme Yararları Eğer tabakalama iyi yapılmış ise daha doğru bilgi elde etme olanağı sağlar Her tabakadan alınan örneklemin kendi tabakasını temsil yeteneği olduğundan her tabaka için ayrı sonuç elde etme olanağı sağlar Eksikleri Eğer tabaka örneklem büyüklükleri küçük ise bilginin doğruluğu azalır. 22

23 Tabakalı rasgele örnekleme Örneklem Büyüklüğü Tabakalı örneklemede örneklem büyüklüğü, her tabaka için ayrı değil, tüm kitle için bilinen yöntemlerle hesaplanır Hesaplanan örneklem büyüklüğü, tabaka büyüklüklerine göre orantılı olarak dağıtılır Her tabaka için hesaplanan sayıda örnek, bilinen örnek seçim yöntemlerinden yararlanarak seçilir 23

24 Tabakalı örnekleme Tabaka Ağırlığı ve Orantılı Dağıtım Tabaka Denek Sayısı Tabaka Ağırlığı Tabaka Örneklem Büyüklüğü 1 N 1 2 N 2 w 1 N 1 / N w 2 N 2 / N n 1 w1n w N n k Toplam N k N w k N k / N n k w k N 24

25 Küme örnekleme yöntemi Küme örneklemesi özellikle saha araştırmalarında deneklere (kişilere) ulaşmanın zor olduğu durumlarda kullanılır Bu durumda sınıflar, köyler, sokaklar gibi deneklerin bir arada bulunduğu birimler küme olarak belirlenir Kümeler küçük küme sayısı fazla olursa daha iyi Küme büyüklükleri aynı olmadığında ağırlıklandırılarak istatistik yapılmalıdır 25

26 Sistematik örnekleme yöntemi Evren büyükse Çok sayıda birim içeren kayıt sistemi incelenecekse Birim sayısı fazla olduğunda 26

27 Hipotez ve Güç Farksızlık hipotezi =Sıfır hipotezi=geçersizlik hipotezi: Asıl test edilmek istenen hipotezdir Sıfır hipotezi olumsuz olarak kurulur Örn: Fark yoktur Alternatif hipotez: Sıfır hipotezinin tersidir Hipotezin tek yönlü ya da çift yönlü olduğunu belirlenir Örn: Fark vardır 27 27

28 Yanılma Düzeyi Tip I hata: Doğru bir sıfır hipotezinin yanlışlıkla reddedilme olasılığı (yanılma olasılığı: alfa, ) Tip I hatayı azaltmak için alfayı küçük seçeriz Alfayı araştırıcı seçer; 0.05, 0.01 olabilir Tip II hata: Yanlış bir sıfır hipotezinin reddedilmemesi (beta, ) 0.05, 0.10, 0.20 olabilir 28 28

29 İki tür yanlış karar vardır: Test sonucu verilen karar (Örnekten) Gerçek durum Ho Ha Ho + (1-α) - (β) Ha - (α) + (1-β) Tip I Hata (α)= Doğru olan Ho hipotezini yanlışlıkla reddetme olasılığı (Yanlış pozitif karar) Tip II Hata (β) = Yanlış olan Ho hipotezini yanlışlıkla reddetmeme olasılığı (Yanlış negatif karar) Güç (1-β)= Yanlış olan Ho hipotezini doğru olarak reddetme olasılığı (Doğru pozitif karar) 29 29

30 Örnek Büyüklüğü ve Güç hesaplamak için web siteleri ze+calculator tcalculators/statisticalpowercalculators.aspx

31 Temsiliyeti sağla(ya)mazsak neler olur? İsteyerek / İstemeyerek taraf tutmuş oluruz (BİAS) Çalışmamız doğru / güvenilir olmaz Çalışmamız yayınlanmaz Çalışmamız yayınlansa da atıf almaz Çabalarımız boşa gider! 31 31

32 EVREN, ÖRNEK, TEMSİLİYET Teşekkürler Prof. Dr Mustafa Necmi İlhan 32

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

Hipotez belirleme kuramsal olarak Galileo tarafından ortaya atılan ve daha sonra da bilim felsefecileri ve bilim insanları tarafından desteklenip

Hipotez belirleme kuramsal olarak Galileo tarafından ortaya atılan ve daha sonra da bilim felsefecileri ve bilim insanları tarafından desteklenip 2.HAFTA Hipotez belirleme kuramsal olarak Galileo tarafından ortaya atılan ve daha sonra da bilim felsefecileri ve bilim insanları tarafından desteklenip özümsenen Bilimsel Yöntem yaklaşımını temel almaktadır.

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerini tahmin edebilmektir.

Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerini tahmin edebilmektir. Pof.Dr.Besti Üstün Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerini tahmin edebilmektir. 2 Örneklemenin temel kuralı yansızlıktır. Yansızlık, belli bir örneklem büyüklüğüne ulaşmada,

Detaylı

Araştırmada Evren ve Örnekleme

Araştırmada Evren ve Örnekleme 6. Bölüm Araştırmada Evren ve Örnekleme 1 İçerik Örnekleme Teorisinin Temel Kavramları Örnekleme Yapmayı Gerekli Kılan Nedenler Örnekleme Süreci Örnekleme Yöntemleri 2 1 Giriş Araştırma sonuçlarının geçerli,

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖRNEKLEME Örneklem, belli kurallara göre belli bir evrenden seçilmiş ve seçildiği evreni temsil yeterliği kabul edilen küçük kümedir. Araştırmalar çoğunlukla seçilen örneklem üzerinde

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

BİYOİSTATİSTİK ÖRNEKLEME

BİYOİSTATİSTİK ÖRNEKLEME BİYOİSTATİSTİK ÖRNEKLEME B Doç. Dr. Mahmut AKBOLAT *Bir araştırmada, üzerinde çalışılan konu için gerekli olan bilginin elde edilebilmesi için konu ile ilgili bütün verilerin tek tek araştırılmasına tamsayım

Detaylı

ÖRNEKLEME. Araş. Gör. Dr. S. Utku UZUN Pamukkale Üniversitesi Tıp Fakültesi Halk Sağlığı Anabilim Dalı

ÖRNEKLEME. Araş. Gör. Dr. S. Utku UZUN Pamukkale Üniversitesi Tıp Fakültesi Halk Sağlığı Anabilim Dalı ÖRNEKLEME Araş. Gör. Dr. S. Utku UZUN Pamukkale Üniversitesi Tıp Fakültesi Halk Sağlığı Anabilim Dalı Eskiden ABD de Literary Digest dergisi telefon rehberi ve otomobil kayıtlarından yararlanarak 1924,

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

İSTATİSTİK II (İST202U)

İSTATİSTİK II (İST202U) İSTATİSTİK II (İST202U) KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ.

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Şu ana kadar. İşlemleri üzerinde konuştuk.

Şu ana kadar. İşlemleri üzerinde konuştuk. ÖRNEKLEME 4. Bölüm Şu ana kadar 1- Araştırma sorusu belirleme 2-Bilimsel Araştırmalarda Etik 3- Kavram -> kavramsallaştırma -> Operasyonalizasyon 4- Bağımlı/Bağımsız ve Kontrol Değişkenleri 5. Geçerlilik

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA 1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA Araştırmacı kişi ya da kurumlar birinci el veri elde etye yönelik araştırma yapmaya karar verdiklerinde çoğu zaman araştırma yapacağı grubun tüm

Detaylı

ÖRNEKLEM BÜYÜKLÜĞÜ GÜÇ ANALİZİ

ÖRNEKLEM BÜYÜKLÜĞÜ GÜÇ ANALİZİ ÖRNEKLEM BÜYÜKLÜĞÜ GÜÇ ANALİZİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr Uygun Örneklem Büyüklüğü Toplum Ortalamasının Kestirilmesinde

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

PAZARLAMA ARAŞTIRMA SÜRECİ

PAZARLAMA ARAŞTIRMA SÜRECİ PAZARLAMA ARAŞTIRMA SÜRECİ Pazarlama araştırması yapılırken belirli bir sıra izlenir. Araştırmada her aşama, birbirinden bağımsız olmayıp biri diğeri ile ilişkilidir. Araştırma sürecinde başlıca aşağıdaki

Detaylı

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır.

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır. ÖRNEKLEME YÖNTEMLERİ 05.03.2013 Salı Populasyonu tanımak, Populasyonu temsil gücüne sahip bir alt grubu seçmek. n hacimli örnekten; elde edilen sonuçlarla; n den N e gitmektir. Populasyona genellemektir.

Detaylı

HANGİ MAKALE HANGİ DERGİYE?

HANGİ MAKALE HANGİ DERGİYE? KOCAELİ ÜNİVERSİTESİ-SENATURK MAKALE HAZIRLAMA VE SUNUM KURSU 11 Ocak 2013 HANGİ MAKALE HANGİ DERGİYE? Bahadır M. GÜLLÜOĞLU Marmara Üniversitesi Tıp Fakültesi Genel Cerrahi Anabilim Dalı ÇALIŞMA İÇİN DOĞRU

Detaylı

Önemlilik Testleri. Prof.Dr.İhsan HALİFEOĞLU

Önemlilik Testleri. Prof.Dr.İhsan HALİFEOĞLU Önemlilik Testleri Prof.Dr.İhsan HALİFEOĞLU ÖNEMLİLİK TESTLERİ Önemlilik testleri elde edilen değerlerin ya da varılan sonuçların istatistiksel olarak önem taşıyıp taşımadığını ya da anlamlı olup olmadığını

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

Teori ve Uygulama. Bugünün iş dünyasında verilerden (sayılardan) kaçış yok.

Teori ve Uygulama. Bugünün iş dünyasında verilerden (sayılardan) kaçış yok. 1 İstatistik Teori ve Uygulama Başlarken Prof.Dr. Ünal H. ÖZDEN 1 Bugünün iş dünyasında verilerden (sayılardan) kaçış yok. Bugünün dijital dünyasında ileri çalışmalar için herhangi bir olguya ait giderek

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

5. HAFTA PFS 107 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME. Yrd. Doç Dr. Fatma Betül Kurnaz. betulkurnaz@karabuk.edu.tr KBUZEM. Karabük Üniversitesi

5. HAFTA PFS 107 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME. Yrd. Doç Dr. Fatma Betül Kurnaz. betulkurnaz@karabuk.edu.tr KBUZEM. Karabük Üniversitesi 5. HAFTA PFS 107 EĞİTİMDE Yrd. Doç Dr. Fatma Betül Kurnaz betulkurnaz@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler Standart Hata... Hata! Yer işareti tanımlanmamış.

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı 1 BÖLÜM 11 Z DAĞILIMI Z dağılımı; ortalaması µ=0 ve standart sapması σ=1 olan Z puanlarının evren dağılımı olarak tanımlanabilmektedir. Z dağılımı olasılıklı bir normal dağılımdır. Yani Z dağılımının genel

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Temel Biyoistatistik Kursu-I

Temel Biyoistatistik Kursu-I Düzenleyen: Çanakkale Onsekiz Mart Üniversitesi Tıp Fakültesi Biyoistatistik ve Tıp Bilişimi AD, Sürekli Eğitim Merkezi Temel Biyoistatistik Kursu-I ÇANAKKALE, 17-20 Şubat 2011 Bilgi ve Kayıt : sem.comu.edu.tr

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Güvenlik Stoğu Nasıl Hesaplanır? (Safety Stock)

Güvenlik Stoğu Nasıl Hesaplanır? (Safety Stock) >>> Güvenlik Stoğu Nasıl Hesaplanır Güvenlik Stoğu Nasıl Hesaplanır? (Safety Stock) Cengiz Pak, 2010 Avcının Silahı Kullanılabilir Bilgi >>> Güvenlik Stoğu Nasıl Hesaplanır >>> Güvenlik Stoğu Nasıl Hesaplanır

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Oynarken nelere ihtiyacınız olacak? Kayıt oldunuz mu? Bir takımınız var mı? Öyleyse şimdi oyuna başlama zamanı! Adımları takip et ve Aşama 1

Detaylı

BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 ÖRNEK SENARYO 15 yıllık hizmet

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ

DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ %100 web tabanlı İNTERQC, programı ile laboratuarlarınızın kalite kontrollerini istediğiniz yerden ve istediğiniz

Detaylı

KANITA DAYALI TIP Yrd. Doç. Dr. Yasemin ÇAYIR Atatürk Üniversitesi Tıp Fakültesi Aile Hekimliği AD

KANITA DAYALI TIP Yrd. Doç. Dr. Yasemin ÇAYIR Atatürk Üniversitesi Tıp Fakültesi Aile Hekimliği AD KANITA DAYALI TIP Yrd. Doç. Dr. Yasemin ÇAYIR Atatürk Üniversitesi Tıp Fakültesi Aile Hekimliği AD 1 Soğuk su içmeyi engelleyerek soğuk algınlığını önleyebilir miyiz? Vitamin C vererek gribi önleyebilir

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

KULLANICI TARAFINDAN TESTİN DOĞRULANMASI (VERİFİKASYON) Dr. Murat Öktem Düzen Laboratuvarlar Grubu

KULLANICI TARAFINDAN TESTİN DOĞRULANMASI (VERİFİKASYON) Dr. Murat Öktem Düzen Laboratuvarlar Grubu KULLANICI TARAFINDAN TESTİN DOĞRULANMASI (VERİFİKASYON) Dr. Murat Öktem Düzen Laboratuvarlar Grubu Kaynaklar CLSI EP5-A2: Evaluation of Precision Performance of Quantitative Measurement Methods (2004)

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

06.01.2014 PAZARTESİ İZMİR GÜNDEMİ

06.01.2014 PAZARTESİ İZMİR GÜNDEMİ 06.01.2014 PAZARTESİ İZMİR GÜNDEMİ Türkiye de üçüncü merkez olarak İzmir de Tepecik Atatürk ve Eğitim Araştırma Hastanesinde kurulması için çalışmaları yürütülen kemik iliği bankası için

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

İnsan Bilgisayar Etkileşimi (IBE) nedir? İnsan Bilgisayar Etkileşimi Araştırma ve Uygulama Labaratuvarı

İnsan Bilgisayar Etkileşimi (IBE) nedir? İnsan Bilgisayar Etkileşimi Araştırma ve Uygulama Labaratuvarı İçindekiler Giriş İnsan Bilgisayar Etkileşimi (IBE) nedir? Kullanılabilirlik nedir? Kullanılabilirlik Testi nedir? İnsan Bilgisayar Etkileşimi Araştırma ve Uygulama Labaratuvarı İnsan Bilgisayar Etkileşimi

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

YAZILIM MODELLEME VE TASARIM

YAZILIM MODELLEME VE TASARIM YAZILIM MODELLEME VE TASARIM «UML Kullanım Diyagramları» Özer Çelik Matematik-Bilgisayar Bölümü Kullanım senaryoları sadece düz metin (text) olarak değil, istendiğinde metin yerine UML diyagramı olarak

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

1D 14.50 110 ----- 2D 14.20 140 290 3D 15.10 320

1D 14.50 110 ----- 2D 14.20 140 290 3D 15.10 320 ORMAN YOLLARININ ARAZİYE APLİKASYONU Planı yapılan yolların kullanılabilmesi için araziye aplike edilmesi gerekmektedir. Araziye gidildiği zaman, plan üzerinde gösterilen yolun başlangıç ve bitiş noktaları

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Yöntem Seçiminde Göz Önünde Bulundurulacak Özellikler 1 *Yönteme ilişkin

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

ÖRNEKLEM SEÇİMİ VE HESAPLAMASI. Giriş

ÖRNEKLEM SEÇİMİ VE HESAPLAMASI. Giriş ÖRNEKLEM SEÇİMİ VE HESAPLAMASI Giriş Bilimsel araştırmalarda doğru bilgi sahibi olmak ve doğru karar vermek esastır. Bu yüzden doğru bilgilere ulaşmak ve elde edilen bilgileri genelleştirmek ihtiyacı vardır

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

Dövizli Kullanım LOGO KASIM 2011

Dövizli Kullanım LOGO KASIM 2011 Dövizli Kullanım LOGO KASIM 2011 İçindekiler Dövizli Kullanım... 3 Kavramlar... 3 Döviz Türleri... 4 Satır bilgilerinin silinmesi... 4 Tüm tablonun silinmesi... 4 Sistemde yer alan ilk tanımlara ulaşım...

Detaylı

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI KALİTE KONTROL PROSEDÜRÜ PR17/KYB

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI KALİTE KONTROL PROSEDÜRÜ PR17/KYB TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI PR17/KYB Sayfa No: 1/6 1. AMAÇ ve KAPSAM Bu prosedürün amacı, Daire Başkanlığında deney hizmetleri

Detaylı

DESTEKTEN YOKSUN KALMA TAZMİNAT HESAPLAMALARINDA AKTÜARYEL YÖNTEM VE UYGULAMADA YAŞANAN SORUNLAR Aktüer Belkıs ERŞEN 14 Mart 2009 (Panel)

DESTEKTEN YOKSUN KALMA TAZMİNAT HESAPLAMALARINDA AKTÜARYEL YÖNTEM VE UYGULAMADA YAŞANAN SORUNLAR Aktüer Belkıs ERŞEN 14 Mart 2009 (Panel) DESTEKTEN YOKSUN KALMA TAZMİNAT HESAPLAMALARINDA AKTÜARYEL YÖNTEM VE UYGULAMADA YAŞANAN SORUNLAR Aktüer Belkıs ERŞEN 14 Mart 2009 (Panel) Aktüerler Derneği Lynne Rosansky (uluslararası iş ilişkilerinde

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.C. UUAĞ ÜNİVERSİTESİ MÜHENİSİK MİMARIK FAKÜTESİ EEKTRONİK MÜHENİSİĞİ BÖÜMÜ EN3304 EEKTRONİK EVREER ABORATUVARI II ENEY : REGÜE EVREERİ (GERİİM REGÜATÖRERİ) ENEY GRUBU :... ENEYİ YAPANAR :......... RAPORU

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

DENEYSEL ARAŞTIRMALAR MÜDAHALE ARAŞTIRMALARI Dr. Meltem Şengelen HÜTF Halk Sağlığı AD 12 Şubat 2015 Epidemiyoloji Sağlıkla ilgili tüm sorunların ve hastalıkların kişi-yerzaman özelliklerine göre tanımlanması,

Detaylı

İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları

İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları 1. TANIM ve AMAÇ 1.1. Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme

Detaylı

YTÜ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ YAPI FİZİĞİ LİSANSÜSTÜ PROGRAMI SEMİNER DERSİ

YTÜ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ YAPI FİZİĞİ LİSANSÜSTÜ PROGRAMI SEMİNER DERSİ YTÜ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ YAPI FİZİĞİ LİSANSÜSTÜ PROGRAMI SEMİNER DERSİ Bilimsel araştırma; yeni bilgi, yöntem veya ürünleri elde etmeye yönelik belirli bir amacı, aşamaları ve yöntemi içeren

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı