Beyin Haritalama Görüntülerden Ağlara!

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Beyin Haritalama Görüntülerden Ağlara!"

Transkript

1 Beyin Haritalama Görüntülerden Ağlara Doç. Dr. Burak Acar Boğaziçi Üniversitesi, Elektrik-Elektronik Müh. Bölümü, VAVlab, Bebek, İstanbul

2 Sunum Planı# Ağ yapıları Bir Ağ Olarak Beyin Yapısal Beyin Ağları - snet Difüzyon MRI İşleme snet Düğümleri snet Bağları İşlevsel Beyin Ağları fnet Fonksiyonel MRI İşleme fnet Düğümleri fnet Bağları B-AĞ (BRAINet) Projesi Sonuç

3 Ağ Yapıları# Ağ bir düğümler kümesi ({D n }) ve düğüm çiftleri arasında tanımlı bağlar kümesinden ({L mn }) oluşan matematiksel bir yapıdır. Düğümler soyut durumları (ör. bir tümör tanımında kötü huylu olmak ) veya fiziksel yapıları (ör. posterior cingulate) ifade edebilirler. Bağlar düğümler arası nedensellik ilişkilerini (yönlü bağlar) veya ilintililiği/ korelasyonu (yönsüz bağlar) ifade eder. Bağlara sözkonusu ilişkiye atfedilen değerler (ağırlıklar) atanabilir veya 0/1 boolean değerler verilebilir. Ağ topolojisini verili düğüm kümesi ve ağırlıkları sıfırdan farklı bağlar kümesi belirler.

4 Bir Ağ Olarak Beyin# Ağ düğümleri: Modal / İşlevsel Anatomik / Yapısal Bağ değerleri: İşlevsel fnet Yapısal snet Bağ matrisi: Ağ karakterizasonu: Küçük Dünya Özelliği: Yüksek kümelenme + Kısa bağlantılar Complex brain networks: graph theoretical analysis of structural and functional systems Ed Bullmore & Olaf Sporns. Nature Reviews Neuroscience 10, (March 2009) Blink

5 snet YAPISAL AĞLAR#

6 Yapısal Beyin Ağları snet Difüzyon MRI İşleme# Difüzyon Tensörü (DTI) : Q-Ball Görüntüleme (QBI): DTI ikinci derece bir yakınsama olup, yerel yapının basitliği/varlığı (FA) ile basit tek fiber yönlü yapılarda fiber yönünü (e 1 ) ifade edebilir. QBI daha yüksek dereceli bir model olup, kesişen/öpüşen fiberler hakkında da bilgi verir. Tuch, Magnetic Resonance in Medicine. Volume 52, Issue 6, pages , December 2004 P. Mukherjee et al. AJNR April : Tristán-Vega A., et al. Neuroimage Aug 15;47(2):

7 Yapısal Beyin Ağları snet snet Düğümleri# Atlas Çakıştırma Traktografi Standart Anatomik Model: MNI152 ( Montreal Neurological Institute ) Hagmann, P., et al. PLoS Biol. 6, e159, 2008 https://braintalks.wordpress.com/2011/12/04/10-maps-of-the-mind/ Youtube

8 Yapısal Beyin Ağları snet snet Bağları# snet bağları iki düğüm arası fiber yoğunluğu/sayısı ile belirlenir. Görüntülenen fiberler değil fiber demetleri olduğundan, fiber sayısının fiziksel karşılığı bulunmamaktadır. Bütün yöntemler FA, açı, seeding gibi parametre seçimlerine duyarlıdır Yerel# Global# Düşük SNR duyarlılığı Uzun fiberlerde artış Yüksek yoğunluk ve efficiency Zayıf küçük dünya özelliği Yüksek işlem yükü Tek Yönlü Model (ör. DTI)# Çok Yönlü Model (ör. QBI)# Deterministik# Olasılıksal# Deterministik# Olasılıksal# Streamline, TEND Graph Traktog., ConTrack PiCO, PROBTRACK Eşik belirlemedeki belirsizlikler Düşen olasılık eşiği ile Uzun fiber sayısında artış Yüksek yoğunluk ve efficiency Zayıf küçük dünya özelliği ODF / CSD streamline CSD multi-graph ifod, PROBTRACKX Artan SNR duyarlılığı Kesişen/Öpüşen fiberlerin ayrılabilmesi Uzun fiber sayısında artış, ör. inter-hemisphere bağ artışı Yüksek yoğunluk & efficiency Zayıf küçük-dünya özelliği Bastiani M, et al. Neuroimage (2012 Jun 12) 62: Yoldemir B., et al. IEEE TMI, October 2012, Vol , pp

9 Yapısal Beyin Ağları snet snet Bağları Deterministik Yöntemler# Streamline Traktografi r(s + ds) = r(s) + h.f(r,dmri) f(s) f(s) f(s) DTI r(s): Fiber ODF/MAP-MRI

10 fnet İŞLEVSEL AĞLAR#

11 İşlevsel Beyin Ağları fnet Fonksiyonel MRI İşleme - I# Realignment Slice Timing Realignment : fmri-fmri Çakıştırma Transformasyon: 3-6DoF Rigid - Intra-subj., 9-12DoF Affine - Eddy-Cur. Cor., 10 6 DoF - Inter-subj. Kriter: LS & NC Intra-modal, CR & MI & NMI & BBR Inter-modal İnterpolasyon: Nearest Neighbour, Trilinear, Spline, Sinc, k-space Slice Timing : Kesit Zamanlama Sinc interpolasyonu Tek bir fmri hacminde axial kesitler arası zaman farkı bulunur. Kesit Zaman Her bir fmri hacmi içindeki bütün kesitleri eşzamanlı kılmak üzere yapılan interpolasyondur. Power JD, et al. Neuroimage (2015 Jan 15) 105: ; Strother S.C.IEEE EMB Magazine (2006 Jan 1) 25: ; ; FSL Lecture Slides

12 İşlevsel Beyin Ağları fnet Fonksiyonel MRI İşleme - II# Censoring Co-registration Censoring : fmri sansürleme Spatial Smoothing (LPF) Düşük kaliteli (ör. yüksek DVARS, FD) fmri çekimlerinin sansürlenmesi ve yerlerinin zaman ekseninde interpolasyonu (doldurulması) Co-Registration : fmri -T1(+ Parselasyon) Çakıştırma 6 DoF transformasyon + MI/NMI kriter + Trilinear interpolasyon + Field-map unwarp Filtering: Uzam LPF Uzam LPF (Alçak Geçiren Filtre): Gauss (1-2 voksel FWHM), Wavelet filtreleme, Power JD, et al. Neuroimage (2015 Jan 15) 105: ; Strother S.C.IEEE EMB Magazine (2006 Jan 1) 25: 27-41

13 İşlevsel Beyin Ağları fnet fnet Bağları & Düğümleri (Rest fmri)# RegressionBPF Factorization: ICA Correlation Parcellation RegressionBPF Correlation Regression + BPF: İstenmeyen sinyallerin (nuisance) giderilmesi Hareket (Realignment) modellerine dayalı regresyon beklenen sonucu vermemektedir. fmri sinyallerine dayalı regresyon: ANATICOR: Gri madde voksellerinin komşuluğundaki beyaz maddeden yerel nuisance sinyalleri modellenip çıkarılmaktadır. CompCor: Beyaz madde, CSF gibi gri madde dışı bölgelerin global PCA modeli kullanılarak global nuisance sinyalleri modellenip çıkarılmaktadır. ICA: Tüm beyinden toplanan sinyallerinin bir arada işlenmesi ile uzamsal olarak bağımsız sinyal bileşenlerini bulmaya yönelik bir yaklaşımdır. Bu bileşenlerin nöral ve nuisance sinyallerini ayırması beklenir. ICA nın global nuisance sinyallerini belirlemesi zordur. Wavelet: Dalgacık dönüşümüyle yüksek genlikli bileşenleri ayırmayı hedefleyen oldukça yeni ve spekülatif bir yaklaşımdır. Global Regresyon: Deneysel olarak başarılı sonuçlar raporlanmış olmakla birlikte simulasyonlara dayalı tartışmalar da devam etmektedir. Zaman HPF/BPF (Yüksek/Aralık Geçiren Filtre): 0.01 Hz 0.1 Hz, Konsensus yok ancak filtreler regresyon modelleri ile uyumlu olmalı. Power JD, et al. Neuroimage (2015 Jan 15) 105: ; Strother S.C.IEEE EMB Magazine (2006 Jan 1) 25: 27-41

14 İşlevsel Beyin Ağları fnet fnet Bağları & Düğümleri (Rest fmri)# RegressionBPF Parcellation Factorization: ICA RegressionBPF Correlation Correlation Factorization : ICA bileşenlerinin uzamsal dağılımı #" 11 " & % 1N ( [ ] pxn = A pxq % " # " ( $ %" q1 " qn ' ( BOLD Sinyalleri ICA Bileşenleri Z-stat üzerinden aktivasyon haritaları Correlation: Zamansal korelasyon / eşgüdüm Tam Korelasyon: 2 BOLD sinyali doğrudan kullanılır. Kısmi Korelasyon: 2 BOLD sinyalinin, diğer tüm sinyallere dik uzaydaki bileşenleri kullanıllır. ICOV: X DxT = { x t "# D };$ = Cov( x t );A = $ %1 ;ICOV (i, j) = %A ij A ii A jj Smith et al., Neuroimage (2011 Jan 15) 54: Power JD, et al. Neuroimage (2015 Jan 15) 105: ; Strother S.C.IEEE EMB Magazine (2006 Jan 1) 25: Beckmann CF, Philos Trans R Soc Lond B Biol Sci 360: ; Marrelec et al., Neuroimage (2006 Aug 1) 32:

15 İşlevsel Beyin Ağları fnet fnet Bağları & Düğümleri (Rest fmri)# Regression BPF Parcellation Factorization: ICA Regression BPF Correlation Correlation Alternatif bir yöntem fnetdüğümlerinin snet ler gibi anatomik parselasyon bilgisinden belirlenmesidir. snet-fnet ilişkilerinin modellenmesinde ortak düğüm kullanmak için yararlanılabilir. Yapısal (Parselasyon) olarak tanımlanmış düğüm yerleri/sınırları işlevsel olarabirlikte çalışan bölgelere karşılık gelmeyebileceği için parsellere dayalı düğüm sınırlarının fmri tabanlı yerel korelasyon ile düzeltilmesi gerekir.

16 B-AĞ (BRAINet) Projesi TÜBİTAK 1003 Programı, Proje # 114E053 - Kasım 2014 Kasım 2016# Amaç: Bütünleşik snet-fnet (cnet) modelleme ile Alzheimer (vd. Nöropsikolojik hastalıklarda) tanı, sınıflama ve öngörü yöntemleri geliştirilmesi Yöntemler: 1. Çok yönlü yeni dmri görüntüleme (ODF, MAP-MRI) uygulamaları, 2. Deterministik-Olasılıksal hibrid traktografi (SMT) uygulamaları, 3. fmri optimal veri işleme protokolü tanımlanması 4. cnetmodelleme 5. Konvansiyonel ve ağırlıklandırılmış ağlara dayalı yeni snet, fnet, cnet karakterizasyon parametreleri 6. Yeni ağ parametreleri ile tanı, sınıflama, öngörü algoritmaları Ekip:

17 B-AĞ (BRAINet) Projesi BRAINet Sistem Şeması # dmri Traktografi (SMT) DTI, ODF, MAP-MRI fmri snet Modelleme Parselasyon & Inter-modal Çakıştırma cnet Modelleme fmri Önişleme fnet Modelleme Karakterizasyon

18 B-AĞ (BRAINet) Projesi Mean Apparent Propagator MRI # Crossing between the inferior-located external medullary lamina and the superiorly-located internal capsule within the thalamic reticular nucleus Özarslan et al., NeuroImage, 78:16-32, 2013 Significant anisotropy is detected in a caudatolenticular gray matter bridge traversing the oblique caudocranial orientation of the internal capsule.

19 B-AĞ (BRAINet) Projesi snet Bağları# SMT: Split & Merge Tractography S7 J 67 J 34 S6 J 25 S5 S3 Bridge J 23 "Broken Bridge "New J 26 S4 S2 S1 "Seed Tract J12 SMT deterministik ve olasılıksal traktografiyi tek/çok yönlü difüzyon modelleri kullanarak birleştirmektedir. Yoldemir B., et al. IEEE TMI, October 2012, Vol , pp

20 Sonuç# Beyin ilişki ve işbirliği içinde çalışan farklı birimlerden oluşan bir ağ olarak modellenebilir. İşlevsel ağlar farklı bölgelerin ilişkisini tanımlarken, yapısal ağlar fiziksel nöron bağlantılarını makro boyutta modeller. İşlevsel bağlantılar da yapısal bağlantılar da MRI teknikleri ile endirekt yolla in-vivo görüntülenebilir. Beynin ağ modelleri ortak bazı özellikler gösterse de, her ağ, seçilen MRI tekniği ve modeli, Sinyal işleme sürecine dahil edilen aşamalar, Her sinyal işleme aşamasında seçilen parametrelerle değişiklik gösterir. Beyin ağ modellemesi için Doğru bir yöntem bulunmamaktadır ama yapılan seçimlerin bilinçli yapılması, gerekçelendirilmesi ve raporlanması şarttır. B-AĞ projesi TÜBİTAK 1003 Prog.(114E053) tarafından desteklenmektedir

Beyin Haritalama Görüntülerden Ağlara

Beyin Haritalama Görüntülerden Ağlara Beyin Haritalama Görüntülerden Ağlara Doç. Dr. Burak Acar Boğaziçi Üniversitesi, Elektrik-Elektronik Müh. Bölümü, VAVlab, Bebek, İstanbul acarbu@boun.edu.tr Sunum Planı Ağ Nedir? İşlevsel ve Yapısal Ağ

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi. Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya

Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi. Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya Amaç - Gelişen dedektör teknolojisi ile farklı dedektörlerin

Detaylı

Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı

Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı Yapay Sinir Ağlarına Giriş Dr. Hidayet Takçı htakci@gmail.com http://htakci.sucati.org Giriş Neden Yapay Sinir Ağları (YSA) Bazı işler insanlar tarafından kolaylıkla yerine getirilirken mevcut bilgisayarlar

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI Lineer Ayrılabilen Paternlerin Yapay Sinir Ağı ile Sınıflandırılması 1. Biyolojik Sinirin Yapısı Bilgi işleme

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI Merve ARABACI a, Miray BAYRAM a, Mehmet YÜCEER b, Erdal KARADURMUŞ a a Hitit Üniversitesi, Mühendislik

Detaylı

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007 AVUÇ İZİ VE PARMAK İZİNE DAYALI BİR BİYOMETRİK TANIMA SİSTEMİ Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK İstanbul Bilgi Üniversitesi Bilgisayar Bilimleri 2 Şubat 2007 Biyometrik Biyometrik, kişileri

Detaylı

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar BLM429 Görüntü İşlemeye Giriş Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Yrd. Doç. Dr. Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders

Detaylı

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ZORUNLU DERSLER IE 201 - Operasyon Modelleme Karar vermedeki belirsizlik rolü de dahil olmak üzere işletme kararlarının matematiksel

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi İpek ABASIKELEŞ, M.Fatih AKAY Bilgisayar Mühendisliği Bölümü Çukurova Üniversitesi

Detaylı

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ

ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 GÜZ Çizgeler Yollar ve Çevrimler Çizge Olarak Modelleme Çizge Olarak Modelleme Yönlü Çizge Kenar - Köşe 2 / 90 Çizgeler Yollar ve Çevrimler Çizge Olarak

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME / DERS GÜNCELLEME Dersin Kodu SHA 615 Dersin Adı İSTATİSTİKSEL SİNYAL İŞLEME Yarıyılı GÜZ Dersin İçeriği: Olasılık ve olasılıksal süreçlerin gözden geçirilmesi. Bayes kestirim kuramı. Büyük olabilirlik

Detaylı

Temel ve Klinik Nörobilim Perspektifinden Beyin Bağlantısallık Ağları

Temel ve Klinik Nörobilim Perspektifinden Beyin Bağlantısallık Ağları Temel ve Klinik Nörobilim Perspektifinden Beyin Bağlantısallık Ağları 1. Tamer Demiralp: Beyinde İşlevsel (Fonksiyonel) Bağlantısallığın imrg ile Araştırılması 2. Metehan Çiçek: Beyinde Etkin (Efektif)

Detaylı

CORPUS CALLOSUM KESİT YÜZEY ALANININ KOMŞULUK TAKİBİ YÖNTEMİYLE SEGMENTASYONU

CORPUS CALLOSUM KESİT YÜZEY ALANININ KOMŞULUK TAKİBİ YÖNTEMİYLE SEGMENTASYONU CORPUS CALLOSUM KESİT YÜZEY ALANININ KOMŞULUK TAKİBİ YÖNTEMİYLE SEGMENTASYONU Mücahid Günay, Ahmet Alkan, Fuat Özkan 2, Davut Özbağ 3, Berin Tuğtağ 3 Elektrik-Elektronik Mühendisliği Bölümü Kahramanmaraş

Detaylı

Ergin Atalar Ulusal Manyetik Rezonans Görüntüleme Merkezi Bilkent Üniversitesi. Manyetik Rezonans Görüntüleme FİZİĞİ VE SON GELİŞMELER

Ergin Atalar Ulusal Manyetik Rezonans Görüntüleme Merkezi Bilkent Üniversitesi. Manyetik Rezonans Görüntüleme FİZİĞİ VE SON GELİŞMELER Ergin Atalar Ulusal Manyetik Rezonans Görüntüleme Merkezi Bilkent Üniversitesi Manyetik Rezonans Görüntüleme FİZİĞİ VE SON GELİŞMELER KAPSAM MRG Fiziği Alıcı Anten Dizisi Verici Anten Dizisi Verici Anten

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Doç. Dr. Bilge Karaçalı Biyomedikal Veri İşleme Laboratuvarı Elektrik-Elektronik

Detaylı

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

ÖZGEÇMİŞ HACETTEPE ÜNİVERSİTESİ EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ ÖĞR. GÖR. DR. ARZU ÖZKAN CEYLAN. ozkana@hacettepe.edu.tr.

ÖZGEÇMİŞ HACETTEPE ÜNİVERSİTESİ EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ ÖĞR. GÖR. DR. ARZU ÖZKAN CEYLAN. ozkana@hacettepe.edu.tr. ÖĞR. GÖR. DR. ARZU ÖZKAN CEYLAN ÖZGEÇMİŞ E-Posta: ozkana@hacettepe.edu.tr Telefon: Adres: Hacettepe Üniversitesi Edebiyat Fakültesi Psikoloji Bölümü 06800 Beytepe Yerleşkesi Çankaya / ANKARA Eğitim Mezuniyet

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Bölümü oner@isikun.edu.tr 1. Adı Soyadı : Mustafa Mengüç ÖNER 2. Doğum Tarihi : 01.02.1977 3. Unvanı : Doçent Dr. 4. Öğrenim Durumu : ÖĞRENİM

Detaylı

Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veri Modelleri

Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veri Modelleri Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veri Modelleri Konular Veritabanı Tasarım Aşamaları Veri Modeli Nedir? Veri Modeli Temel Bileşenleri İş Kuralları (Business Rules) İş Kurallarını Veri

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Mamogram Görüntülerinden Bilgisayar Destekli Kitle Teşhisi Sistemi. Computer-aided Mass Detection System Using Mamogram Images

Mamogram Görüntülerinden Bilgisayar Destekli Kitle Teşhisi Sistemi. Computer-aided Mass Detection System Using Mamogram Images Mamogram Görüntülerinden Bilgisayar Destekli Kitle Teşhisi Sistemi Emre Dandıl 1, Ziya Ekşi 2*, Murat Çakıroğlu 3 1 Bilecik Şeyh Edebali Üniversitesi Meslek Yüksek Okulu, Bilgisayar Teknolojileri Bölümü

Detaylı

İNMEDE GÖRÜNTÜLEME. Dr. Cem CALLI. Chief of Neuroradiology Section Ege University Hospital Dept. Of Radiology Izmir, Turkey

İNMEDE GÖRÜNTÜLEME. Dr. Cem CALLI. Chief of Neuroradiology Section Ege University Hospital Dept. Of Radiology Izmir, Turkey İNMEDE GÖRÜNTÜLEME Dr. Cem CALLI Chief of Neuroradiology Section Ege University Hospital Dept. Of Radiology Izmir, Turkey İNME nedir? Beyin kan akımının bozulması sonucu beyin fonksiyonlarının hızlı ilerleyici

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 12 Video, Optik Akış ve Takip Alp Ertürk alp.erturk@kocaeli.edu.tr Video Video, farklı zamanlarda alınan çerçeveler dizisidir Videolar, iki boyut uzamsal, üçüncü boyut zaman

Detaylı

Beyin Beyaz Cevher Yolaklarının Difüzyon Tensör Görüntüleme ile Gösterilmesi

Beyin Beyaz Cevher Yolaklarının Difüzyon Tensör Görüntüleme ile Gösterilmesi 1 Beyin Beyaz Cevher Yolaklarının Difüzyon Tensör Görüntüleme ile Gösterilmesi Ali Demir Yeditepe Üniversitesi Bilgisayar Mühendisliği (Çift anadal: Biyomedikal Mühendisliği) Proje Danışmanları Assoc.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri sabdikan@beun.edu.tr 0 372 2574010 1718 http://geomatik.beun.edu.tr/abdikan/ Öğrenci

Detaylı

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI Proje Yüklenicisi: Yeditepe Üniversitesi Mühendislik ve Mimarlık Fakültesi

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon

Detaylı

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ 1. Giriş Tolga Kurt, Emin Anarım Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği 80815,Bebek, İstanbul-Türkiye e-posta:

Detaylı

OPNET PROJECT EDİTÖRDE. Doç. Dr. Cüneyt BAYILMIŞ

OPNET PROJECT EDİTÖRDE. Doç. Dr. Cüneyt BAYILMIŞ BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET PROJECT EDİTÖRDE UYGULAMA GELİŞTİRME - 2-1 OPNET MODELER PROJE EDİTÖRDE UYGULAMA GELİŞTİRME Applications Profiles Kullanımı 2 Aşağıdaki Ağı Project

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 5 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi Wavelet Transform and Applications A. Enis Çetin Bilkent Üniversitesi Multiresolution Signal Processing Lincoln idea by Salvador Dali Dali Museum, Figueres, Spain M. Mattera Multi-resolution signal and

Detaylı

PSK 510 Research Methods and Advanced Statistics

PSK 510 Research Methods and Advanced Statistics PSK 510 Research Methods and Advanced Statistics Lecture 09: PCA and FA Doğan Kökdemir, PhD http://www.kokdemir.info dogan@kokdemir.info 1 İstatistik Las Meninas - Picasso 2 Gerçek Las Meninas - Diego

Detaylı

Dağıtık Sistemler CS5001

Dağıtık Sistemler CS5001 Dağıtık Sistemler CS5001 Th. Letschert Çeviri: Turgay Akbaş TH Mittelhessen Gießen University of Applied Sciences Modeller ve Gösterimler Sistemler, Uygulamalar, Algoritmalar Dağıtık Sistem Bir dağıtık

Detaylı

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk Listesi Çizge Üzerinde

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Hava Aracının Üzerinden Titreşim Kaynaklı Enerji Hasatı Çalışmaları

Hava Aracının Üzerinden Titreşim Kaynaklı Enerji Hasatı Çalışmaları IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 2012, Hava Harp Okulu, İstanbul Hava Aracının Üzerinden Titreşim Kaynaklı Enerji Hasatı Çalışmaları Ahmet Levent AVŞAR 1 Meteksan Savunma, Ankara Melin

Detaylı

22/03/2016. OSI and Equipment. Networking Hardware YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici. Hub

22/03/2016. OSI and Equipment. Networking Hardware YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici. Hub OSI and Equipment Networking Hardware Networking hardware may also be known as network equipment or computer networking devices. OSI Layer Uygulama Sunum Oturum Taşıma Ağ Veri İletim Fiziksel Equipment

Detaylı

Prof. Dr. Yavuz YAMAN, Prof. Dr. Serkan ÖZGEN, Doç. Dr. Melin ŞAHİN Y. Doç. Dr. Güçlü SEBER, Evren SAKARYA, Levent ÜNLÜSOY, E.

Prof. Dr. Yavuz YAMAN, Prof. Dr. Serkan ÖZGEN, Doç. Dr. Melin ŞAHİN Y. Doç. Dr. Güçlü SEBER, Evren SAKARYA, Levent ÜNLÜSOY, E. Prof. Dr. Yavuz YAMAN, Prof. Dr. Serkan ÖZGEN, Doç. Dr. Melin ŞAHİN Y. Doç. Dr. Güçlü SEBER, Evren SAKARYA, Levent ÜNLÜSOY, E. Tolga İNSUYU Havacılık ve Uzay Mühendisliği Bölümü Orta Doğu Teknik Üniversitesi

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

CRYSTAL BALL Eğitimi

CRYSTAL BALL Eğitimi CRYSTAL BALL Eğitimi İki günlük bu kursun ilk yarısında, Crystal Ball Fusion Edition kullanılarak Excel tablolarına dayalı risk analizi öğretilecektir. Monte Carlo simülasyonu, tornado analizi ve Crystal

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1982 yılında kurulan bölümümüz 1986 yılında ilk mezunlarını vermiştir 1300 1300 Lisans, 190 25 190 Yüksek Lisans, 25 Doktora 93 Bölüm kontenjanımız

Detaylı

Jeoloji Mühendisleri için ArcGIS Eğitimi

Jeoloji Mühendisleri için ArcGIS Eğitimi Jeoloji Mühendisleri için ArcGIS Eğitimi http://facebook.com/esriturkey https://twiter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 4 Gün 24 Saat Jeoloji Mühendisleri için ArcGIS Eğitimi Genel

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

Mursel Tasgin and Haluk O. Bingol. Akademik Bilişim Antalya, 23.01.2013

Mursel Tasgin and Haluk O. Bingol. Akademik Bilişim Antalya, 23.01.2013 Karmaşık Ağlarda Dedikodu Mursel Tasgin and Haluk O. Bingol Karmaşık Sistemler Araştırma Lab. (SoSLab) Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi Akademik Bilişim Antalya, 23.01.2013 Tasgin and

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Çok etmenli sistemlerde çoklu denge noktalarının sürekli zamanda analizi Continuous-time analysis

Detaylı

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number:, Article Number: 1A0173 ENGINEERING SCIENCES Burhan Ergen Received: November 010 Muhammet Baykara Accepted: February 011 Firat

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

Risk Yönetimi. *PMI PMBOK Chapter 11 - Project Risk Management

Risk Yönetimi. *PMI PMBOK Chapter 11 - Project Risk Management Risk Yönetimi Risk yönetimi sistematik olarak proje risklerinin belirlenmesi, analizi ve bu risklere yanıt verilmesi sürecidir.* Risk yönetimi kapsamında yapılanlar pozitif olayların proje hedeflerine

Detaylı

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3)

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3) Doktora Programı Ders İçerikleri: SHA 600 Seminer (0 2 0) Öğrencilerin ders aşamasında; tez danışmanı ve seminer dersi sorumlusu öğretim elemanının ortak görüşü ile tespit edilen bir konuyu hazırlayarak

Detaylı

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Yavuz EROL, Hasan H. BALIK Fırat Üniversitesi Elektrik-Elektronik Mühendisli i Bölümü 23119 Elazı yerol@firat.edu.tr, hasanbalik@gmail.com

Detaylı

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü Uzaktan Algılama Anabilim Dalı HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Dr.Nusret

Detaylı

Negatif Geri Beslemeli Kontrol

Negatif Geri Beslemeli Kontrol Negatif Geri Beslemeli Kontrol Beyin Anatomisi ve EEG nin Biyofizik Temelleri Dr. Bülent Yılmaz 1 Giriş İnsan sinir sistemi (nervous system) Merkezi sinir sistemi (Central Nervous System (CNS)) Çevresel

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından

Detaylı

Optik Haberleşme Sistemleri (EE 406) Ders Detayları

Optik Haberleşme Sistemleri (EE 406) Ders Detayları Optik Haberleşme Sistemleri (EE 406) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Optik Haberleşme Sistemleri EE 406 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i

Detaylı

MIMO Radarlarda Hedef Tespiti için Parametrik Olmayan Adaptif Tekniklerin Performans Değerlendirilmesi

MIMO Radarlarda Hedef Tespiti için Parametrik Olmayan Adaptif Tekniklerin Performans Değerlendirilmesi MIMO Radarlarda Hedef Tespiti için Parametrik Olmayan Adaptif Tekniklerin Performans Değerlendirilmesi Nefiye ERKAN Elektrik-Elektronik Mühendisliği Bölümü, Gazi Üniversitesi Eti Mh, Yükseliş Sk, Maltepe,

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI

ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI Özgür GENCER Semra ÖZTÜRK Tarık ERFİDAN Kocaeli Üniversitesi Mühendislik Fakültesi, Elektrik Mühendisliği Bölümü, Kocaeli San-el Mühendislik Elektrik

Detaylı

Transformasyonlar (İleri Yapı Statiği)

Transformasyonlar (İleri Yapı Statiği) (İleri Yapı Statiği) Doç. Dr. Özgür Özçelik Dokuz Eylül Üniversitesi, Müh. Fak., İnşaat Müh. Böl. Sunum Ana Hattı Transformasyonlar Rijit uç bölgesi transformasyonu Global Lokal eksen transformasyonu Temel

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı Tolga YÜKSEL Ünvanı Birimi Doğum Tarihi Yrd. Doç. Dr. Mühendislik Fakültesi/ Elektrik Elektronik Mühendisliği 23.10.1980

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

EEG Đşaretlerinin FFT ve Dalgacık Dönüşümü ile Analizi

EEG Đşaretlerinin FFT ve Dalgacık Dönüşümü ile Analizi EEG Đşaretlerinin FFT ve Dalgacık Dönüşümü ile Analizi Özet: Mustafa COŞKUN Ayhan ĐSTANBULLU coskunmus{at}hotmail.com ayhanistan{at}yahoo.com * Balıkesir Üniversitesi, Mühendislik-Mimarlık Fakültesi, Bilgisayar

Detaylı

NANO AĞLARDA DİFÜZYON İLE HABERLEŞME ÜZERİNE GELİŞTİRİLMİŞ MODELLEMELER

NANO AĞLARDA DİFÜZYON İLE HABERLEŞME ÜZERİNE GELİŞTİRİLMİŞ MODELLEMELER 1 NANO AĞLARDA DİFÜZYON İLE HABERLEŞME ÜZERİNE GELİŞTİRİLMİŞ MODELLEMELER F. Nur KILIÇLI, M. Tuğrul ÖZŞAHİN, H. Birkan YILMAZ, M. Şükrü KURAN, Tuna TUĞCU Boğaziçi Üniversitesi, NetLab İçerik 2 Giriş Difüzyonla

Detaylı

SANTRİFÜJ TEKNİKLERİ VE SANTRİFÜJLER

SANTRİFÜJ TEKNİKLERİ VE SANTRİFÜJLER SANTRİFÜJ TEKNİKLERİ VE SANTRİFÜJLER Doç. Dr. Gülsen YILMAZ 2009 BAŞLIKLAR 1 Tanım ve Prensip 22 Santrifüj teknikleri 33 Santrifüj tipleri 44 Santrifüj kullanım alanları Laboratuvarı ilgilendiren Süreç

Detaylı

Beynin Karanlık Enerjisi

Beynin Karanlık Enerjisi İlay Çelik Bilimsel Programlar Uzman Yardımcısı, TÜBİTAK Bilim ve Teknik Dergisi Beynin Karanlık Enerjisi Bir kitabı okurken beynimizde neler olur? Şarkı söylerken, resim yaparken, yazı yazarken, araba

Detaylı

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve YAPAY SİNİRAĞLARI İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve gizemli harikalarından biridir. İnsan

Detaylı

FONKSİYONEL MRG (fmri) Volkan Kutlu

FONKSİYONEL MRG (fmri) Volkan Kutlu FONKSİYONEL MRG (fmri) Volkan Kutlu Teknoloji ve tıp alanında 20.yy ortalarından itibaren büyük gelişmeler oluşması;özellikle 19.yy sonlarında ortaya çıkan radyoloji bilimini de doğrudan etkilemiştir.

Detaylı

GRAFLAR (ÇİZGELER) karşılık gelen başka bir kenar yoktur. Sonuç olarak, bir basit grafta uv, köşe

GRAFLAR (ÇİZGELER) karşılık gelen başka bir kenar yoktur. Sonuç olarak, bir basit grafta uv, köşe 1 GRAFLAR (ÇİZGELER) 1. GRAFLAR VE GRAF MODELLERİ Tanım: Bir G=(V,E) grafı, boş olmayan köşeler (veya düğümler) kümesi V ve kenarlar kümesi E den meydana gelir. Her kenar kendisi ile bağlantılı 1 veya

Detaylı

: ahabes@nny.edu.tr, asuman83@gmail.com. 2006 2013 Gazi Üniversitesi Araş. Gör. 4. Eğitim Derece Alan Üniversite Yıl

: ahabes@nny.edu.tr, asuman83@gmail.com. 2006 2013 Gazi Üniversitesi Araş. Gör. 4. Eğitim Derece Alan Üniversite Yıl Özgeçmiş - CV Yrd. Doç. Dr. Asuman SAVAŞCIHABEŞ 1. Kişisel Bilgiler Adı Soyadı Unvanı Adres :Asuman SAVAŞCIHABEŞ :Yrd.Doç.Dr. :Nuh Naci Yazgan Üniversitesi Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar KSÜ Mühendislik Bilimleri Dergisi, 12(1), 2009 6 KSU Journal of Engineering Sciences, 12 (1), 2009 İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

Detaylı

SPEKTROSKOPİK ELİPSOMETRE

SPEKTROSKOPİK ELİPSOMETRE OPTİK MALZEMELER ARAŞTIRMA GRUBU SPEKTROSKOPİK ELİPSOMETRE Birhan UĞUZ 1 0 8 1 0 8 1 0 İçerik Elipsometre Nedir? Işığın Kutuplanması Işığın Maddeyle Doğrusal Etkileşmesi Elipsometre Bileşenleri Ortalama

Detaylı

Tutum ve Tutum Ölçekleri

Tutum ve Tutum Ölçekleri Tutum ve Tutum Ölçekleri tutum bireye atfedilen ve bireyin psikolojik bir obje ile ilgili düşünce, duygu ve davranışlarını düzenli bir biçimde oluşturan eğilim Smith ( 1968 ) psikolojik obje birey için

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

03/03/2015. OSI ve cihazlar. Ağ Donanımları Cihazlar YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici REPEATER

03/03/2015. OSI ve cihazlar. Ağ Donanımları Cihazlar YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici REPEATER Ağ Donanımları Cihazlar OSI ve cihazlar OSI Katmanı Uygulama Sunum Oturum Taşıma Ağ Veri İletim Fiziksel Cihaz Yönlendirici (Router) Katman 3 Switch Köprü (Bridge) Katman 2 Switch NIC, Yineleyici (Repeater)

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı