İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ"

Transkript

1 İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ 1. İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİKTESTİ 2. WILCOXON TESTİ 3. BAĞIMLI İKİ YÜZDE ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ 4. BAĞIMLI ÖRNEKLERDE Kİ-KARE TESTİ (McNEMAR TESTİ) Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 2 / 46 İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 3 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 1

2 Parametrik test varsayımları yerine getirildiğinde, ölçümle belirtilen sürekli bir değişken yönünden aynı bireylerin değişik iki zaman ya da durumdaki ölçümleri arasında fark olup olmadığını test etmek için kullanılır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 4 / 46 Dikkat etmesi gereken noktalar: a. Veri ölçümle belirtilmiştir. b. Aynı bireyler üzerinde aynı konuda iki kez ölçüm yapılmaktadır. Varsayımları İki grup arasındaki değerlere ilişkin fark değerleri dağılımının normaldağılım göstermesi Varsayım sağlanamıyor ise: Bu test yerine WILCOXON EŞLEŞTİRİLMİŞ İKİ ÖRNEK TESTİ kullanılmalıdır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 5 / 46 İki eş arasındaki farkın önemlilik testinin uygulandığı durumları üç grupta toplayabiliriz. Durum 1. Ölçümle belirtilen bir değişken yönünden aynı bireylerin değişik iki zaman ya da durumdaki ölçümlerinin farklı olup olmadığının test edilmesinde kullanılır. Örnek: Kandaki şeker miktarını düşürmek için hazırlanan bir diyet programının etkinliğini ölçmek için şeker hastalarının diyetten önce kandaki şeker miktarları ile diyetten sonra kandaki şeker miktarlarının farklı olup olmadığını test etmek için kullanılır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 6 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 2

3 Durum 2. Değişik iki ölçüm aracının aynı bireylerde aynı ölçümü yapıp yapmadığını ya da aynı sonucu verip vermediğini test etmek için kullanılır. Örnek: İki ayrı firmanın ürettiği tansiyon ölçme araçlarının aynı kişilerin tansiyonunu aynı değerde ölçüp ölçmediğinin test edilmesinde. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 7 / 46 Durum 3. Değişik iki ölçümcünün aynı ölçüm aracıyla aynı bireylerin ölçümünü aynı değerde yapıp yapmadıklarının (ölçümcü farklılıklarının) test edilmesinde kullanılır. Örnek: İki Spor bilimcinin triceps deri kıvrımı kalınlıklarını aynı düzeyde ölçüp ölçemediklerinin test edilmesinde. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 8 / 46 ÖRNEK: Primer hipertansiyonlu bireylere günde iki kez 20 şer dakikalıkyürüyüş önerilerek, yürüyüşebaşlamadan önceki 1 haftalık ortalama tansiyon miktarı ile yürüyüşe başladıktan sonraki 1 haftalık ortalama tansiyon miktarları arasında fark olup olmadığı öğrenilmek isteniyor. Aynı bireylerin iki farklı zamandaki ölçümleri söz konusu olduğundan gruplar bağımlıdır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 9 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 3

4 Hasta Sis. Kan Basıncı Fark Önce Sonra Önce Sonra ,..., Ortalama 146,86 138,16 8,69 S. sapma 7,06 7,97 6,18 Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 10 / ,0 6 S A Y I 4,8,5 2,3 0 0,0-5,0 0,0 5,0 10,0 15,0 20,0 0,0,3,5,8 1,0 FARK DEĞERLERİ P-P PLOT Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 11 / 46 İki eş arasındaki farkın anlamlılık testi için aşağıdaki süreç izlenir. 1. Hipotezlerin kurulması: H 0 : İki eş ölçümleri arasında fark yoktur. H 1 : İki eş ölçümleri arasında fark vardır. ya da H0 : D 0 H : D 0 1 Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 12 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 4

5 2. Alfa yanılma düzeyi belirlenmesi 3. Test kriterinin belirlenmesi seçilen yanılma düzeyi ve n-1 serbestlik derecesindeki t tablo istatistiği belirlenir Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 13 / Test istatistiğinin hesaplanması: I. Gözlemlerin önceki değerlerinden sonraki değerleri çıkartılarak fark dizisi oluşturulur ve elde edilen farkların işareti farkların önüne yazılır. II. Farkların ortalaması bulunur: D III. Farkların standart sapması bulunur: IV. Farkların standart hatası bulunur: S D SD SD / n V. Test istatistiği (t hesap ) hesaplanır. t D S D Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 14 / Test İstatistiğinin Hesaplanması S D t S D S D D / n 6,18/ 36 1,03 8,69 1,03 8,44 Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 15 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 5

6 5. İstatistiksel karar. Bulunan t hesap istatistiği, seçilen yanılma düzeyi ve n-1 serbestlik derecesindeki t tablo karşılaştırılır. istatistiği ile t hesap t tablo ise iki eş arasında arasında fark yoktur şeklinde kurulan H 0 hipotezi reddedilir ve p<alfa yazılır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 16 / İstatistiksel karar. t hesap 8,44 t tablo sd ; 0.05) ( 2.03 p<0,05 Yorum: Yürüyüş sonrasında sistolik kan basıncındaki 8.69 birimlik (mm/hg) düşme istatistiksel açıdan anlamlıdır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 17 / 46 WILCOXON EŞLEŞTİRİLMİŞ İKİ ÖRNEKLEM TESTİ Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 18 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 6

7 İki eş arasındaki farkın önemlilik testinin varsayımı sağlanamadığında İki Eş Arasındaki Farkın önemlilik Testi yerine kullanılabilecek en güçlü testtir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 19 / 46 TEST İSTATİSTİĞİNİN (T) HESAPLANMASI Test istatistiğinin hesaplanması incelenen birim sayısının 25 den az olup olmama durumuna göre ayrı işlemlerle yapılır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 20 / 46 A. birim Sayısı 25 den Az Olduğunda Test İşlemleri 1. Her kişinin değerleri önce ve sonra kolonlarına yazılır. 2. İki ölçüm arasındaki farklar (önce - sonra) alınır ve fark kolonuna yazılır. Fark değerlerine işaret dikkate alınmadan küçükten büyüğe doğru sıra numarası verilir ve sıra no sütunu elde edilir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 21 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 7

8 3. Fark dizisinde sıfır değerini alan fark ya da farklar var ise aşağıdaki kurallar uygulanır. a. Fark kolonunda bir tane sıfır varise: Bu değer değerlendirmeden çıkartılır ve birim sayısı bir azaltılır. b. Fark kolonundaki sıfır sayısı çift ise (2, 4,..): Önce sıfırlar sıralanır. Sıfıra karşılık gelen sıra numaralarının ortalaması sıfırların sıra numarası olur. Sıfırların sıra numarasının yarısına +, yarısına işareti konur. c. Fark kolonundaki sıfır sayısı tek ise (3, 5,..): Sıfırların herhangi bir tanesi değerlendirmeden çıkartılır. birim sayısı bir azaltılır. Sıra numarası verme ve işaretleme işlemi b maddesindeki gibi yapılır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 22 / Fark kolonundaki sıfırlar ve aynı değeri alan gözlemler var ise yeni sıra no kolonu oluşturulur Farkların işaretleri sıra numaralarının önüne yazılır ve işaretli yeni sıra no sütunu oluşturulur. 6. Test istatistiği nin ( T ) elde edilmesi: Farklara ilişkin işaretli sıra numaralarından, sayısı az olan işaretin sıra numaraları toplanır ve T istatistiği elde edilir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 23 / 46 İstatistiksel karar Hesapla buluna T değeri T tablo H 0 hipotezi reddedilir. değerinden küçükse Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 24 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 8

9 B. birim Sayısı 25 ya da 25 den fazla olduğunda test İşlemleri zistatistiğinden yararlanılır. z n( n 1) T 4 n( n 1)(2n 1) 24 T: A maddesinde bulunan T hesap istatistiği n: Gözlem sayısı Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 25 / 46 İstatistiksel Karar z değerine ilişkin olasılık z tablosundan bulunur ve 0.5 den çıkartılır. H 1 hipotezi tek yönlü ise tablo olasılık değeri ile önceden belirlenen alfa yanılma olasılığı doğrudan karşılaştırılır. H 1 hipotezi çift yönlü ise tablo olasılık değeri 2 ile çarpıldıktan sonra önceden belirlenen alfa yanılma olasılığı ile karşılaştırılır. Tablo olasılık değeri önceden saptanan alfa yanılma olasılığından küçük ise H 0 hipotezi reddedilir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 26 / 46 ÖRNEK: 12 deney hayvanının ilaç verilmeden önceki ve verildikten sonraki hareketlilik skorları arasında fark olup olmadığı inceleniyor. 1. Hipotezler: H o : İki eş arasında fark yoktur H 1 : İki eş arasında fark vardır Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 27 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 9

10 Wilcoxon Test İstatistiği İçin Hazırlık İşlemleri Tablosu Önce Sonra Fark Sıra No y.sıra no İşaretli yeni sıra no Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 28 / Yanılma düzeyinin belirlenmesi: alfa=0.05 alınmıştır. 3. Test İstatistiği: İşaretli yeni sıra no sütunundan + ve işaretlerinden az olanların sıra numaraları toplamıdır. Buna göre: T H = 1,5+3,5+6=11 4. İstatistiksel karar: T =11 Hesap < T Tablo = 14, p<0.05 Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 29 / 46 α Tek Yönlü Çift Yönlü n Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 30 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 10

11 Aynı örneğin, birim sayısı 25 in üzerinde gibi düşünülüp z değeri yardımıyla çözümü: z 12 (12 1) (12 1) (2 (12) 1) 24 p = 0,0278 < 0, p 2 (0,5 0,4861) 0,0278 Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 31 / 46 BAĞIMLI İKİ YÜZDE ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 32 / 46 Nitel bir değişken yönünden, aynı birylerden iki değişik zaman ya da iki değişik durumda elde edilen iki yüzde arasında fark olup olmadığının araştırılmasında kullanılır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 33 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 11

12 ÖRNEKLER: Spor Hekimi B Spor Hekimi A Sağlam Sağlam Değil Toplam Sağlam Sağlam Değil Toplam Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 34 / 46 Bağımlı iki yüzde için genel tablo Sonra Önce + Toplam + a b a+b c d c+d Toplam a+c b+d a+b+c+d=n p 1 = (a+b) / n p 2 = (a+c) / n Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 35 / 46 Test İstatistiği: Gözlem sayısı fazla ise: z b c b c Gözlem sayısı az ise: z b c 1 b c Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 36 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 12

13 ÖRNEK: İnternlerin doping bilgi düzeylerini algılamadaki değişimi Seminer Öncesi Bilgi Düzeyi Seminer sonrası bilgi düzeyi Yeterli Yetersiz Toplam Yeterli Yetersiz Toplam Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 37 / Hipotezler: ( p1 p2 H o : Bağımlı İki yüzde arasında fark yoktur H 1 : Bağımlı iki yüzde arasında fark vardır p ) ( 1 p2 ) 2. Alfa Yanılma düzeyi = 0,05 alınmıştır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 38 / Test istatistiğinin hesaplanması: z 2, İstatistiksel karar: z=2,53 için p(z)=0,4943 Buradan çift yönlü p olasılığı: p= 2x(0,5-0,4943)=0,0114 (ya da p<0.05) Bağımlı iki yüzde arasında fark vardır. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 39 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 13

14 Mc NEMAR TESTİ Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 40 / 46 Mc Nemar testi, iki kategorili bağımlı iki örneklem kikare testidir. Bir grup deney biriminin X denemesinde elde edilen ikili cevaplarına karşı belirli bir zaman sonra tekrarlanan X denemesindeki cevapları arasında uyumluluk olup olmadığını test etmek için yararlanılan bir testtir. N birimin öncesi ve sonrası X denemelerinden aldıkları puanlara göre pozisyonları 2x2 tablosu biçiminde gösterilebilir. McNemar testi önce olumlu oldukları halde sonra olumsuz olan çiftler ile önce olumsuz oldukları halde sonra olumlu olan çiftlerin sayısını dikkate alarak analiz yapan bir kikare testidir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 41 / 46 Bağımlı Gruplarda Ki-kare (McNemar) Testi ( b c b c 2 2 ) Eğer önce ile sonraki uygulamada değişiklik gösteren birim sayısı (b+c)<30 ise, test istatistiği düzeltilir. ( b c 1 b c 2 2 ) Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 42 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 14

15 McNemar testinde Önemlilik McNemar test istatistiğinin önemliliği; sd=1 olan teorik ki-kare dağılımının kritikdeğerlerine göre belirlenir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 43 / 46 ÖRNEK: Bir önceki örneği dikkate alırsak: 2 (25 10) ,428 2 Hesap 6,428 2 Tablo( Sd 1; 0,05) 3,841 p < 0,05 Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 44 / 46 Örnek: Bireylerin hijyenik koşullara uygun davranışının sağlık eğitimi ile olan ilişkisini araştırmak için sağlık meslek lisesine kaydolan rasgele seçilen 134 sağlık mesleklisesi 1. Sınıf öğrencisi anket-izlem araştırması ile izlenerek hijyenik davranış puanları belirlenmiştir. Aynı öğrenciler 3. sınıfta tekrar izlenerek yeniden hijyenik puanları elde edilmiştir. Bulgular Tablo da verilmiştir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 45 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 15

16 Tablo Öntest ve Sontest eğilimleri Ön Test Puanları (1. Sınıf) Son Test Puanları (3. Sınıf) <50 (1) 50+ (2) Toplam <50 (1) (b) (2) 2 (c) Toplam Mc Nemar test istatistiği 2 =(b-c) 2 /(b+c)=(2-86)2/88=80.18 bulunur. 2 =80.18, sd=1, P<0.001***. Sağlık eğitimi hijyenik davranışlar kazanmada önemli bir eğitimdir. Yrd. Doç. Dr. Ünal ERKORKMAZ Slayt 46 / 46 Yrd. Doç. Dr. Ünal ERKORKMAZ 16

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

İki ortalama arasındaki farkın önemlilik testi

İki ortalama arasındaki farkın önemlilik testi Örnek: Kalple ilgili bir çalışmada 5 yaşındaki 4 erkek ve 40 yaşındaki 30 erkeğin sistolik kan basınçları ölçülmüştür. Elde edilen verilere göre 0.05 anlamlılık düzeyinde yaşlı erkeklerin genç erkeklere

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

ĠKĠ ÖRNEKLEM TESTLERĠ

ĠKĠ ÖRNEKLEM TESTLERĠ ĠKĠ ÖRNEKLEM TESTLERĠ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ 1. ĠKĠ ORTALAMA ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ. MANN-WHITNEY U TESTĠ 3. ĠKĠ YÜZDE ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ 4. x KĠ-KARE TESTLERĠ

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

) -3n(k+1) (1) ile verilir.

) -3n(k+1) (1) ile verilir. FİEDMAN İKİ YÖNLÜ VAYANS ANALİZİ Tekrarlı ölçümlerde tek yönlü varyans analizinin varsayımları yerine gelmediğinde kullanılabilecek olan değiģik parametrik olmayan testler vardır. Freidman iki yönlü varyans

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Hipotez Testinin Temelleri

Hipotez Testinin Temelleri Hipotez Testleri Hipotez Testinin Temelleri Tanımlar: Hipotez teori, önerme yada birinin araştırdığı bir iddiadır. Boş Hipotez, H 0 popülasyon parametresi ile ilgili şu anda kabul edilen değeri tanımlamaktadır.

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

1. TANIMLAYICI İSTATİSTİK

1. TANIMLAYICI İSTATİSTİK BİYOİSTATİSTİK Status: Devlet,durum İstatistik: Herhangi bir konuyu incelemek için gerekli verilerin toplanmasını, toplanan verilerin değerlendirilmesini ve değerlendirme sonucu karara varılmasını sağlayan

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?)

çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?) BÖLÜM 5. (Kİ-KARE) ÇÖZÜMLEMESİ çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?) Örneğin; Bir para atma deneyinde olasılıkla

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

BİYOİSTATİSTİK ÖRNEKLEME

BİYOİSTATİSTİK ÖRNEKLEME BİYOİSTATİSTİK ÖRNEKLEME B Doç. Dr. Mahmut AKBOLAT *Bir araştırmada, üzerinde çalışılan konu için gerekli olan bilginin elde edilebilmesi için konu ile ilgili bütün verilerin tek tek araştırılmasına tamsayım

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI 2012 Araş.Gör. Efe SARIBAY 1) Bir kafede yaz aylarında satılan limonataların satış miktarının ortalamasının 24 lt. den az olduğu iddia edilmektedir. İddiayı test etmek

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK. Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr

SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK. Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr METODOLOJİK ARAŞTIRMALAR Tanı yöntemlerinin doğru ölçme derecesi ve bu yöntemleri kullananların farklılıklarını saptamak

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

6.6. Korelasyon Analizi. : Kitle korelasyon katsayısı

6.6. Korelasyon Analizi. : Kitle korelasyon katsayısı 6.6. Korelasyon Analizi : Kitle korelasyon katsayısı İki ya da daha çok değişken arasındaki ilişkiyi gösterir. Korelasyon çözümlemesinin amacı değişkenler arasındaki ilişkinin derecesini ve yönünü belirlemektir.

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

3.YIL/ 1.yarıyıl Güz

3.YIL/ 1.yarıyıl Güz BİYOİSTATİSTİK Dersin Adı Kodu Yarıyıl Teori Laboratuar AKTS Biyoistatistik SBF 118 3.YIL/ 1.yarıyıl Güz (saat/hafta) (saat/hafta) (saat/hafta) 2 - - 3 Önkoşullar Yok Dersin dili Türkçe Dersin Türü Seçmeli

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) S-1) Standart normal dağılıma sahip Z değişkeni için aşağıda istenilen olasılıkları hesaplayınız. S-2) 50 müşteriye yeni bir ürün tattırılır.

Detaylı

Temel Biyoistatistik Kursu-I

Temel Biyoistatistik Kursu-I Düzenleyen: Çanakkale Onsekiz Mart Üniversitesi Tıp Fakültesi Biyoistatistik ve Tıp Bilişimi AD, Sürekli Eğitim Merkezi Temel Biyoistatistik Kursu-I ÇANAKKALE, 17-20 Şubat 2011 Bilgi ve Kayıt : sem.comu.edu.tr

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ

BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ 28.07.2010 SENATO 2010/7-I BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ Amaç MADDE 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması

Detaylı

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi (KTÜ) Ön Lisans ve Lisans

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

BİLİMSEL BİLGİ BİLİMSEL ARAŞTIRMALARLA ÜRETİLİR. İSTATİSTİKSEL YÖNTEMLERE BİLİMSEL ARAŞTIRMA TAMAMLANDIĞINDA DEĞİL, DAHA PLANLAMA

BİLİMSEL BİLGİ BİLİMSEL ARAŞTIRMALARLA ÜRETİLİR. İSTATİSTİKSEL YÖNTEMLERE BİLİMSEL ARAŞTIRMA TAMAMLANDIĞINDA DEĞİL, DAHA PLANLAMA BRADFORD HILL BİLİMSEL BİLGİ BİLİMSEL ARAŞTIRMALARLA ÜRETİLİR. İSTATİSTİKSEL YÖNTEMLERE BİLİMSEL ARAŞTIRMA TAMAMLANDIĞINDA DEĞİL, DAHA PLANLAMA AŞAMASINDA BAŞVURULMALIDIR. 2 BİLİMSEL MAKALELERDE YAPILAN

Detaylı

İSTATİSTİK HAFTA. ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ

İSTATİSTİK HAFTA. ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ HEDEFLER Bu üniteyi çalıştıktan sonra; Araştırma türlerini öğreneceksiniz. Araştırmaları zamana, yere ve veri toplama şekline göre sınıflandırabileceksiniz. Araştırma

Detaylı

AVRASYA ÜNİVERSİTESİ

AVRASYA ÜNİVERSİTESİ Ders Tanıtım Formu Dersin Adı Öğretim Dili ARAŞTIRMA YÖNTEMLERİ-II Türkçe Dersin Verildiği Düzey Ön Lisans () Lisans (X) Yüksek Lisans() Doktora ( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan Öğretim(

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ Amaç Madde 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması ile ilgili esasları

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

İSTATİSTİKSEL ÖNEMLİLİK TESTLERİ

İSTATİSTİKSEL ÖNEMLİLİK TESTLERİ İSTATİSTİKSEL ÖNEMLİLİK TESTLERİ KULLANIM ALANLARI İstatistiksel önemlilik testleri çeşitli durumlarda ve farklı amaçlarla uygulanır. Bu testlerin başlıca kullanım alanları şunlardır:. Evrenden seçilen

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

1.4)) DOKTOR İSTEMLERİ

1.4)) DOKTOR İSTEMLERİ 10.Sınıf Meslek Esasları ve Tekniği 1.4)) DOKTOR İSTEMLERİ 9.Hafta ( 10-14 / 11 / 2014 ) 1.) DOKTOR İSTEMLERİ 2.) İLAÇ KARTI 3.) İLAÇLARDA ÖLÇÜ BİRİMLERİ ve İLAÇ DOZLARININ HESAPLANMASI Slayt No : 14 2

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı