ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü"

Transkript

1 ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı.. Laplace Tranformayonu ile doğrual adi diferaniyel denklemlerin çözümü... Laplace Dönüşümü (Laplace Tranformayonu) Bir itemden itenilen cevabın alınabilmei için kontrol itemi taarımında ilk adım itemin matematikel bir modelinin oluşturulmaıdır. Fizik kurallarının (Newton yaaı veya Kirchoff yaaı) itemlere uygulanmaıyla elde edilen modeller diferaniyel denklemler şeklindedir (Zaman alanı). Fakat doğrual adi diferaniyel denklemlere Laplace tranformayonu uygulanarak itemin Tranfer fonkiyon modeli (Frekan alanı) elde edilebilir. Tranfer fonkiyonu göterimi ile diferaniyel denklem çözümüne gerek olmakızın itemin dinamik analizi yapılabilir. Laplace tranformayonunun avantajları:. Laplace tranformayonu ile diferaniyel denklemler değişkeninde cebirel denklemlere dönüştürülürler. Bu ayede bait cebirel kuralların uygulanmaı ve alanından ter Laplace tranformayonu uygulanarak tekrar t (zaman) alanına geçilmei ile diferaniyel denklemlerin çözümü elde edilebilir.. Birçok temel fonkiyonun Laplace tranformayonunu önceden hazırlanmış tablolarda bulmak mümkündür. Böylece ektra işlem yapmaya gerek kalmaz. Doğrual zaman-bağımız itemlerin analizinde Laplace tranformayonun getirdiği diğer avantajlar aşağıdaki gibi ıralanabilir:. Homojen denklem ve integral işlemi tek bir operayon ile çözülür. 4. Çözüm başlangıç ve ınır değerleri direk olarak içerir.

2 ESM406- Elektrik Enerji Sitemlerinin Kontrolü 5. Yapılan işlemler itematiktir. 6. Sürekli olmayan girişler ile çalışılmaına olanak ağlar. 7. Sitemin Geçici ve Durağan durum çözümleri eş zamanlı olarak elde edilir. 8. Sitemin diferaniyel denklemini çözmeden grafikel metotlarla item dinamiğinin analizinin yapılmaını ağlar. Laplace Tranformayonun tanıtılmaından önce Komplek ayılar hakkında kıa hatırlatma yapacağız. Komplek Sayılar: a jb a: Gerçek kıım b: Imajinal kıım j: Imajinal eleman ( j, Bazı kaynaklarda i = kullanılır.) Kartezyen Koordinatlar: a jb (Şekil.) Şekil.. Komplek bir ayının grafikel göterimi Polar Koordinatlar: = r = a + b (Büyüklüğü) θ = arctan ( b a ) (Açıı) Üel göterim: Şekil... den a = r coθ ve b = r inθ a jb = rcoθ + jrinθ = r(coθ + jinθ) Euler teoreminden e jθ = coθ + jinθ, Böylece, = re jθ ve θ periyodik olduğundan dolayı = re jθ = re j(πk+θ), (k = 0,,,, n)

3 Laplace Dönüşümünün tanımı: ESM406- Elektrik Enerji Sitemlerinin Kontrolü f() t : Zamana bağlı bir fonkiyon t < 0 için f(t) = 0. : Komplek bir değişken L [ ] : Laplace Tranform operatörü f() t nin Laplace tranformu: t L f ( t) F( ) f ( t) e dt Burada = σ + jω, komplek bir değişkendir. 0 Laplace tranformayonu bir İntegral tranformayonudur ve doğrual diferaniyel denklemlerle ifade edilen itemlerin analizinde birçok kolaylık ağlar. Bu kolaylıkların başlıcaı Türev ve İntegral işlemlerini değişkeni ile çarpma ve bölme işlemine dönüştürür. Bu ayede diferaniyel ve integral denklemler çözümü kolayca yapılabilen cebirel polinomlara dönüştürülür... Laplace Dönüşümünün Özellikleri ve Önemli Teoremler. Sabit ile çarpım L[kf(t)] = kf(). Toplam ve Fark L[f (t) ± f (t)] = F () + F (). Türev L [ df(t) dt ] = F() f(0 ) L [ dn f(t) dt n ] = n F() n f(0 ) n f () (0 ) f (n ) (0 ) Burada f (n) (0 ) = dn f(t) dt n t=0 4. İntegrayon t L [ f(τ)dτ] = F() 0 t L [ f(τ)dτdt dt n ] = F() 0 t n 0 t n 0 t 0 n

4 5. Zamanda öteleme ESM406- Elektrik Enerji Sitemlerinin Kontrolü L[f(t τ)u (t τ)] = e τ F() (u (t τ) baamak fonkiyonudur. ) 6. Başlangıç-değer teoremi lim f(t) = lim F() t 0 7. Son-değer teoremi lim f(t) = lim F() t 0.4. Bait fonkiyonların Laplace Dönüşümleri Laplace tranform metodunu kullanarak baamak, rampa, exponaniyel (ütel) ve inüzoidal gibi yaygın fonkiyonlar komplek değişkenin bir fonkiyonu olan cebirel fonkiyonlara dönüştürülebilir. Örnek ) Step fonkiyonu Çözüm: Baamak fonkiyonu t 0 için u (t) = ve t < 0 için u (t) = 0 olarak tanımlıdır. Örnek ) Exponential fonkiyon.5. Ter Laplace Dönüşümü bölgeinde ( domeninde) işlemler yapıldıktan onra t bölgeine (t domenine) geri dönülmek itenir. F ten () f(t) nin elde edilmeine ter Laplace tranformayonu denir. F () fonkiyonuna aşağıdaki integral işlemi ile tanımlanan ter laplace dönüşümü uygulanarak f() t fonkiyonu elde edilir. 4

5 ESM406- Elektrik Enerji Sitemlerinin Kontrolü j f() t L t F( ) F( ) e d j j Burada σ reel (gerçek), abit bir ayıdır ve F() in tanımız yapan tüm değerlerin reel kıımlarından büyüktür. Yukarıdaki denklem düzleminde değerlendirilen bir çizgiel integraldir ve çözümü bazı bait fonkiyonlar dışında zordur. Çoğu zaman bir fonkiyonun ter Laplace tranformunu bulmak için Laplace tablolarından faydalanabilir. Tablo.. de bazı bait temel fonkiyonların Laplace tranformları verilmiştir. Tablo.. Bazı fonkiyonların Laplace Dönüşümleri Fonkiyon f(t) F() Baamak (Step) Rampa (Ramp) A.u(t) A.t Polinom (Polynomial) t n n! n Ütel (Exponential) e -at a Sinü (Sinuoidal) Sinwt Coinü (Coinuoidal) Cowt Sönümlü Sinü (Damped ine) e -at Sinwt ( a) Sönümlü Coinü (Damped co) e -at a Cowt ( a) A A ( a) te -at n! t n e -at n ( a) 5

6 ESM406- Elektrik Enerji Sitemlerinin Kontrolü.6. Kımi Keirlere Ayırma yöntemi Sitemlerin tranfer fonkiyonları değişkeninin rayonel fonkiyonu şeklindedir. B () F () A () A() ve B() değişkenine bağlı polinomlardır. Zaman cevabına geçmek için tranfer fonkiyonunun ter Laplace tranformu, Laplace tranform tabloları kullanılarak kolayca elde edilebilir. Fakat bunun için tranfer fonkiyonunun kımı keirlere ayırarak bait fonkiyonların toplamı şeklinde ifade edilmei gereklidir. m B( ) b... b b m m 0 n A( ) a... a a n n 0 Kontrol itemlerinde A() in mertebei B() in mertebeinden büyüktür, ( n m) bu nedenle bait keirlere ayırma yöntemi ile F() rayonel fonkiyonu elementer fonkiyonlar cininden ifade edilebilir. Bu ayede F() fonkiyonunu kolaylıkla entegre edilebilen daha bait keirlerin toplamı şekline dönüştürmüş oluruz. Rayonel bir fonkiyon için kutuplar (pole) ve ıfırlar (zero) kavramı çok önemlidir. Rayonel bir fonkiyon kutupları ve ıfırları ile karakterize edilir. Bir itemin kutupları ve ıfırları o itemin kararlı olup olmadığını ve performanının ne kadar iyi olduğunu göterir. Kontrol itemleri taarımı da iteme yeni kutuplar ve ıfırlar atanarak yapılır. F() fonkiyonunu ıfır yapan değerlerine itemin ıfırları (zero) denir. F() fonkiyonunu onuz yapan değerlerine de itemin kutupları (pole) denir. Örnek: Aşağıdaki fonkiyonun kutuplarını ve ıfırlarını bulunuz. F () ( )( 5)( 4) ( ) de itemin bir adet ıfırı vardır., 5, 4, 4, j, j itemin kutuplarıdır. F() toplam 6 kutuba ahiptir, i bait kutup. i katlı kutup ve çift komplek eşlenik kutup vardır. O halde kımi keirlere ayırmada kutupların türüne göre hal mevcuttur. Aşağıda bait keirlere ayırma yönteminin itemin kutuplarının bait, komplek, katlı olmaı durumlarına göre uygulanışı verilecektir. 6

7 ESM406- Elektrik Enerji Sitemlerinin Kontrolü ) Bait Kutuplar hali F K K K n ( )... K, K,..., K n abitlerdir. Bu abitler K ( ) F( ) i i i olarak heaplanır. Tablo yardımıyla ter dönüşüm yapılarak n f ( t) K e K e... K e bulunur. t t n n t ) Katlı Kutuplar hali F () B () a F () K K K a ( a) ( a) K a F ( ) ( ) a d K a F d ( ) ( ) a d K a F ( ) ( )! d a Örnek: (Bait ve katlı kökler) F () F () A B B B ( ) ( ) A ( ) F( ) ( ) 7

8 ESM406- Elektrik Enerji Sitemlerinin Kontrolü B F ( ) ( ) ( ) d d B ( ) F( ) d d ( ) ( ) d d ( ) 4! d d ( ) ( ) B ( ) F( ) F () ( ) ( ) t e n ( a) ( n )! L n at f() t L F() e e t e t e t t t t ) Komplek Eşlenik Kutuplar hali Örnek üzerinde izah edilecektir. Soru ) Başlangıç şartları verilen aşağıdaki problemi Laplace dönüşümü kullanarak çözünüz. y 4 y t, y(0), y(0) Çözüm: L y 4 L y L t L y L y Y() t L Y y y Y ( ) (0) (0) ( ) 8

9 ESM406- Elektrik Enerji Sitemlerinin Kontrolü Y( ) 4 Y( ) Y ( )( 4) Y( ) ( 4) Y( ) ( 4) ( 4) A A B C Y () ( 4) A Y() 0 4 d d ( 4 )( 4) ( ) A ( ) 0 Y d 0 d 4 ( 4) B ( ) Y( ) (4)(4) C ( ) Y( ) (4)( 4) 6 5 Y () L t 5 y() t e e t t Soru ) Başlangıç şartları verilen aşağıdaki problemi Laplace dönüşümü kullanarak çözünüz. y y y t e y y t 4, (0), (0) Çözüm: Y y y Y y Y 4 (0) (0) (0) 9

10 Y Y Y Y ESM406- Elektrik Enerji Sitemlerinin Kontrolü Y Y A A B C D Y () A Y ( ) 4 d d 7 4 Y () d 0 d A 4 (4 6 4)( 6 6) ( )( 7 4 ) ( 6 6) 0 (4)( 6) ()( ) B ( ) Y( ) 7 4 C ( ) Y( ) D ( ) Y( ) 0

11 Y () L y( t) t e e e ESM406- Elektrik Enerji Sitemlerinin Kontrolü t t t Soru ) F () denklemini ter Laplace dönüşümü kullanarak çözünüz. Çözüm: Sitem komplek köklere ahipe bu durumda komplek kökleri önümlü inü veya coinü formuna getirmekte fayda vardır. 4 j , j j j ( )( ) Hatırlatma: ( a b)( a b) a b ( a jb)( a jb) a b Bu duruma Laplace tranform tabloundan karşılık gelen fonkiyonlar L[e αt ω inωt] = ( + α) + ω L[e αt + α coωt] = ( + α) + ω

12 A B C F () ESM406- Elektrik Enerji Sitemlerinin Kontrolü ( ) () A A A B C A B 0 A A C B 0 A C 0 Katayıları Bulmanın Diğer Yolu: A B C F () A F( ) 0 0 kutuplar olmak üzere uygun değerleri eçilir. 0, 0.5 j hariç değerleri eçilir. BC için ( ) B C B C BC için (4 ) 4 B C B C 4 7 B C 0 bulunur.

13 F () ESM406- Elektrik Enerji Sitemlerinin Kontrolü F () F () L f t e t e t t 0.5t ( ) co(0.866 ) in(0.866 ) Soru 4) Başlangıç şartları verilen aşağıdaki problemi Laplace dönüşümü kullanarak çözünüz. y y e y y t, (0), (0) 0 Çözüm: Y y(0) y(0) Y Y Y Y( ) ( ) ( ) ( ) Y 9 A B C D ( )( ) A Y( ) B ( ) Y( ) ( ) ( )(0) 0

14 ESM406- Elektrik Enerji Sitemlerinin Kontrolü Y 9 C D ( )( ) 0 kutuplar olmak üzere uygun değerleri eçilir. 0,, j 9 C D için (4)() 0 4 C D 8 40 C D C D C D C D için ( )()() 0 C D 4 0 C D C D C D C 0 9 D 0 bulunur. 7 9 Y () Y () L t y( t) e co t in t Soru 5) Y () çözünüz. 8 denklemini ter Laplace dönüşümü kullanarak Çözüm: 4

15 ESM406- Elektrik Enerji Sitemlerinin Kontrolü 8 0, 4 8 j 0, j j ( j)( j) A B C D E F Y () B 8 ( ) Y 0 A d d 8 d d Y () ( )( ) ( )( ) 0 8 ( )() ( )( ) ( ) (4) ( 8)() (4)(4) (4)(4) (4)(4) 8 8 C ( ) Y( ) (4)()(4 4 ) D ( ) Y( ) ()( )( ) 5 5

16 ESM406- Elektrik Enerji Sitemlerinin Kontrolü 8 E F Y () E F için ( )( ) E F 5 (5) (5) () E F E F için 8 8 EF (4)(4 )(4 4 ) 4 ( 4) 5 ( ) EF (6)(0) EF E F 4 E F E F E E F 4 E F E E F F bulunur Y () Y () 5 5 ( j)( j) ( ) 6

17 ESM406- Elektrik Enerji Sitemlerinin Kontrolü Y () 5 5 ( ) 5 ( ) Y () 5 5 ( ) 5 ( ) 5 ( ) 8 6 Y () 5 5 ( ) 5 ( ) L t t t t y( t) t e e e cot e in t F () (5p) 5 denklemini ter Laplace dönüşümü kullanarak çözünüz. Çözüm Anahtarı A B C D F () , j 4 B d 0 (4) A d

18 ESM406- Elektrik Enerji Sitemlerinin Kontrolü B C D D D 0 D ()(5) (8) (5) C D C D C D (4)(4) F () t t t f ( t) e te e co t

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü

Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü Oomaik Konrol I Laplace Dönüşümü Vafi Emre Ömürlü Laplace Dönüşümü: Özellikleri eoremleri Kımî Keirlere Ayırma By Vafi Emre Ömürlü, Ph.D., 7 Laplace ranform I i advanageou o olve By uing, we can conver

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ-MAKİNA MÜHENDİSİĞİ BÖÜMÜ 1 MK371 ISI RANSFERİ (+) DERSİ-ÖZE BİGİER: (8.6) EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ MAKİNA MÜHENDİSİĞİ BÖÜMÜ MK371 ISI RANSFERİ (+) DERSİ.BÖÜM

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri Makine Teknolojileri Elektronik Dergii Cilt: 7, No: 1, 010 (31-4) Electronic Journal of Machine Technologie Vol: 7, No: 1, 010 (31-4) TENOLOJĐ ARAŞTIRMALAR www.teknolojikaratirmalar.com e-issn:1304-4141

Detaylı

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ Tanel YÜCELEN 1 Özgür KAYMAKÇI 2 Salman KURTULAN 3. 1,2,3 Elektrik Mühendiliği Bölümü Elektrik-Elektronik Fakültei İtanbul Teknik

Detaylı

Devreler II Ders Notları

Devreler II Ders Notları Devreler II Der Noları 3-4 LAPLACE DÖNÜŞÜMÜNÜN DURUM DENKLEMLERİNİN ÇÖZÜMÜNDE KULLANILMAI Doğrual zamanla değişmeyen bir devrenin analizi için oluşan durum denklemi abi kaayılı doğrual diferaniyel denklem

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi Akademik Bilişim 0 - XII. Akademik Bilişim Konferanı Bildirileri 0-2 Şubat 200 Muğla Üniveritei Uydu Kentlerin Taarımı için Bir Karar Detek Sitemi ve Bilişim Sitemi Modeli Önerii TC Beykent Üniveritei

Detaylı

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi Bölüm 7 Sinüoidal Kalıcı Durum Devre Analizi 7. Sinüoidal kaynaklar 7. Ortalama ve Etkin Değer 7.3 Karmaşık Sayılar 7.4 Sinüoidallerin Fazör Göterimi 7.5 Devrelerin Sinüzoidal Kalıcı Durum Cevabı 7.6 Devrelerin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI OOMAİ ONROL SİSEMLERİ DOĞRUSAL LİNEER GERİ BESLEMELİ SİSEMLERİN ARARLILIĞI ararlılık Denetim Sitemlerinden; ararlılık Hızlı cevap Az veya ıfır hata Minimum aşım gibi kriterleri ağlamaı beklenir. ararlılık;

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO ' Elektrik - Elektronik ve Bilgiayar Mühendiliği Sempozyumu, 9 Kaım - Aralık, Bura Zaman Gecikmeli Yük Frekan Kontrol Siteminin ekaiu Yöntemi Kullanılarak Kararlılık Analizi Stability Analyi of Time-Delayed

Detaylı

1. MATEMATİKSEL MODELLEME

1. MATEMATİKSEL MODELLEME . MATEMATİKSEL MODELLEME İşletmeler çabuk ve iabetli kararlar alabilmeleri büyük ölçüde itematik yaklaşıma gerekinim duyarlar. İter ayıal analizler, iter yöneylem araştırmaı adı altında olun uygulanmakta

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında Bölüm #2 Laplace Dönüşümü F (s) = f(t)e st dt s > şeklinde tanımlanan dönüşüme LAPLACE dönüşümü adı verilir ve kısaca L{f(t)} ile sembolize edilir. Diferansiyel denklemlerin Çözümünde Laplace dönüşümü

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir oktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJEİ AMACI: Bu projede herhangi bir koniğin üzerindeki veya dışındaki bir noktadan

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YAĞLAMA VE KAYMALI YATAKLAR

YAĞLAMA VE KAYMALI YATAKLAR YAĞLAMA TĐPLERĐ YAĞLAMA VE KAYMALI YATAKLAR Yağlamanın beş farklı şekli tanımlanabilir. 1) Hidrodinamik ) Hidrotatik 3) Elatohidrodinamik 4) Sınır 5) Katı-film VĐSKOZĐTE τ F du = = A µ dy du U = dy h τ

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ

DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ T. C. GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK E FEN BİLİMLERİ ENSTİTÜSÜ DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ Ulaş EMİNOĞLU DOKTORA TEZİ ELEKTRONİK MÜHENDİSLİĞİ

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi EEB 06 Elektrik-Elektronik ve Bilgiayar Sempozyumu, -3 Mayı 06, Tokat TÜRKİYE Haberleşme Gecikmeli Hibrid Enerji Üretim Siteminin Kararlılık Analizi Hakan GÜNDÜZ Şahin SÖNMEZ Saffet AYASUN Niğde Üniveritei,

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ Modelleme Önceki bölümlerde blok diyagramları ve işaret akış diyagramlarında yer alan transfer fonksiyonlarındaki kazançlar rastgele

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER Doç. Dr. Mustafa KANDEMİR Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER ISBN: 978-605-318-31-1 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 015, Pegem Akademi

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5 problem ) +=0 koku nedir =- +5=0 koku nedir =-5-5=0 koku nedir =+5 -------------------------- -------------------------- problem ) +=0, ifirdan onuza kadar degiire kok nail degiir. +=0 kokleri 0 0 - -

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

denklemini x=0 adi nokta civarında çözünüz.

denklemini x=0 adi nokta civarında çözünüz. dklmii = adi okta ivarıda çözüüz. Rküra bağıtıı DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN y +y +( /6y= ( dklmi içi = oktaıı düzgü tkil okta olduğuu götri, İdi dklmii köklrii bulu v çözü. P( = = = = tkil okta

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK3002 OTOMATİK KONTROL MATLAB UYGULAMALARI 1

MAK3002 OTOMATİK KONTROL MATLAB UYGULAMALARI 1 MAK300 OTOMATİK KONTROL MATLAB UYGULAMALARI Matematica, Maple, Macyma programları öncelikli olarak embolik cebir işlemleri yapan paket programlardır. Elbette ayıal heaplama da yaparlar. Bu paket programlardan

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Böylece aşağıdaki gerilme ifadelerine ulaşılır: Bu problem için yer değiştirme denklemleri aşağıdaki şekilde türetilir: Elastisite Teorisi Polinomlar ile

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI

MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI MOSFET BSIM3V3 EŞİK GERİLİMİ VE MOBİLİTE PARAMETRELERİNİN GENETİK ALGORİTMA İLE ÇIKARTILMASI M.Emin BAŞAK 1 Ayten KUNTMAN Hakan KUNTMAN 3 1, İtanbul Üniveritei,Mühendilik Fakültei, Elektrik&Elektronik

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı