AST412 AY ve GÜNEŞ TUTULMALARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AST412 AY ve GÜNEŞ TUTULMALARI"

Transkript

1 Ankara Üniversitesi Fen Fakültesi Astronomi ve Uzay Bilimleri Bölümü AST412 AY ve GÜNEŞ TUTULMALARI DERS NOTU Hazırlayan: Doç. Dr. Selim O. SELAM Ankara, 2007

2 2

3 3 AYDINLANMA ve GÖLGE Şekil 1 de görüldüğü gibi, büyük yarıçaplı küresel bir ışık kaynağı ile bu kaynaktan belirli uzaklıkta bulunan bir perde arasına, yarıçapı ışık kaynağından daha küçük ışıksız bir küresel cisim konulduğunda, perde üzerinde oluşan gölgenin yapısını inceleyelim: Şekil 1 Işık ışınlarının bir doğru boyunca yayılma özelliği olduğundan Şekil 1 deki c ve d noktaları arasında kalan dairesel bölgeye hiç ışık düşmez ve bu nedenle oluşan gölge tamamen karanlıktır. Gölgenin, ab ve cd çaplı çemberler arasında kalan bölümünde ise ışık kaynağının bazı noktalarından ışık ulaşır. Bu nedenle bu bölgeye ait gölge daha az karanlıktır ve cd çaplı dairenin kenarından ab çaplı dairenin kenarına yaklaştıkça, gölgenin kararma miktarı azalarak yok olur. ab çaplı çemberin dışında kalan bölgeye ise ışık kaynağının her noktasından ışık ulaştığından tamamen aydınlıktır. Oluşan gölgenin kaynaktan hiç ışık almayan tam karanlık kısmına tamgölge (umbra), daha az karanlık olan kısmına ise yarıgölge (penumbra) denmektedir. Şekil 2 de, perdeye dik olarak bakıldığında oluşan gölgenin yapısı görülmektedir.

4 4 Şekil 2 Şekil 3 Şekil 3 de görüldüğü gibi ışıksız olan cisim, ışık kaynağına bakan yüzeyinin zıt yönünde koni şeklinde ışıksız bir hacim oluşturur. Kaynaktan hiç ışık ulaşmayan bu geometrik yapıya tamgölge konisi denir. Aynı yönde, kaynağın ışığının kısmen ulaşabildiği ikincil bir yarı-karanlık hacim daha oluşur (şekilde gri renkte taranmış bölge). Bu geometrik yapıya ise yarıgölge konisi adı verilmektedir. Şekilden de açıkça görüleceği gibi, tamgölge konisinin sınırlı boyutta ve kaynak ile ışıksız cisim arasındaki uzaklığa bağlı bir yüksekliği bulunurken, yarıgölge konisinin yüksekliği sonsuz uzunlukta olmaktadır. Şekil 4 den yararlanarak tam gölge konisinin yüksekliğini veren ifadeyi elde edelim:

5 5 Şekil 4 Δ O1 BT ve Δ O2 AT diküçgenlerinin benzerliğinden; O 2 A O B 1 O T 2 = yazılabilir. Burada, O T 1 O 1 B = R küresel ışık kaynağının yarıçapı, O 2 A = r ışıksız küresel cismin yarıçapı, O O 2 d 1 = ışık kaynağı ile ışıksız cisim arası uzaklık, O 2 T = h tamgölge konisinin yüksekliği ve O1 T = O1O2 + O2T = d + h olmak üzere benzerlik bağıntısından, r h = yazılabilmektedir. h için düzenleyecek olursak tamgölge R d + h konisinin yüksekliğini veren ifade aşağıdaki şekilde elde edilir: r d h =... (1) R r AY ve YER İN TAMGÖLGE KONİLERİNİN ÖZELLİKLERİ Yukarıdaki şekillerde ve tanımlarda aydınlanma ve gölge geometrisini incelediğimiz cisimlerin; Güneş ve Ay tutulmalarını temsil eden cisimler olması halinde formüllerde kullanacağımız nicelikler şunlar olacaktır:

6 6 Güneş Tutulması Ay Tutulması R = R Güneş in yarıçapı R = R Güneş in yarıçapı r = r Ay ın yarıçapı r = r Yer in yarıçapı d = d Güneş-Ay uzaklığı d = d Yer-Güneş uzaklığı h = h Ay ın tamgölge konisinin yüksekliği h = h Yer in tamgölge konisinin yüksekliği d = Δ - Δ d = Δ Burada Δ ve Δ sırasıyla Yer-Güneş uzaklığı ve Yer-Ay uzaklığı olup zamana bağlı olarak değişim gösterdiklerini ifade etmektedirler. Hesaplamalarda R = 695,700 km (ekvator yarıçapı), r = 6, km ve r = 1,738 km olarak dikkate alınırlar. Tutulma hesaplarında yukarıda verilen Yer in ekvator yarıçapı birim olarak alınır. Buna göre r = 1 olmak üzere; 695,700 1,738 R = = r ve r 6, = 6, = r olur. Yer in Güneş etrafında, Ay ın ise Yer etrafındaki yörüngelerinin birer elips olmasından dolayı, Δ ve Δ nicelikleri sabit değerlere sahip değildirler. Yapılan duyarlı ölçümlerle bu niceliklerin en büyük (max) ve en küçük (min) değerleri Δ min = 147,100,000 km = 23,063 r Δ max = 152,100,000 km = 23,847 r

7 7 Δ min = 361,800 km = r Δ max = 407,000 km = r olarak bulunmuştur. Bu bilgilerin ışığı altında bir Güneş tutulması için Ay ın tamgölge konisi yüksekliğinin alabileceği uç değerleri belirleyelim. Herhangi bir anda Ay ın tamgölge konisi yüksekliği veren bağıntı, yukarıda verilen tanımlara göre şu şekilde yazılır: h d r =... (2) R r Buna göre Ay ın tamgölge konisi yüksekliğinin alabileceği uç değerleri (en küçük ve en büyük) belirleyebilmek için dört farklı durumu gözden geçirmemiz gerekmektedir: 1. DURUM: Yer ve Ay yörüngelerinin enberi noktasında: ( Δ Δ min r = ) r min ( ) h = = R r DURUM: Yer ve Ay yörüngelerinin enöte noktasında: ( Δ Δ max r = ) r max ( ) h = = R r DURUM: Yer yörüngesinin enberi, Ay ise enöte noktasında: ( Δ Δ max r = ) r min ( ) h = = R r

8 8 4. DURUM: Yer yörüngesinin enöte, Ay ise enberi noktasında: ( Δ Δ min ) r = r max ( ) h = = R r Buna göre Ay ın tamgölge konisi yüksekliğinin alabileceği sınır değerler için r h r yazılabilir. Sonuç olarak, bir Güneş tutulması için Ay ın gölge konisi yüksekliği, en büyük değerine, Yer yörüngesinin enöte, Ay ise enberi noktasında iken ulaşırken, en küçük değerini ise, Yer yörüngesinin enberi, Ay ise enöte noktasında bulunurken alabilmektedir. Bir tam Güneş tutulmasının oluşabilmesi için, Şekil 5 ten de görüleceği gibi, Ay ın tamgölge konisi yüksekliğinin, Ay-Yer yüzeyi arasındaki uzunluktan ( AB ) daha büyük olması gerekmektedir. Buna göre; Şekil 5 AY = Δ, BY = r = 1, AB = Δ r = Δ 1, AT = h Daha önce Δ min = r ve Δ max = r olduğunu göstermiştik. Bu durumda AB uzaklığı için uç değerler AB min = Δ min 1 = r ve AB max = Δ max 1 = r olmaktadır. Bu değerleri Ay ın tamgölge konisi yüksekliği h için hesapladığımız uç değerlerle karşılaştıralım. h ın en

9 büyük değeri r, AB uzunluğu için hesapladığımız en büyük değer r den daha küçüktür. Bu koşul altında (h max, AB max ) bir tam Güneş tutulması gerçekleşmeyeceği açıktır, çünkü Ay ın tamgölge konisi Yer yüzeyine kadar ulaşamamaktadır. h ın en küçük değeri r ise, AB için belirlediğimiz en küçük değer r den daha büyük olduğundan, diğer tutulma koşullarının da sağlanması halinde bir tam Güneş tutulması oluşabilecektir. Bu irdelemelerden görülüyor ki, Ay ın Yer ile Güneş arasından her geçişinde bir Güneş tutulması meydana gelmez ve belirli koşulların sağlanması halinde tutulmalar oluşabilir. Şimdi de Yer in tamgölge konisinin yüksekliğini (h ) veren ifadeyi bulalım: Şekil 6 Şekil 6 da görüldüğü gibi, Yer merkezinden DT teğetine bir paralel çizelim. Böylece oluşan olduklarından Δ BYG diküçgeni ile YT CY = yazılabilir. Burada; GY BG Δ CYT diküçgeni benzer GY = d CY = r Yer-Güneş uzaklığı, Yer in ekvator yarıçapı,

10 10 YT = h Yer in tamgölge konisi yüksekliği, BG = R r dir. Benzerlik bağıntısında yerine koyacak olursak; h d r = ve düzenlersek Yer in tamgölge konisinin yüksekliğini R r veren bağıntıyı aşağıdaki şekilde elde ederiz: h d r =... (3) R r Yer in tamgölge konisi yüksekliği, yalnızca Yer-Güneş arası uzaklığa bağlı olarak değişeceğinden, alabileceği uç değerler iki durumda karşımıza çıkacaktır. Buna göre; 1. DURUM: Yer yörüngesinin enberi noktasında: Δ r = r min h = = min R r DURUM: Yer yörüngesinin enöte noktasında: Δ r = r max h = = max R r Buna göre Yer ın tamgölge konisi yüksekliğinin alabileceği sınır değerler için r h r yazılabilir. Görüldüğü gibi, Yer-Güneş uzaklığının en küçük olduğu durumda bile, Yer in tamgölge konisi yüksekliği, Yer-Ay uzaklığının en büyük değerinden (Δ max = r ) daha büyük olmaktadır. Bu durumda diğer tutulma koşulları sağlandığı sürece Yer in Güneş ile Ay

11 arasından geçişinde, Yer-Ay uzaklığına bağlı olmaksızın mutlaka bir Ay tutulması gerçekleşebilecektir. 11 Tutulmaların oluşma koşulları açısından şu ana kadar Yer in ve Ay ın tamgölge konisi yüksekliklerinden gelen kısıtlamaları gördük ve geriye kalan durumları diğer tutulma koşulları olarak dile getirdik. Diğer koşullar temelde Ay ın Yer etrafındaki yörünge düzleminin, Yer in Güneş etrafındaki yörünge düzlemi (ekliptik-tutulum) ile çakışık olmamasından kaynaklanmaktadır. Ay ve Güneş tutulmalarının oluşma koşullarını doğru bir biçimde ortaya koyabilmek için, Ay ın yörünge özelliklerini ve görünürdeki hareketlerini iyi kavramak gerekir. AY IN YÖRÜNGESİ ve HAREKETLERİ Yer in tek doğal uydusu olan Ay, Yer etrafında dışmerkezliği olan elips bir yörünge üzerinde dolanır ve bir tam turunu günde tamamlar (=yıldızıl dönemi). Yörüngesi üzerinde, Yer e en uzak olduğu enöte konumu apoge noktası, en yakın olduğu enberi konumu ise perige noktası olarak adlandırılmaktadır. Ay ın bu noktalarda Yer e olan uzaklıkları Δ max ve Δ min olarak verilmişti (Şekil 7). Ortalama Yer-Ay uzaklığı ise 384,400 km dir. Ay ın yörüngesi ekliptik düzlemi ile 05 09' lık bir açı yapmaktadır (Şekil 8). Ay ın ve Yer in yörünge düzlemlerinin arakesitine düğümler doğrusu adı verilir. Ay Şekil 7 Şekil 8

12 12 yörüngesinin düğümler doğrusu ile kesiştiği noktalara ise düğüm noktaları denmektedir. Ay ın yörüngesi üzerindeki hareketi prograt yöndedir ve bu yörünge üzerinde ekliptiğin kuzeyinden güneyine geçtiği düğüm noktasına iniş düğümü, güneyinden kuzeyine geçtiği noktaya ise çıkış düğümü adı verilir. Yer den bakıldığında, Ay ın aydınlık görünen kısmının günden güne değiştiği gözlenir. Ay, Güneş ten aldığı ışığı yansıtmaktadır ve yer-merkezli yörüngesi üzerinde hareket ettiği sürece, Güneş-Yer-Ay doğrultuları arasındaki açı (=uzanım açısı) sürekli olarak değişmektedir. Bu durum, Ay ın evreleri olarak adlandırılan ve aydınlık görünen kısmının boyutlarının dönemli olarak değişmesini sağlayan olguyu ortaya çıkarmaktadır. Şekil 9 da, Güneş ışınlarının geliş yönüne göre Ay ın Yer den görülen temel 8 evresine ait geometri verilmiştir. Şekle göre Ay, yörüngesi üzerindeki A konumunda bulunurken bize bakan yüzeyi Güneş ten hiç ışık almaz ve gökyüzünde kabaca Güneş ile aynı doğrultuda bulunur (uzanım açısı 0 ). Yeniay adı verilen bu evrede Ay, Yer den görülemez. Yeniay evresinden kabaca 3-4 gün sonra Ay, yörüngesinde B konumuna gelir ve Yer üzerinde günbatımı zamanında güneybatı yönüne bakan bir gözlemci, Ay ın sağ tarafının aydınlık olduğunu görür. Bu evreye hilal denmektedir. Yeniay evresinden kabaca 7 gün sonra, Şekil 9

13 13 Ay yörüngesinde C noktasına ulaşır, doğu uzanımı açısı 90 olur ve günbatımında güneye bakan bir gözlemci Ay ın tam olarak sağ yarısının aydınlanmış olduğunu görür. Bu evreye ise ilkdördün denmektedir. Ay bu şekilde yörüngesi üzerinde harekete devam ederken D noktasına ulaştığında, Yer deki gözlemci günbatımında Ay ı güneydoğu yönünde ve sağ tarafındaki aydınlık büyümüş olarak şişkin evrede görecektir. Yeniay evresinden kabaca 14.5 gün sonra E noktasına gelindiğinde ise, Ay günbatımının hemen sonrasında doğu ufkundan henüz yeni yükseliyor olacaktır ve tamamının aydınlık olduğu dolunay evresinde görülecektir. Bu durumda Ay ın uzanım açısı 180 dir. Bunu takip eden F, G ve H noktalarında evreler tersine bir şekil gösterir ve Ay ın sol tarafındaki aydınlık, ilerleyen günlerde yavaşça azalarak tekrar yeniay evresine ulaşılır. Ardışık olarak, aynı evreden iki kez üst üste geçiş için gereken süreye, Ay ın kavuşum dönemi denir ve süresi gündür. Dikkat edilecek olursa, Ay ın kavuşum dönemi yıldızıl döneminden daha uzundur. Bunun sebebi, Ay ın yörünge hareketi boyunca, Yer in de yörüngesi üzerinde hareket etmesidir. Şekil 10 dan da görüleceği gibi (1) konumunda yeniay evresinde olan Ay, yörünge hareketi ile bir yıldızıl dönemini tamamladığında bir sonraki yeniay evresine, yani şekildeki (2) konumuna ulaşabilmek için bir miktar daha yörüngesi üzerinde yol alması gerekmektedir. Bu durum, Ay ın kavuşum döneminin yıldızıl döneminden kabaca 2 gün daha uzun olmasına neden olmaktadır. Şekil 10

14 14 Şekil 11 Şekil 12 Ay ın kendi ekseni etrafındaki dönme süresi, yörüngesi üzerinde bir turunu tamamladığı yıldızıl dönem süresine eşittir. Bu nedenle Yer den bakıldığında Ay ın hep aynı yüzü bize dönük görülmektedir. Bir gökcismi için dönme ve dolanma dönemlerinin eşit olduğu bu duruma eş-dönme (senkronize-dönme) denmektedir. Ancak Ay ın kendi ekseni etrafındaki dönme hızı sabit iken, elips şeklindeki yörüngesi üzerinde dolanma hızının sabit olmaması nedeniyle görünen yüzey, bir yörünge hareketi boyunca doğubatı doğrultusunda bir salınım yapar (Şekil 11). Yörüngesi üzerinde perige noktasına doğru yaklaştıkça yörünge hızı artarken ekseni etrafındaki sabit dönme hızı göreli bir gecikme gösterir ve yörünge hareketinin zıt yönündeki yarı küresinden ek alanların görülmesini sağlar. Buna karşılık apoge noktasına doğru yaklaştıkça yörünge hızı yavaşlarken ekseni etrafındaki dönme hızı göreli olarak baskın çıkar ve yörünge hareketi yönündeki yarı küresinden ek alanların görülmesine olanak tanır. Buna ek olarak dönme ekseninin yörünge düzlemine dik olmayışı (Ay ın ekvatoru ile yörünge düzlemi arasında 06 41' lik bir açı vardır) ise, bir yörünge dönemi boyunca görünen yüzeyin kutuplar doğrultusu boyunca da salınmasına neden olur (Şekil 12). Yörüngesinin yarısı boyunca güney kutup noktasının ötesini, diğer yarısı boyunca da kuzey kutbunun ötesini görmemiz mümkün olmaktadır. Böylelikle, Ay, ortalama olarak bize hep aynı yüzünü gösterirken, bir yörünge dönemi boyunca Yer den bakıldığında toplam yüzeyinin %59 unun görülebilmesini sağlamaktadır. Ay ın, bir yörünge dönemi boyunca, Yer den izlenen bu salınım hareketine librasyon denmektedir. Doğu-batı salınımı boylamsal librasyon olarak adlandırılırken, kutuplar boyunca salınımı enlemsel librasyon olarak anılır.

15 15 Şekil 13 Bunlardan başka Ay ın günlük librasyon olarak adlandırılan, ancak etkisi çok da kolay fark edilemeyen bir librasyon hareketi daha vardır. Bu etki adından da anlaşılacağı üzere, Ay ın bize dönük yüzeyinin bir gün boyunca %50 sinden fazlasının izlenmesini sağlayan bir olgudur. Şekil 13 ten de görüleceği gibi Yer üzerindeki bir gözlemci, Ay doğarken doğu kenarının ötesini, batarken ise batı kenarının ötesini görebilmektedir. Ancak şekilde gösterilen abartılı fazlalıklar yerine, gerçekte gün içinde izlenen bu ek alanlar çok küçüktür ve dikkatle incelenirse farkına varılabilir. TUTULMA KOŞULLARI ve TÜRLERİ Bazen Güneş, Yer ve Ay bir doğru boyunca dizilebilmektedir. Bu durumda Yer in gölgesi Ay üzerine veya Ay ın gölgesi Yer üzerine düşebilmektedir. Bu olaylara tutulmalar denmektedir. Ay ın, Yer in gölge konisi içinden geçmesi halinde bir Ay tutulması oluşmaktadır ve bu anda Ay Şekil 9 da gösterilen E konumunda, yani dolunay evresine ilişkin konumda olacaktır. Aslında bu evrede Ay ın görünen diskinin tamamının Güneş tarafından aydınlatılması gerekirken, Yer in gölgesinin üzerine düşmesi nedeniyle tamamen karanlıkta kalır.

16 16 Yer in, Ay ın gölge konisi içinden geçmesi halinde ise bir Güneş tutulması oluşmaktadır. Bu durumda Yer den bakıldığında Ay, Güneş in önüne geçerek, ışığının Yer e ulaşmasını engellemektedir. Bir Güneş tutulmasının gerçekleştiği anda Ay, Şekil 9 da gösterilen A konumunda, yani yeniay evresinde bulunmaktadır. Böylece tutulma koşulları açısından karşımıza iki önemli sonuç çıkmaktadır: a) Bir Ay tutulması ancak dolunay evresinde (veya civarında) b) Bir Güneş tutulması ancak yeniay evresinde (veya civarında) gerçekleşebilmektedir. Tutulma koşulları yalnızca bunlardan ibaret olsaydı, Ay ın her 29.5 günlük kavuşum dönemi boyunca bir Güneş ve bir de Ay tutulmasının gerçekleşmesini beklerdik. Ancak bir yıl içerisinde gerçekleşebilen Ay ve Güneş tutulmalarının sayısı bu beklentinin çok altındadır ve birkaç taneyi geçmemektedir. Bunun temel nedeni, Şekil 8 de de gördüğümüz gibi, Yer in ve Ay ın yörünge düzlemlerinin tam olarak çakışmaması ve aralarında 5 9 gibi bir açının varolmasıdır. Ay ın yörüngesinin ekliptiğe 5 9 eğik olması ve yeniay/dolunay evrelerinin genellikle, Ay ın ekliptiğin üstünde (kuzeyinde) veya altında (güneyinde) yer aldığı sırada gerçekleşmesi nedeniyle her kavuşum dönemi boyunca tutulma oluşamamaktadır. Ay ın yörünge düzleminin ekliptik ile arakesitine düğümler doğrusu dendiğini görmüştük (Şekil 8). Bu tanım gereği düğümler doğrusunun Yer in merkezinden geçtiği ve uzayda belirli bir doğrultuya yönlendiği açıkça görülebilmektedir. Bu durumda tutulmaların gerçekleşebilmesi için karşımıza önemli birkaç koşul daha çıkmaktadır. Buna göre tutulmalar: a) Ay yörüngesinin düğümler doğrusunun Güneş e yönlendiği ve aynı anda, b) Ay ın, yörüngesine ilişkin iniş veya çıkış düğümü noktalarından birine çok yakın veya tam üzerinde olması halinde gerçekleşebilir (bkz. Şekil 14).

17 17 Şekil 14 Tutulma zamanlarının önceden hesaplanabilmesi için, düğümler doğrusunun belirli bir tarihte uzaydaki konumunun duyarlı bir şekilde hesaplanması gerektiği açıktır. Ancak Ay yörüngesine ilişkin düğümler doğrusunun uzaydaki yönelimi sabit değildir. Güneş in Ay üzerine uyguladığı çekim kuvvetinin etkisi altında bir kayma göstermektedir. Düğümler doğrusunun presesyonu olarak adlandırılan bu hareket sonucu, düğümler doğrusu düşük bir hızla (yaklaşık olarak yılda ) batı yönüne doğru (retrograt yönde) kaymaktadır. Bu kayma hareketinin dönemi ~18.6 yıldır ve tutulma hesaplarında dikkate alınması şarttır. Böylece 18.6 yıl boyunca, Yer den bakıldığında, Ay yörüngesinin düğüm noktaları, 12 adet Zodiyak takımyıldızının her birinde ortalama 1.5 yıl kadar kalarak bir tam presesyon turunu tamamlamaktadır. TUTULMA YILI Ay yörüngesinin düğüm noktalarının ekliptik üzerinde her yıl batıya doğru ~19.36 kayması nedeniyle, Güneş in aynı bir düğüm noktası ile ardışık iki

18 18 Şekil 15 çakışması arasında geçen süre bir takvim yılından daha kısa olmaktadır. Bu süre gün olup tutulma yılı olarak adlandırılmaktadır. Bu durumu Şekil 15 üzerinde daha rahat açıklayabiliriz. Şekilde Ay yörüngesinin düğümler doğrusu [ AD ] olarak gösterilmiştir. ile işaretlenen konumda [ AD ] düğümler doğrusu Güneş e yönelmiştir ve bir tutulma yılının başlangıcı olarak dikkate alınabilir. Düğümlerin presesyonu olmasaydı, bir takvim yılı boyunca (yani günde) düğümler doğrusu, Güneş e yalnızca iki defa yönlenebilecekti. Bu koşul altında ilk yönlenme konumunda gerçekleşmişse, ikinci yönlenme bu konumun Güneş e göre simetriği olan B noktasında ve tam olarak 6 ay sonra gerçekleşecekti. Ancak düğüm noktalarının batı yönündeki kayması nedeniyle ikinci yönlenme, Yer in B noktasına ulaşmasından daha önce, ile işaretlenen konumda gerçekleşir. Böylece bir takvim yılı içerisinde, Yer konumuna geldiğinde, düğümler doğrusu üçüncü kez Güneş e yönlenmiş olur ve konumundan itibaren 1 takvim yılının tamamlanması için, Yer in yörüngesi üzerinde daha alması gereken lik bir açısal yolu bulunmaktadır. Yer bu açısal yolu / [ /gün] günde alacaktır (burada [ /gün] Yer in yörünge açısal hızıdır). Buna göre bir tutulma yılı, bir takvim yılından gün daha kısa olup süresi = gündür. Yer konumundan, tutulma yılı başlangıcındaki konumuna geri geldiğinde (şekilde nolu durum), düğümler doğrusu 1 takvim yılı içerisindeki presesyonunu tamamlamış olacaktır ve batı yönünde lik bir kayma gösterecektir.

19 19 AY TUTULMASI Bir Ay tutulmasının genel karakteri, Ay ın, Yer gölge konisi içinden geçiş yoluna bağlıdır. Şekil 16 dan da görüleceği gibi Yer in gölge konisinin belirgin iki bölümünün var olduğunu görmüştük (tamgölge ve yarıgölge). Buna göre Ay tutulmalarının türleri, Şekil 16 nın sol üst tarafında gösterildiği gibi 3 ayrı durum ile ortaya çıkmaktadır. Ay, Yer gölgesinin yalnızca yarıgölge (penumbra) bölgesinden geçiş yaptığında (şekilde 1 ile numaralandırılan geçiş) bir penumbral Ay tutulması gerçekleşecektir. Penumbral tutulma boyunca, Yer, Güneş ışınlarının sadece bir kısmını engellediğinden, Ay ın görünen yüzeyi tamamen kararmayacaktır. Ancak olağan dolunay evresindeki parlaklığından daha düşük bir parlaklıkta görülecektir. Ay ın tamgölge (umbra) bölgesine tamamen girmesi halinde (şekilde 2 ile numaralandırılan geçiş) Ay yüzeyi hiç Güneş ışığı alamayacaktır ve bir tam Ay tutulması oluşacaktır. Ay ın yalnızca belirli bir kısmının tamgölge bölgesi içinden geçmesi halinde ise (şekilde 3 ile numaralandırılan geçiş) bir parçalı Ay tutulması meydana gelecektir. Şekil 16

20 20 Şekil 17 Bir tam Ay tutulması sırasında, Ay ın görünen yüzeyi tamamen kararmamakta ve Şekil 17 deki gibi sönük, bakır renginde görülmektedir. Bunun nedeni, az da olsa bazı Güneş ışınlarının Yer atmosferinde kırılarak Ay ın bize dönük yüzeyine kadar ulaşabilmesindendir. Şekil 18 de görüldüğü gibi, Yer atmosferi, Güneş ışığındaki uzun dalgaboylu (kırmızı) ışığı kırarak geçirir ve tamgölge konisi içine bükerek Ay yüzeyine ulaşmasını sağlar. Buna karşılık kısa dalgaboylu (mavi) ışığı saçılmaya uğratır ve Ay ın bize bakan yüzüne ulaşmasına büyük ölçüde engel olur. Bu nedenle bir tam Ay tutulmasında, Ay ın bize dönük yüzü tamamen kararmak yerine kızıl bir renge bürünür. Bu kızarmış ışınımın analiziyle, Yer atmosferdeki anlık toz miktarı belirlenebilmekte ve ardışık tutulmalar boyunca kaydedilen değerleriyle uzun zamanlı olarak toz miktarının değişimi takip edilebilmektedir. Şekil 18

21 21 Yer in tamgölge konisinin Ay yörüngesi civarındaki kesitinin çapı ortalama 9200 km dir (bkz. Şekil 19). Ay ın yörüngesinin elips biçiminde olması nedeniyle Yer-Ay uzaklığı değişkendir ve bu kesit çapı Ay ın anlık uzaklığına bağlı olarak ± 320 km fark edebilmektedir. Ortalama 9200 km lik kesit çapı, Ay ın çapının yaklaşık 2.6 katıdır. Eğer tamgölge konisinin ekseni, yani tamgölge kesitinin merkezi, Ay merkezinden geçiyorsa, ilgili Ay tutulması merkezi bir tam tutulma olacaktır. Bu koşul altında Ay ın ortalama yörünge hızı dikkate alınırsa, izlenecek tam tutulma süresi 1 sa 42 dk olacaktır. Bu değer, Yer den izlenebilir bir tam Ay tutulması için en uzun tam tutulma süresidir. Yine bu koşullar altında, Şekil 19 da gösterildiği gibi, Ay ın tamgölge konisi kesitine dıştan ilk ve son teğetler arasındaki süre ise yaklaşık olarak 3 sa 47 dk olmaktadır. Şekil 19

22 22 GÜNEŞ TUTULMASI Daha önce Ay ın tamgölge konisi yüksekliğinin değişken bir uzunluğa sahip olduğunu ve ancak belli koşullar altında Yer yüzeyine kadar ulaşabildiğini görmüştük. Bir Güneş tutulmasının genel karakteri, Yer-Ay ve Ay-Güneş arası uzaklıklara bağlı olduğu gibi, Yer üzerinden izlendiği konuma da bağlıdır. Ay ve Güneş in Yer den izlenen açısal çapları neredeyse birbirine eşit ve ortalama 30 yaydakikasıdır (0.5 ). Buna bağlı olarak bir Güneş tutulması sırasında, Yer Ay ın tamgölge konisi içine tamamen girmemektedir. Halbuki bir Ay tutulmasında, Ay bir bütün olarak Yer in tamgölge konisi içinde kalabilmekte ve bu tutulma Yer in Ay a bakan yüzündeki her noktadan izlenebilmektedir. Buna göre Ay ın tamgölge konisinin Yer yüzeyine ulaşabildiği noktalarda bir Tam Güneş Tutulması izlenecektir. Şekil 20 de sol üstte bu koşulun sağlandığı, 11 Ağustos 1999 daki tam Güneş tutulması sırasında, Yer yüzeyine Şekil 20

23 23 düşen Ay ın gölgesinin MIR uzay istasyonundan çekilmiş bir görüntüsü yer almaktadır. Ok ile işaretlenmiş en karanlık kısım, Ay ın tamgölge konisinin Yer yüzeyi ile arakesitidir ve karşılık geldiği konumlarda tutulma tam evrede izlenir. Bunun hemen dışında yer alan yarıgölgeli konumlarda ise, Ay ın Güneş diskini kısmen örttüğü Parçalı Güneş Tutulması izlenmektedir. Yer yüzünde tam tutulmanın izleneceği konumlarda, tutulmanın öncelikle parçalı evrelerde başlayıp sonra tam evreye gireceği ve ardından yine parçalı evrelerle sona ereceği açıktır. Şekil 21 de bu durumun açıkca izlendiği bir görüntü yer almaktadır. İlgili görüntü aynı fotoğraf karesi üzerine, her biri 5 dakika aralıkla toplam 35 ayrı poz çekilerek elde edilmiştir. Böylelikle tam tutulma öncesi ve sonrası parçalı evreler de görülebilmektedir. Bu fotoğraf karesinin elde edilmesi için toplamda yaklaşık 3 saat harcanmıştır. Şekil 21 Bir tam Güneş tutulması sırasında, Güneş fotosferinin tamamı örtülmektedir ve tutulma dışı zamanlarda görülemeyecek kadar sönük ve dağınık yapıda olan kromosfer (renkküre) ve korona (taçküre) tabakaları görülebilir hale gelmektedir (Şekil 22). Dolayısıyla tam tutulma zamanları, Güneş in üst atmosfer katmanlarının Yer den izlenebilmesi için çok önemli fırsatlar sağlamaktadır.

24 24 Şekil 22 Şekil 23 Bazı durumlarda Yer-Ay-Güneş tam olarak bir doğru boyunca sıralanmasına rağmen, Ay ın tamgölge konisinin tepe noktası Yer yüzeyine kadar erişemez. Bu durum, Ay ın, yörüngesi üzerindeki apoge (enöte) noktasında veya yakınında yer alması halinde gerçekleşebilmektedir. Bu koşul altında, tutulma ortasında, Ay ın görünen diskinin boyutları Güneş in görünen diskini tam olarak örtemez ve Şekil 23 te geometrisi görülen bir Halkalı Güneş Tutulması oluşur. Bu Şekil 24 geometriden de görüleceği gibi, Ay ın tamgölge konisi uzantısının (anti-umbra) Yer yüzeyine ulaştığı noktalarda, Güneş in görünen diskinin dış kenarı bir halka şekilde halen görülebilmektedir ve karşımıza Şekil 24 te izlenen görüntü ortaya çıkmaktadır.

25 25 Bazı kritik durumlarda ise Şekil 25 de geometrisi görülen ve halkalı tutulma ile başlayıp ( nolu konum) tam tutulmaya dönüşen ( nolu konum) ve yine halkalı tutulma ( nolu konum) ile sona eren nadir durumlar da ortaya çıkabilmektedir. Şekil 25 Bilindiği gibi Yer, kendi ekseni etrafında batıdan doğuya doğru (prograt yönde) dönmektedir. Bir Güneş tutulmasının öncesinde Yer den uzakta olan Ay ın tamgölge konisi, Ay ın yörünge hareketine devam etmesiyle Yer e yaklaşır ve batı kenarından Yer yüzeyine değerek, tam tutulmanın öncelikle batı boylamlarından izlenmesini sağlar. Bu gölge, Ay ın yörünge hızının (~1000 m/sn), Yer in ekseni etrafındaki dönme hızından (ekvatorda ~500 m/sn) daha büyük olması nedeniyle doğu boylamlarına doğru kayar ve Yer yüzeyini tarayarak bir Tutulma Hattı oluşturur. Bir örnek olarak 29 Mart 2006 tarihinde gerçekleşen ve ülkemizden de izlenebilen tam Güneş tutulmasına ilişkin tutulma hattı Şekil 26 da verilen tutulma haritalarında görülmektedir. Tutulma hattı boyunca yer alan konumlarda tam veya halkalı Güneş tutulması izlenir. Ekvator civarına düşen gölge Yer yüzeyini 500 m/sn (veya 30 km/dak) hızla tarar ve en fazla 270 km genişliğinde olabilir. Ekvatordan daha yüksek enlemlere çıkıldıkça Yer in çizgisel dönme hızı

26 26 Şekil 26 azalacağından, bu enlemlerden geçecek bir gölgenin göreli hızı daha yüksek olacaktır. Buna göre Yer üzerindeki sabit bir konumdan izlenebilecek tam tutulma süresi en fazla 270/30=9 dakika olabilmektedir. Halkalı tutulma bölgesinin genişliği ise en fazla 312 km dir ve bu durumda tutulma süresi en fazla 312/30 10 dakika olabilmektedir. Şekil 27 de ise 1997 ile 2020 yılları arasında oluşan/oluşacak tam Güneş tutulmalarına ilişkin 18 tutulma hattı görülmektedir. Şekil 27

27 27 TUTULMALAR İÇİN EKLİPTİKEL LİMİTLER Şekil 28 Şekil 28 de, gök küresi üzerindeki izdüşümde, Ay ın, yörüngesi üzerindeki D düğüm noktasına yakın bir L noktasında bulunduğunu varsayalım. Burada LM yayı, Ay ın ekliptikel enlemi (β ) ve Mγ yayı ise ekliptikel boylamı (λ ) olacaktır. Bir Güneş tutulmasının gerçekleşebilmesi için, Ay ın ekliptikel enlemi β belirli bir limit değerin altında olmalıdır. Bu limit değer, Güneş ve Ay ın, Yer den görünen çaplarına ve ufuk paralakslarına bağlıdır. Buna göre Şekil 29 dan yararlanarak bir Güneş tutulması için Ay ın ekliptikel enleminin limit değerinin ne olması gerektiğini belirleyelim. Şekil 29 Şekil 29 da YA doğrultusu, gök küresi üzerinde, Şekil 28 deki L noktasını işaret etmektedir. YG doğrultusunun gök küresi ile arakesiti ise, Şekil 28 deki M noktasına karşılık gelmektedir. Buna göre AY ˆ G = β lim yani Ay ın

28 28 ekliptikel enlemi için aradığımız limit değerine karşılık gelmektedir. Şekil 29 daki geometriden; β lim = AY ˆ G = AYC ˆ + CYB ˆ + BYˆ G dır. C BY Δ üçgeninde CY ˆ B = DCY ˆ CBˆ Y veya CY ˆ B = DCY ˆ DBˆ Y dir. O halde, β lim = AYC ˆ + DCY ˆ DBY ˆ + BYˆ G yazılabilir. Burada; AYC ˆ = H Ay ın görünen yarıçapı DCY ˆ = P Ay ın ufuk paralaksı DBY ˆ = P Güneş in ufuk paralaksı BYG ˆ = H Güneş in görünen yarıçapıdır. Böylece; β lim = H + P P + H... (4) Ay ve Güneş e ilişkin H ve P değerleri sabit değildir ve zamana bağlı olarak değişirler. Aşağıdaki tabloda bu değerlerin en büyük ve en küçük değerleri listelenmiştir. Tablo 1 Minimum (enötede) Maksimum (enberide) H H P P

29 29 Buna göre (4) bağıntısında, β ın en büyük değerini elde edebilmek için H, P ve H in maksimum, P in ise minimum değerleri alınmalıdır: β max = = Buna karşılık β ın en küçük değerini elde edebilmek için, H, P ve H in minimum, P in ise maksimum değerleri alınmalıdır: β min = = Bu durumda bir Güneş tutulması için, Ay ın ekliptikel enlemi cinsinden koşulları ortaya koyacak olursak; bir yeniay evresinde (veya civarında): a) β < ise kesinlikle bir Güneş tutulması oluşur, b) < β < ise bir Güneş tutulması oluşma ihtimali vardır. c) β > ise bir Güneş tutulması oluşamaz. Benzer yolla bir Ay tutulması için de, Ay ın ekliptikel enleminin limit değerleri, Şekil 30 da verilen geometriden hesaplanabilir. Şekil 30 Burada β lim = TY ˆ A dır. Bu açı için TY ˆ A = TYC ˆ + CYˆ A yazılabilir.

30 30 Y CT Δ üçgeninde; DC ˆ Y = TYC ˆ + YTˆ C TY ˆ C = DCY ˆ YTˆ C Δ B Y T üçgeninde; GY ˆ B = DBY ˆ + YTˆ C YT ˆ C = GYB ˆ DBˆ Y dir. Böylece β lim = TY ˆ A = CYA ˆ + TYˆ C = CYA ˆ + DCY ˆ YTˆ C = CYA ˆ + DCY ˆ GYB ˆ + DBˆ Y olur. Bu açıları karşılık geldikleri parametreler cinsinden yazarsak; β lim = H + P H + P... (5) Buna göre (5) bağıntısında, β ın en büyük değerini elde edebilmek için pozitif terimlerin maksimum, negatif terimlerin ise minimum değerleri alınırsa: β max = Buna karşılık β ın en küçük değerini elde edebilmek için, pozitif terimlerin minimum, negatif terimlerin ise maksimum değerleri alınırsa: β min = bulunur. Bu durumda bir Ay tutulması için, Ay ın ekliptikel enlemi cinsinden koşulları ortaya koyacak olursak; bir dolunay evresinde (veya civarında): a) β < ise kesinlikle bir Ay tutulması oluşur, b) < β < ise bir Ay tutulması oluşma ihtimali vardır. c) β > ise bir Ay tutulması oluşamaz. Tutulma koşulu olarak, Ay ın ekliptikel enlemi için ortaya koyduğumuz alt ve üst limitler;

Ay tutulması, Ay, dolunay evresinde

Ay tutulması, Ay, dolunay evresinde Ay tutulması, Ay, dolunay evresinde Güneş tutulması, Ay, yeniay evresinde GÜNEŞ TUTULMASI Dünya-Güneş ve Dünya-Ay uzaklıkları yörüngelerinin elips olmasından dolayı sürekli değişir. Bu yüzden, birkaç türlü

Detaylı

Eski çağlara dönüp baktığımızda geçmişteki gç ş insan topluluklarının yazılı, yazısız kültür miraslarında Güneş ve Ay tutulmalarının nedeni hep doğaüstü güçlerle açıklanmaya çalışılmıştır. Yapılan tasvirlerde

Detaylı

EKVATORAL KOORDİNAT SİSTEMİ

EKVATORAL KOORDİNAT SİSTEMİ EKVATORAL KOORDİNAT SİSTEMİ Dünya nın yüzeyi üzerindeki bir noktayı belirlemek için enlem ve boylam sistemini kullanıyoruz. Gök küresi üzerinde de Dünya nın kutuplarına ve ekvatoruna dayandırılan ekvatoral

Detaylı

Bölüm 5. Ay ve Güneş Tutulmaları

Bölüm 5. Ay ve Güneş Tutulmaları Bölüm 5 Ay ve Güneş Tutulmaları Ay ın evreleri Güneş e doğru Ay, daima aynı yüzünü gösterir. Hem Yer etrafında dolanır hem de kendi ekseni etrafında döner. Dönme hızı dolanma hızına eşittir. Buna eşdönme

Detaylı

DÜNYA NIN ŞEKLİ ve BOYUTLARI

DÜNYA NIN ŞEKLİ ve BOYUTLARI 0 DÜNYA NIN ŞEKLİ ve BOYUTLARI Dünya güneşten koptuktan sonra, kendi ekseni etrafında dönerken, meydana gelen kuvvetle; ekvator kısmı şişkince, kutuplardan basık kendine özgü şeklini almıştır. Bu şekle

Detaylı

3 Kasım 2013 Hibrit Güneş Tutulması

3 Kasım 2013 Hibrit Güneş Tutulması 3 Kasım 2013 Hibrit Güneş Tutulması 3 Kasım 2013 Pazar günü bir hibrit Güneş tutulmasına şahitlik edeceğiz. Hibrit tutulmalar, Dünya nın bazı bölümlerinde tam, bazı bölümlerinde halkalı, bazı bölümlerinde

Detaylı

Test. Yerküre nin Şekli ve Hareketleri BÖLÜM 4

Test. Yerküre nin Şekli ve Hareketleri BÖLÜM 4 Yerküre nin Şekli ve Hareketleri 1. Dünya ile ilgili aşağıda verilen bilgilerden yanlış olan hangisidir? A) Dünya, ekseni etrafındaki bir turluk dönüş hareketini 24 saatte tamamlar. B) Dünya ekseni etrafındaki

Detaylı

GÜNEY YARIM KÜRESİ İÇİN ŞEKİL

GÜNEY YARIM KÜRESİ İÇİN ŞEKİL GÜNEY YARIM KÜRESİ İÇİN ŞEKİL Bu şekilde, gözlemcinin zeniti bundan önceki şekillerdeki gibi yerleştirilir. Bu halde gök ufku şekildeki gibi olur. Güney yarım kürede Q güney kutbu ufkun üzerindedir. O

Detaylı

EKVATORAL KOORDİNAT SİSTEMİ_devam. Serap Ak

EKVATORAL KOORDİNAT SİSTEMİ_devam. Serap Ak EKVATORAL KOORDİNAT SİSTEMİ_devam http://star-www.st-and.ac.uk/~fv/webnotes/chapter5.htm http://star-www.st-and.ac.uk/~fv/webnotes/chapter4.htm Gök küresinde bulunan önemli yıldızların ekvatoral koordinatları

Detaylı

GÖKYÜZÜNDE HARKET. Ünal Ertan Sabancı Üniversitesi. DAY - Galileo Öğretmenler Ağı Çalıştayı Ağustos 2009

GÖKYÜZÜNDE HARKET. Ünal Ertan Sabancı Üniversitesi. DAY - Galileo Öğretmenler Ağı Çalıştayı Ağustos 2009 GÖKYÜZÜNDE HARKET Ünal Ertan Sabancı Üniversitesi DAY - Galileo Öğretmenler Ağı Çalıştayı Ağustos 2009 GÖKYÜZÜ YIL BOYUNCA NASIL DEĞİ İYOR? Sakarya 1 OCAK 2008 22:00 Sakarya 1 UBAT 2008 22:00 Sakarya 1

Detaylı

DÜNYA NIN ŞEKLİ VE HAREKETLERİ

DÜNYA NIN ŞEKLİ VE HAREKETLERİ DÜNYA NIN ŞEKLİ VE HAREKETLERİ YERKÜRE NİN ŞEKLİ Bilim ve teknolojik seviyeye bağlı olarak, İlk Çağ da Dünya mızın şekli, değişik biçimlerde tahmin ediliyordu. Dünya nın çevresi günümüzden yaklaşık 2.200

Detaylı

Gökyüzünde Hareket (II)

Gökyüzünde Hareket (II) Gökyüzünde Hareket (II) M. Atakan Gürkan, Sabancı Üniversitesi Galileo Öğretmen Eğitim Programı, Eylül 2013, İTÜ Bilim Merkezi Birinci Kısmın Özeti Dünya'nın hareketi 1) Kendi çevresinde değişmeyen bir

Detaylı

PARALEL VE MERİDYENLER

PARALEL VE MERİDYENLER PARALEL VE MERİDYENLER Nasıl ki şehirdeki bir evi bulabilmek için mahalle, cadde, sokak ve ev numarası gibi unsurlara ihtiyaç varsa Yerküre üzerindeki herhangi bir yeri bulabilmek için de hayalî çizgilere

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

DOĞAL SİSTEMLER DÜNYA'NIN ŞEKLİ ve HAREKETLERİ

DOĞAL SİSTEMLER DÜNYA'NIN ŞEKLİ ve HAREKETLERİ 102 1. Ünite DOĞAL SİSTEMLER 2. BÖLÜM DÜNYA'NIN ŞEKLİ ve HAREKETLERİ 1. Dünya'nın Şekli... 38 2. Dünya'nın Hareketleri... 40 3. Mevsimlerle İlgili Önemli Tarihler... 43 4. İklim Kuşakları... 45 5. Eksen

Detaylı

DEV GEZEGENLER. Mars ın dışındaki dört büyük gezegen dev gezegenler grubunu oluşturur.

DEV GEZEGENLER. Mars ın dışındaki dört büyük gezegen dev gezegenler grubunu oluşturur. DEV GEZEGENLER DEV GEZEGENLER Mars ın dışındaki dört büyük gezegen dev gezegenler grubunu oluşturur. Bunlar sırasıyla Jüpiter, Satürn, Uranüs ve Neptün gezegenleridir. Bunların kütle ve yarıçapları yersel

Detaylı

OPTİK. Işık Nedir? Işık Kaynakları

OPTİK. Işık Nedir? Işık Kaynakları OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

E-DERGİ ÖABT SOSYAL BİLGİLER VE SINIF ÖĞRETMENLİĞİ İÇİN COĞRAFYA SAYI 2. www.kpsscografyarehberi.com ULUTAŞ

E-DERGİ ÖABT SOSYAL BİLGİLER VE SINIF ÖĞRETMENLİĞİ İÇİN COĞRAFYA SAYI 2. www.kpsscografyarehberi.com ULUTAŞ E-DERGİ ÖABT SOSYAL BİLGİLER VE SINIF ÖĞRETMENLİĞİ İÇİN COĞRAFYA SAYI 2 ULUTAŞ DÜNYA'NIN HAREKETLERİ ve SONUÇLARI Dünya'nın iki çeşit hareketi vardır. Dünya bu hareketlerin ikisini de aynı zamanda gerçekleştirir.

Detaylı

FEN VE TEKNOLOJİ DERSİ 5.ÜNİTE :DÜNYA, GÜNEŞ VE AY KONU ÖZETİ

FEN VE TEKNOLOJİ DERSİ 5.ÜNİTE :DÜNYA, GÜNEŞ VE AY KONU ÖZETİ FEN VE TEKNOLOJİ DERSİ 5.ÜNİTE :DÜNYA, GÜNEŞ VE AY KONU ÖZETİ KONULAR A.GÖKYÜZÜ MACERASI B. DÜNYA VE AY IN HAREKETLERİ A.GÖKYÜZÜ MACERASI Güneş, Dünya ve Ay ın Şekli Yıllar önce insanlar Dünya, Ay ve Güneş'in

Detaylı

KUTUP IŞINIMI AURORA. www.astrofotograf.com

KUTUP IŞINIMI AURORA. www.astrofotograf.com KUTUP IŞINIMI AURORA www.astrofotograf.com Kutup ışıkları, ya da aurora, genellikle kutup bölgelerinde görülen bir gece ışımasıdır. Aurora, gökyüzündeki doğal ışık görüntüleridir. Genelde gece görülen

Detaylı

YILDIZLARIN HAREKETLERİ

YILDIZLARIN HAREKETLERİ Öz Hareket Gezegenlerden ayırdetmek için sabit olarak isimlendirdiğimiz yıldızlar da gerçekte hareketlidirler. Bu, çeşitli yollarla anlaşılır. Bir yıldızın ve sı iki veya üç farklı tarihte çok dikkatle

Detaylı

KİTABIN REHBERLİK PLANLAMASI. Bölümler. Bölümlere Ait Konu Kavrama Testleri KONU KAVRAMA TESTİ DOĞA VE İNSAN 1 TEST - 1

KİTABIN REHBERLİK PLANLAMASI. Bölümler. Bölümlere Ait Konu Kavrama Testleri KONU KAVRAMA TESTİ DOĞA VE İNSAN 1 TEST - 1 Sunum ve Sistematik SUNUM Sayın Eğitimciler, Sevgili Öğrenciler, ilindiği gibi gerek YGS, gerekse LYS de programlar, sistem ve soru formatları sürekli değişmektedir. Öğrenciler her yıl sürpriz olabilecek

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Şekil 1: Güneş ve yüzeyindeki lekeler. Şekil 2: Uydumuz Ay ve kraterleri.

Şekil 1: Güneş ve yüzeyindeki lekeler. Şekil 2: Uydumuz Ay ve kraterleri. Güneş ile birlikte etrafında dolanan gezegenler ve uydular, günümüzden yaklaşık 4.5 milyar yıl önce, gökadamız Samanyolu nun sarmal kollarındaki gaz ve toz bulutlarından oluşmuştur. Oluşan bu gezegenlerden

Detaylı

Dr. Fatih AY. Tel:

Dr. Fatih AY. Tel: Dr. Fatih AY Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Güneş Sabiti (The Solar Constant) ve Atmosfer Dışı Işınımın Değişimi Güneş Açıları Atmosfer Dışında Yatay Düzleme Gelen Güneş Işınımı 2 Bu bölümde

Detaylı

MEVSİMLER VE OLUŞUMU

MEVSİMLER VE OLUŞUMU MEVSİMLER VE OLUŞUMU Mevsimler Güneş in gün dönümü ve gece gündüz eşitliği noktaları arasından geçişleri arasındaki sürelerdir. Mevsimlerin oluşmasının temel sebebi eksen eğikliği ve Dünya nın Güneş çevresindeki

Detaylı

Bölüm 5. Gezegenlerin Gökyüzündeki Hareketleri

Bölüm 5. Gezegenlerin Gökyüzündeki Hareketleri Bölüm 5 Gezegenlerin Gökyüzündeki Hareketleri Bir gezegenin gökyüzündeki hareketi: Gezegenin yörünge hareketine Yer in yörünge hareketine Yer e olan uzaklığına Güneş e olan uzaklığına bağlıdır. Sonuçlar

Detaylı

İKLİM ELEMANLARI SICAKLIK

İKLİM ELEMANLARI SICAKLIK İKLİM ELEMANLARI Bir yerin iklimini oluşturan sıcaklık, basınç, rüzgâr, nem ve yağış gibi olayların tümüne iklim elemanları denir. Bu elemanların yeryüzüne dağılışını etkileyen enlem, yer şekilleri, yükselti,

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

ÇĐFT YILDIZLAR. Serdar Evren Astronomiye Giriş II

ÇĐFT YILDIZLAR. Serdar Evren Astronomiye Giriş II ÇĐFT YILDIZLAR Serdar Evren Astronomiye Giriş II - 2008 ÇĐFT YILDIZLARIN BULUNUŞU Çift yıldız terimi ilk defa Claudius Ptolemy tarafından υ1 ve υ2 Sagittarii yıldızları için kullanılmıştır. Açısal ayrıklığı

Detaylı

Test. Coğrafi Konum BÖLÜM 3

Test. Coğrafi Konum BÖLÜM 3 BÖLÜM 3 Coğrafi Konum 1. Coğrafi konum aşağıdakilerden hangisinde doğru olarak tanımlanmıştır? A) Bir ülkenin askeri açıdan ve savunma amaçlı konumu demektir. B) Yeryüzünde herhangi bir noktanın coğrafi

Detaylı

GÜNEŞ YÖRÜNGESİ TEMEL ÇİZİMLERİ

GÜNEŞ YÖRÜNGESİ TEMEL ÇİZİMLERİ GÜNEŞ YÖRÜNGESİ TEMEL ÇİZİMLERİ için ÖNSÖZ Yeryüzünün herhangi bir noktasında ve yılın herhangi bir gününün istenen bir zamanında, güneşin gökyüzündeki yeri, bilgisayar programları ile elde edilebilmektedir.

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli CEV 361 CBS ve UA Koordinat ve Projeksiyon Sistemleri Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli 1 Yerin Şekli Ekvator çapı: 12756 km Kuzey kutuptan güney kutuba çap: 12714 km

Detaylı

Astronomi Aletleri A105. Serdar Evren

Astronomi Aletleri A105. Serdar Evren Astronomi Aletleri A105 Serdar Evren Bölüm 1 GÖKYÜZÜNDE HAREKET Takvim Terimleri Gün Yer in kendi ekseni etrafında bir tam dönüş zamanı Yıl Yer in Güneş etrafında bir tam dolanım zamanı Ay Ay ın Yer etrafında

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

Dünya ve Uzay Test Çözmüleri. Test 1'in Çözümleri. 5. Ay'ın atmosferi olmadığı için açık hava basıncı yoktur. Verilen diğer bilgiler doğrudur.

Dünya ve Uzay Test Çözmüleri. Test 1'in Çözümleri. 5. Ay'ın atmosferi olmadığı için açık hava basıncı yoktur. Verilen diğer bilgiler doğrudur. 5 ve Uzay Test Çözmüleri Test 'in Çözümleri 5. Ay'ın atmosferi olmadığı için açık hava basıncı yoktur.. Gezegenlerin Güneş'e olan uzaklıkları sırasıyla; Merkür, Venüs,, Mars, Jupiter, Sütarn, Uranıs ve

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI 12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 2. Işık 3. Işık Nasıl Yayılır? 4. Tam Gölge ve Yarı Gölge 5. Güneş Tutulması 6. Ay Tutulması 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 8. Işık Şiddeti

Detaylı

ASTRONOMİ TARİHİ. 3. Bölüm Mezopotamya, Eski Mısır ve Eski Yunan da Astronomi. Serdar Evren 2013

ASTRONOMİ TARİHİ. 3. Bölüm Mezopotamya, Eski Mısır ve Eski Yunan da Astronomi. Serdar Evren 2013 ASTRONOMİ TARİHİ 3. Bölüm Mezopotamya, Eski Mısır ve Eski Yunan da Astronomi Serdar Evren 2013 Fotoğraf: Eski Yunan mitolojisinde sırtında gök küresini taşıyan astronomi tanrısı, ATLAS. Daha modern nesil

Detaylı

GÜNEŞ SİSTEMİ. 1-Havanın bulutsuz olduğu bir günde gökyüzüne gece ve gündüz baktığımızda neler görürüz?

GÜNEŞ SİSTEMİ. 1-Havanın bulutsuz olduğu bir günde gökyüzüne gece ve gündüz baktığımızda neler görürüz? üneş Sistemi ÜNEŞ SİSTEMİ Bu bölümde üneş Sistemi hakkında bilgi sahibi olacaksınız A Acaba yalnız mıyız? Etkinlik A 1-Havanın bulutsuz olduğu bir günde gökyüzüne gece ve gündüz baktığımızda neler görürüz?

Detaylı

* 20 cm 10 cm. Soru 1: Soru 2:

* 20 cm 10 cm. Soru 1: Soru 2: Soru 1: Noktasal Işık kaynağı Saydam olmayan cisim perde Noktasal ışık kaynağının önüne saydam olmayan cisim konulduğunda perde üzerinde tam gölge oluşmaktadır. Tam gölgenin alanının artması için, I. Perdeyi

Detaylı

ASTRONOMİ VE UZAY BİLİMLERİ SINAVI SORULARI VE CEVAPLARI (Şıkkın sonunda nokta varsa doğru cevap o dur.)

ASTRONOMİ VE UZAY BİLİMLERİ SINAVI SORULARI VE CEVAPLARI (Şıkkın sonunda nokta varsa doğru cevap o dur.) ASTRONOMİ VE UZAY BİLİMLERİ SINAVI SORULARI VE CEVAPLARI (Şıkkın sonunda nokta varsa doğru cevap o dur.) Her sorunun doğru cevabı 5 puandır. Süre 1 ders saatidir. 02.01.2013 ÇARŞAMBA 1. Güneş sisteminde

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

COĞRAFYA YEREL COĞRAFYA GENEL COĞRAFYA

COĞRAFYA YEREL COĞRAFYA GENEL COĞRAFYA COĞRAFİ KONUM COĞRAFYA YEREL COĞRAFYA GENEL COĞRAFYA Yeryüzünün belli bir bölümünü FİZİKİ coğrafya BEŞERİ ve gösterir. EKONOMİK -Doğa olaylarını -Kıtalar coğrafya konu alır. -Ülkeler -İnsanlar ve -Klimatoloji

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

ELK464 AYDINLATMA TEKNİĞİ

ELK464 AYDINLATMA TEKNİĞİ ELK464 AYDNLATMA TEKNİĞİ Fotometrik Büyüklükler Fotometrik Yasalar (Hafta) Yrd.Doç.Dr. Zehra ÇEKMEN Fotometrik Büyüklükler şık Akısı (Ф) Birimi Lümen (lm) Bir ışık kaynağının her doğrultuda verdiği toplam

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün

Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Fizik 203 Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: 0392-630-1379 ali.ovgun@emu.edu.tr www.aovgun.com Kepler Yasaları Güneş sistemindeki

Detaylı

Yıldızların Uzaklıkları

Yıldızların Uzaklıkları Yıldızların uzaklıkları ile trigonometrik paralaksları arasındaki bağıntıyı biliyoruz. (Trigonometrik paralaksı,yer-güneş arasındaki ortalama uzaklığı, yani Bir Astronomik Birimi:AB yıldızdan gören açı

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

GPS Nedir? Nasıl Çalışır?

GPS Nedir? Nasıl Çalışır? GPS Nedir? Nasıl Çalışır? Atalarımız kaybolmamak için çok ekstrem ölçümler kullanmak zorunda kalmışlardır. Anıtlar dikerek yerler işaretlenmiş, zahmetli haritalar çizilmiş ve gökyüzündeki yıldızların yerlerine

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Mercekler Test Çözümleri. Test 1'in Çözümleri

Mercekler Test Çözümleri. Test 1'in Çözümleri 5 Mercekler Test Çözümleri 1 Test 1'in Çözümleri. 1. X ışık kaynağının yakınsak mercekteki görüntüsü şekildeki gibi ʹ olarak oluşur. ʹ görüntüsünden gelen ışınlar perde üzerinde r yarıçaplı bir gölge oluşturur.

Detaylı

4. SINIF FEN VE TEKNOLOJİ DERSİ II. DÖNEM GEZEGENİMİZ DÜNYA ÜNİTESİ SORU CEVAP ÇALIŞMASI

4. SINIF FEN VE TEKNOLOJİ DERSİ II. DÖNEM GEZEGENİMİZ DÜNYA ÜNİTESİ SORU CEVAP ÇALIŞMASI 4. SINIF FEN VE TEKNOLOJİ DERSİ II. DÖNEM GEZEGENİMİZ DÜNYA ÜNİTESİ SORU CEVAP ÇALIŞMASI 1. Dünya mızın şekli neye benzer? Dünyamızın şekli küreye benzer. 2. Dünya mızın şekli ile ilgili örnekler veriniz.

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Dünya üzerindeki herhangi bir yerde Güneş in tam tepe noktasında olduğu an saat 12.00 kabul edilir. Buna göre ayarlanan saate yerel saat denir.

Dünya üzerindeki herhangi bir yerde Güneş in tam tepe noktasında olduğu an saat 12.00 kabul edilir. Buna göre ayarlanan saate yerel saat denir. Mart 30, 2013 Yerel Saat Dünya üzerindeki herhangi bir yerde Güneş in tam tepe noktasında olduğu an saat 12.00 kabul edilir. Buna göre ayarlanan saate yerel saat denir. Yerel saat doğuda ileri, badda geridir.

Detaylı

Yıldızların uzaklıkları ve parlaklıkları

Yıldızların uzaklıkları ve parlaklıkları Yıldızların uzaklıkları ve parlaklıkları Güneş in İç Yapısı Güneş enerjisinin üretildiği bölge, çekirdek tepkimelerini yer aldığı özek bölgesidir. Bu enerji dış katmanlara taşınmakta oradan da uzaya yayılmaktadır.

Detaylı

Dünyamız Samanyolu Galaksisi'ndeki yıldız sistemlerinden güneş sisteminde yer alır. ONUNCU GEZEGENİMİZ "SEDNA"

Dünyamız Samanyolu Galaksisi'ndeki yıldız sistemlerinden güneş sisteminde yer alır. ONUNCU GEZEGENİMİZ SEDNA Dünyamız Samanyolu Galaksisi'ndeki yıldız sistemlerinden güneş sisteminde yer alır. Bütün gezegenler elips şeklinde bir yörüngede hareket ederler. ONUNCU GEZEGENİMİZ "SEDNA" 16 Mart 2004 Adını Eskimo kültüründe

Detaylı

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y Fiz102L Deney 1 Eş potansiyel ve elektrik alan çizgileri P r o f. D r. T u r g u t B A Ş T U Ğ P r o f. D r. S a l e h S U L T A N S O Y Y r d. D o ç. D r. N u r d a n D. S A N K I R D r. A h m e t N u

Detaylı

Adımlar: A Windows to the Universe Citizen Science Event. windows2universe.org/starcount. 29 Ekim 12 Kasım, 2010

Adımlar: A Windows to the Universe Citizen Science Event. windows2universe.org/starcount. 29 Ekim 12 Kasım, 2010 Adımlar: Nelere ihtiyacım var? Kurşun veya tükenmez kalem Kırmızı-ışık veya gece görüşü olan el feneri GPS ünitesi, İnternet erişimi ya da bölgeyi tarif eden harita Rapor formu ile birlikte çıktısı alınmış

Detaylı

AST404 GÖZLEMSEL ASTRONOMĐ ÇĐFT YILDIZLAR

AST404 GÖZLEMSEL ASTRONOMĐ ÇĐFT YILDIZLAR AST404 GÖZLEMSEL ASTRONOMĐ ÇĐFT YILDIZLAR jhfdssjf Yıldızlar, yıldızlar arası gaz ve toz bulutlarından gruplar halinde oluşurlar. Bu gruplardaki yıldızlar bazen çift veya çoklu olarak meydana gelirler.

Detaylı

MHN 113 Teknik Resim ve Tasarı Geometri 2

MHN 113 Teknik Resim ve Tasarı Geometri 2 6. ÖLÜM İZDÜŞÜM MHN 113 Teknik Resim ve Tasarı Geometri 2 6. İZDÜŞÜM 6.1. GENEL İLGİLER Uzaydaki bir cisim, bir düzlem önünde tutulup bu cisme karşıdan bakılacak olursa, cismin düzlem üzerine bir görüntüsü

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ

ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ ÖĞRENME ALANI : DÜNYA VE EVREN ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ A GÖK CİSİMLERİNİ TANIYALIM (5 SAAT) 1 Uzay ve Evren 2 Gök Cismi 3 Yıldızlar 4 Güneş 5 Takım Yıldızlar 6 Kuyruklu Yıldızlar

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler-2

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler-2 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Perspektifler-2 2/25 Perspektifler-2 Perspektifler-2 Perspektif Çeşitleri Dimetrik Perspektif Trimetrik Perspektif Eğik Perspektif

Detaylı

kpss ğrencinin D ers D efteri genel yetenek genel kültür COĞRAFYA Kolay oku Hızlı düşün Kalıcı öğren PEGEM AKADEMİ

kpss ğrencinin D ers D efteri genel yetenek genel kültür COĞRAFYA Kolay oku Hızlı düşün Kalıcı öğren PEGEM AKADEMİ kpss genel yetenek genel kültür Ö ğrencinin D ers D efteri COĞRAFYA Kolay oku Hızlı düşün PEGEM AKADEMİ Kalıcı öğren Yazar: Önder Cengiz ÖĞRENCİNİN DERS DEFTERİ COĞRAFYA ISBN 978-605-364-979-3 Kitap içeriğinin

Detaylı

Aristarchus Yöntemi ile Ay ve Güneş. 1. Giriş

Aristarchus Yöntemi ile Ay ve Güneş. 1. Giriş Aristarchus Yöntemi ile Ay ve Güneş Oktay Yılmaz ve Çılga Misli, Çanakkale Onsekiz Mart Üniversitesi-Fizik Bölümü En yakın gökcisimleri arasında yer alan Ay ve Güneş eskiden beri insanoğulunun ilgisini

Detaylı

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir. KÜRESEL AYNALAR Yansıtıcı yüzeyi küre parçası olan aynalara denir. Küresel aynalar iki şekilde incelenir. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.eğer

Detaylı

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI 36 İNCELEME - ARAŞTIRMA BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI Erdal KOÇAIC*^ ÖZET Büyük ölçekli harita yapımında G İ R İŞ uygulanabilen "Stereografik çift Stereografik

Detaylı

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde DİŞLİ ÇARKLAR Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde özel bir yeri bulunan mekanizmalardır. Mekanizmayı

Detaylı

ASTRONOMİ TARİHİ. 4. Bölüm Kopernik Devrimi. Serdar Evren 2013

ASTRONOMİ TARİHİ. 4. Bölüm Kopernik Devrimi. Serdar Evren 2013 ASTRONOMİ TARİHİ 4. Bölüm Kopernik Devrimi Serdar Evren 2013 Fotoğraf: Eski Yunan mitolojisinde sırtında gök küresini taşıyan astronomi tanrısı, ATLAS. Kopernik Devrimi Güneş sisteminin merkezinde Güneş

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Küresel Aynalar Testlerinin Çözümleri. Test 1 in Çözümleri

Küresel Aynalar Testlerinin Çözümleri. Test 1 in Çözümleri üresel Aynalar estlerinin Çözümleri 1 est 1 in Çözümleri. v 1,5 1. A B A B B A ışınının ʹ olarak yansıyabilmesi için ların odak noktaları çakışık olmalıdır. Aynalar arasındaki uzaklık şekilde gösterildiği

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

GÖK CİSİMLERİNİ TANIYALIM

GÖK CİSİMLERİNİ TANIYALIM GÖK CİSİMLERİNİ TANIYALIM Galaksilerin, yıldızların, gezegenlerin, meteorların, asteroitlerin bulunduğu hacimli ve kütleli gök cisimlerinin tamamının yer aldığı boşluğa uzay denir. Uzayda bulunan varlıkların

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

KPSS. coğrafya. kim korkar. dan DERS NOTLARI. Türkiye'nin En Çok Satan. Önder Cengiz - Mesut Atalay

KPSS. coğrafya. kim korkar. dan DERS NOTLARI. Türkiye'nin En Çok Satan. Önder Cengiz - Mesut Atalay KPSS Türkiye'nin n Çok Satan DRS NOTLARI coğrafya kim korkar dan Önder Cengiz - Mesut Atalay Önder CNGİZ & Mesut ATALAY KPSS Coğrafya DRS NOTLARI ISBN: 978-605-4282-59-3 Kitapta yer alan bölümlerin tüm

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

10. SINIF KONU ANLATIMLI

10. SINIF KONU ANLATIMLI IŞIĞI IRII 0. IIF U TII 4. ÜİTE: PTİ 4. onu IŞIĞI IRII ETİİ ve TET ÇÖZÜERİ Ünite 4 ptik 4. Ünite 4. onu (Işığın ırılması) nın Çözümleri. Şekil incelenirse, ışığın hem n ortamından n ortamına geçerken hem

Detaylı

CO RAFYA. DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 :

CO RAFYA. DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 : CO RAFYA DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 : K rk nc paralel üzerindeki bir noktan n hangi yar mkürede yer ald afla dakilerin hangisine bak larak saptanamaz? A) Gece-gündüz süresinin

Detaylı

GÜNEŞ SİSTEMİ. SİBEL ÇALIK SEMRA SENEM Erciyes Üniversitesi İstanbul Üniversitesi

GÜNEŞ SİSTEMİ. SİBEL ÇALIK SEMRA SENEM Erciyes Üniversitesi İstanbul Üniversitesi GÜNEŞ SİSTEMİ SİBEL ÇALIK SEMRA SENEM Erciyes Üniversitesi İstanbul Üniversitesi GÜNEŞ SİSTEMİ GÜNEŞ GEZEGENLER ASTEROİTLER METEORLAR KUYRUKLU YILDIZLAR GÜNEŞ SİSTEMİ Merkezinde Güneş, çevresinde elips

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

Bölüm 9. Yer Benzeri Gezegenler

Bölüm 9. Yer Benzeri Gezegenler Bölüm 9 Yer Benzeri Gezegenler Yer Benzeri Gezegenlerin Boyutları Đç ç Gezegenler Ülker Venüs Merkür Merkür ve Venüs batı çevreninde ve en büyük uzanımlarında (29 Mart 2004) Gezegen görüntüleri için NASA

Detaylı

Uygulamada Gauss-Kruger Projeksiyonu

Uygulamada Gauss-Kruger Projeksiyonu JEODEZİ12 1 Uygulamada Gauss-Kruger Projeksiyonu Gauss-Kruger Projeksiyonunda uzunluk deformasyonu, noktanın X ekseni olarak alınan ve uzunluğu unluğu koruyan koordinat başlangıç meridyenine uzaklığının

Detaylı

Gökyüzünde Işık. Oyunları. Atmosfer optiği, genel olarak havadaki su

Gökyüzünde Işık. Oyunları. Atmosfer optiği, genel olarak havadaki su Muhammed Raşid Tuğral ODTÜ Fizik Bölümü Öğrencisi, ODTÜ Amatör Astronomi Topluluğu Üyesi Gökyüzünde Işık Herkes hayatında en az bir kez gökkuşağı görmüştür. Rengârenk dairesel şekliyle gökyüzünde muhteşem

Detaylı

İNTERFEROMETRİ Yüksek Hassaslıkta Düzlemlik Ölçümü

İNTERFEROMETRİ Yüksek Hassaslıkta Düzlemlik Ölçümü İNTERFEROMETRİ Yüksek Hassaslıkta Düzlemlik Ölçümü TANIM: Uzunluğu ve yüzey düzlemliğini mümkün olabilecek en yüksek hassasiyette, optik yöntem kullanarak ölçme interferometri ile sağlanır. Kesin olarak

Detaylı

YILDIZLARIN UZAKLIKLARININ BELĐRLENMESĐ

YILDIZLARIN UZAKLIKLARININ BELĐRLENMESĐ YILDIZLARIN UZAKLIKLARININ BELĐRLENMESĐ 1. TRĐGONOMETRĐK PARALAKS Bir araba ile yolda giderken size yakın olan nesnelerin yanından, uzaktakilere nazaran daha hızlı geçtiğiniz hissine kapılırsınız. Örneğin,

Detaylı

Haritası yapılan bölge (dilim) Orta meridyen λ. Kuzey Kutbu. Güney Kutbu. Transversal silindir (projeksiyon yüzeyi) Yerin dönme ekseni

Haritası yapılan bölge (dilim) Orta meridyen λ. Kuzey Kutbu. Güney Kutbu. Transversal silindir (projeksiyon yüzeyi) Yerin dönme ekseni 1205321/1206321 Türkiye de Topografik Harita Yapımı Ölçek Büyük Ölçekli Haritalar 1:1000,1:5000 2005 tarihli BÖHHBYY ne göre değişik kamu kurumlarınca üretilirler. Datum: GRS80 Projeksiyon: Transverse

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Kuzey Kutbu. Yerin dönme ekseni

Kuzey Kutbu. Yerin dönme ekseni 1205321/1206321 Türkiye de Topoğrafik Harita Yapımı Ölçek Büyük Ölçekli Haritalar 1:1000,1:5000 2005 tarihli BÖHHBYY ne göre değişik kamu kurumlarınca üretilirler. Datum: GRS80 Projeksiyon: Transverse

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1.

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Uzaydaki cisimlerin eksiksiz bir anlatımı için, ana boyutlarıyla birlikte parçanın bitmiş hallerinden ve üzerindeki işlemlerle birlikte diğer

Detaylı

A A A A A FİZİK TESTİ Ö Z G Ü N D E R S A N E. 1. Bu testte 30 soru vardır. Testin tümü için verilen cevaplama süresi 45 dakikadır.

A A A A A FİZİK TESTİ Ö Z G Ü N D E R S A N E. 1. Bu testte 30 soru vardır. Testin tümü için verilen cevaplama süresi 45 dakikadır. Fİİ TTİ. Bu testte 0 soru vardır. Testin tümü için verilen cevaplama süresi dakikadır... sal eksenleri çakışık, odak uzaklıkları sırasıyla f ve f olan tümsek ve çukur aynadan oluşan sistemde tümsek aynaya

Detaylı