ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU"

Transkript

1 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız değşken le açıklamak mümkün değldr. Ekonomk modeller, genellkle brden fazla sebebn sonucudurlar. Çok fazla sayıda değşken br araya gelerek br dğer değşken etkleyeblmektedrler. Bu değşkenler aynı zamanda kend aralarında da brbrlern etkleyeblmektedr. Bu sebeple, bu tür brden fazla değşkenn kullanılması gereken durumlarda tekl regresyon analz yapılması mümkün değldr. Brden fazla bağımsız değşken kullanılarak yapılan regresyon analzne "çoklu regresyon analz(multple regresson analyss)" adı verlmektedr.

2 İ ler bağımsız değşkenler ve de bağımlı değşken göstermek üzere en genel çoklu regresyon denklem; a 0 +a +a + +a k k +e a 0 +Σa r r +e Çoklu regresyon modeller de EKK kullanılarak çözüleblr. Tekl regresyonda olduğu gb tahmn denklem kurularak dğer hesaplamalar yapılır. 3 İk bağımsız değşkenl modeln EKK le çözümü: Üzernde hesaplama yapacağımız model k bağımsız değşken( ve 3 ) le br bağımlı değşken () çeren a+b +c 3 +e model olacaktır. Bu regresyon denklemne at tahmn model: Burada e hata term: 4

3 Katsayıların hesaplanışı: Çoklu regresyon modelnde de tıpkı tekl modelde olduğu gb katsayılar hesaplanırken bağımsız değşkenlern ortalamadan sapmaları kullanılmaktadır. Aşağıda sırası le b,c ve a katsayılarının nasıl tahmn edleceğne at formüller verlecektr. Formüller çn kullanılacak x ve y değerlernn eşt olan fadeler yazılmıştır.(,,3) x y 5 6 3

4 Regresyon katsayıları hesaplanıp regresyon tahmn model kurulduktan sonra belrllk katsayısı olan R hesaplanır. Bu sayede katsayıların anlamlılığı, modeln uygunluğu gözlemlenecektr. Genel çoklu regresyon model çn R hesabı; (b,c,..,z katsayılar x ler de tanımlanan değerlerdr) 7 Düzeltlmş R : R belrllk katsayısı çoklu modellerde genellkle yeterl değldr. Çünkü çoklu regresyon modeller çn denkleme yen değşken lave edlmes durumunda R değer genellkle artmaktadır. Bu yüzden anlamlı br test yapablmek çn çoklu modellerde düzeltlmş R hesaplanmalıdır.( R ) n:gözlem sayısı k:modeldek değşken sayısı(bağımsız değşken+bağımlı değşken) 4

5 Tekl regresyon modellernde olduğu gb belrllk katsayısı e ne kadar yakın se mevcut olan model o kadar uygundur(anlamlıdır). 9 Modelde tahmn edlen katsayıların güvenlrlğ standart hata ve varyansın küçüklüğüne bakılarak test edlr. Bu bze tahmn değerlernn gerçek değerlere uygunluğu çn kısmen br oran vermektedr. Regresyon modelndek bağımsız değşkenlern katsayıları modeln durumu, anlamlılığı, gücü hakkında blg verdğ halde bağımlı ve bağımsız değşkenler arasındak lşknn yönünü ve kuvvetn göstermemektedr. Bu nedenle korelasyon analz le bağımlı ve bağımsız değşken veya değşkenler arasındak lşky ölçerz. Görüldüğü gb eklenen yen değşkenlere lşkn ufak uyarlamalar le çoklu regresyon modeller de tekl regresyon modellerne benzer şlemler le yorumlanablmektedr. 0 5

6 ANOVA TABLOSU Regresyon model çn hesaplamalar yapılarak tahmn değerler bulunduktan sonra anova tablosuadı verlen br tablo hazırlanır. SST:kareler toplamı SSE:artıkların kareler toplamı SSR:tahmnlern kareler toplamı ( SST ) SSE ( SSR n ( ) ) Kaynak (sov) Serbestlk dereces(s d veya df) SS MS F Model (regresyo n) - SSR MSR SSR/- MSR/MS E Artık n- SSE MSE SSE/n- Toplam n- SST 6

7 Anova tablosu çersndek F statstğ le model parametrelernn (katsayıların) anlı olup olmadığı test edlmektedr. Ayrıca anova tablosu kullanılarak belrllk katsayısı da hesaplanablr: R SSR/SST R değer sayesnde bağımlı değşkennn değerler arasındak varyasyonun model tarafından ne oranda açıklandığı gözlemleneblr. 3 Matrsler İle Regresyon Çözümlemes: Regresyon denklemn matrs hesaplamaları le de bulmak mümkündür. Bunun çn eldek verler matrs olarak fade etmemz gerekldr. Regresyon modelmz a 0 +a +e (,,,n) olsun. Buradak ve değerler sırasıyla ver setnde her br gözleme karşılık gelen değerledr. O halde her br çn elmzde aşağıdak denklem sstem mevcuttur: a 0 +a +e a 0 +a +e n a 0 +a n +e n 4 7

8 Bu denklem sstemnn matrs olarak fade edecek olursak: β + e n β a a 0 n e n e e e 5 β Çözüm:, çn EKK tahmn edcs se bunun çn çözüm; β β ( ' ) Matrs çarpımının yapılması le x tpnde br matrs bulunur. Bu matrsn brnc satırı a 0 katsayısı çn, knc satırı se a katsayısı çn br tahmn olup regresyon tahmn modelnde aranan katsayılardır. Bunları yerne yazarak tahmn modelne ulaşılır. ' 6

9 Ayrıca tahmn model kurulduktan sonra değerler çn aranan tahmn sonuçları se matrs yoluyla yandak şeklde hesaplanablr: Bu şlemler sırasında tahmnler çn yapılan hata se; e β 7 Regresyon Katsayılarının orumlanması: Tahmn edlen katsayıların yorumu çn değşkenlern brmve regresyon denklemnn yapısı önemldr.. Değşkenler Mutlak Sayılarla Ölçülen Doğrusal Denklemler:denklem formu a 0 +a + +a k k +e şeklndedr. Burada a 0 sabt term, a ler katsayılar, bağımlı değşken, ler bağımsız değşkenler, e se hata termn göstermektedr. (,,,k) 9

10 Sabt term:bağımsız değşkenlern heps brden 0 ken ( 0) bağımlı değşken nn alacağı değerdr. Katsayılar:a j katsayısı dğer bağımsız değşkenler sabt ken j dek br brmlk değşme y a j brm kadar değştrmektedr. örneğn;k malına olan talep model tahmn edlmş ve sonuç Q t 0-0.5P t +0.7 t olarak bulunmuştur.(p t : fyat, t :gelr, Q t:talep) (ölçü brm mlyon TL) a 0 0:K malının fyatı ve gelr sıfır ken malın taleb 0 mlyon TL olacaktır. a -0.5: bu dönemn gelr sabt ken K malının fyatındak mlyon TL lk artış malın talebn 0.5mlyon TL azaltacaktır. a 0.7: K malının fyatı sabt ken bu dönemn gelrndek mlyon TL lk artış malın talebn 0.7 mlyon TL artırmaktadır. 9. Değşkenler % le İfade Edlen Denklemler:denklem formu a 0 +a + +a k k +e şeklndedr. Sabt term:açıklayıcı değşkenlerdek değşm % 0 ken açıklanan değşkenn % kaç olduğunu gösterr. Katsayılar:dğer açıklayıcı değşkenlerdek % değşm sabt ken (yokken) j değşkenndek %lk değşm değşkenn % a j kadar değştrmektedr. Örneğn:E dövz kuru, M para arzı, P tüketc fyatındak % değşm, r faz oranı ve e hata termn göstermek üzere lgl regresyon tahmn model şöyledr: E t M t -0.4r t +0.P t 0 0

11 Sabt term: a 0 0.9:dğer tüm faktörler (M, r, P) sıfır ken dövz kurundak değşm %0.9 olacaktır. Katsayılar: a 0.:faz oranı ve fyatlarda % değşm yokken para arzındak %lk artış dövz kurunu %0. artıracaktır. a -0.4 :??? a 3 0. :??? ÖRNEK UGULAMA

12 Aşağıdak tabloda ler babaların, ler se erkek çoçukların boy uzunluklarını cm. cnsnden göstermektedr Soru: a) Regresyon denklemn yazın. b) a 0,a, ve e değerlernn tahmnlernn hesaplayın. c) 69cm boy uzunluğundak br babanın oğlunun boy uzunluğunu tahmn edn(kestrn). d) Anova tablosunu oluşturun ve model çn belrllk katsayısını hesaplayın. 4

13 Çözüm: (a) a 0 +a +e n ve,,, a 0 +a +e a 0 +a +e a a 0 β e e e e e + β 5 Çözüm: (b) ( ) ' ' β ' ( ) ( ) ' ' 6

14 β ' ' ( ) a 0 + a β e 0.43 e ÇÖZÜM: (c-d) 69 cm se modelde yerne yazılırsa cm. İlgl değerler bulup anova tablosunu oluşturursak: n SST SSE SSR e 337 n n SST SSE.79 4

15 Anova tablosu: Kaynak Sd SS MS Model /.79/ Artık /6 Toplam F R SSR/SST o halde ler çndek değşmn yaklaşık olarak %49 u model tarafından açıklanmaktadır. Babaların boyu cm arttığı zaman çocukların boyu da cm artmaktadır. Ayrıca babaların boyu sıfır ken çocukların boyu cm olablmektedr. 9 BAŞARILAR 30 5

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon

Detaylı

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t :

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t : HAFTA 13 GÖLGE EĞİŞKENLERLE REGRESYON (UMMY VARIABLES) Gölge veya kukla (dummy) değşkenler denen ntel değşkenler, cnsyet, dn, ten reng gb hemen sayısallaştırılamayan ama açıklanan değşkenn davranışını

Detaylı

Doğrusal Korelasyon ve Regresyon

Doğrusal Korelasyon ve Regresyon Doğrusal Korelasyon ve Regresyon En az k değşken arasındak lşknn ncelenmesne korelasyon denr. Kşlern boyları le ağırlıkları, gelr le gder, öğrenclern çalıştıkları süre le aldıkları not, tarlaya atılan

Detaylı

PARÇALI DOĞRUSAL REGRESYON

PARÇALI DOĞRUSAL REGRESYON HAFTA 4 PARÇALI DOĞRUSAL REGRESYO Gölge değşkenn br başka kullanımını açıklamak çn varsayımsal br şrketn satış temslclerne nasıl ödeme yaptığı ele alınsın. Satış prmleryle satış hacm Arasındak varsayımsal

Detaylı

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır.

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır. KONU : DUAL MODELİN EKONOMİK YORUMU Br prmal-dual model lşks P : max Z cx D: mn Z bv AX b AV c X 0 V 0 bçmnde tanımlı olsun. Prmal modeln en y temel B ve buna lşkn fyat vektörü c B olsun. Z B B BB c X

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM

EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM (Örgün e İknc Öğretm çn) 1. 754 hanehalkına at DOMerset sml Excel dosyasında yer alan erler kullanarak tahmnlenen DOM sonuçları: Dependent Varable: CALISANKADIN Sample:

Detaylı

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Kİ-KAR TSTLRİ A) Kİ-KAR DAĞILIMI V ÖZLLİKLRİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk gösterp

Detaylı

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür. Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

Sıklık Tabloları ve Tek Değişkenli Grafikler

Sıklık Tabloları ve Tek Değişkenli Grafikler Sıklık Tabloları ve Tek Değşkenl Grafkler Sıklık Tablosu Ver dzsnde yer alan değerlern tekrarlama sayılarını çeren tabloya sıklık tablosu denr. Sıklık Tabloları tek değşken çn marjnal tablo olarak adlandırılır.

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ 1 Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER

BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER Blmn amaçlarından br yaşanılan doğa olaylarını tanımlamak ve olayları önceden tahmnlemektr. Bu amacı başarmanın yollarından br olaylar üzernde etkl olduğu

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr III. Asmetr ve Basıklık

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Makine Öğrenmesi 10. hafta

Makine Öğrenmesi 10. hafta Makne Öğrenmes 0. hafta Lagrange Optmzasonu Destek Vektör Maknes (SVM) Karesel (Quadratc) Programlama Optmzason Blmsel term olarak dlmze geçmş olsa da bazen en leme termle karşılık bulur. Matematktek en

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Özet YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Atıf EVREN *1 Elf TUNA ** Yarı parametrk panel ver modeller parametrk ve parametrk olmayan modeller br araya getren; br kısmı

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS EN KÜÇÜK KARELER, RİDGE REGRESYON VE ROBUST REGRESYON YÖNTEMLERİNDE ANALİZ SONUÇLARINA AYKIRI DEĞERLERİN ETKİLERİNİN BELİRLENMESİ ZOOTEKNİ ANABİLİM

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünte 11: İndeksler Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT İndeks 2 Üntede Ele Alınan Konular 11. İndeksler 11.1. Bast İndeksler 11.1.1. Fyat İndeks 11.1.2. Mktar İndeks 11.1.3. Mekan İndeks 11.2. Bleşk

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

HAFTA 6 DEĞİŞEN VARYANS (HETEROSCEDASTICITY)

HAFTA 6 DEĞİŞEN VARYANS (HETEROSCEDASTICITY) HAFTA 6 DEĞİŞEN VARYANS (HETEROSCEDASTICITY) Klask doğrusal regresyo model öeml varsayımlarıda brs hata termler sabt varyaslı olduğudur. Bu varsayımı sağlamadığı durumda ler. Değşe varyası telğ edr?. Doğurduğu

Detaylı

Sistemde kullanılan baralar, klasik anlamda üç ana grupta toplanabilir :

Sistemde kullanılan baralar, klasik anlamda üç ana grupta toplanabilir : 5 9. BÖLÜM YÜK AKIŞI (GÜÇ AKIŞI) 9.. Grş İletm sstemlernn analzlernde, bara sayısı arttıkça artan karmaşıklıkları yenmek çn sstemn matematksel modellenmesnde kolaylık getrc bazı yöntemler gelştrlmştr.

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ QUANTILE REGRESYON ve BİR UYGULAMA İlkay ALTINDAĞ YÜKSEK LİSANS TEZİ İSTATİSTİK ANABİLİM DALI Ağustos-1 KONYA Her Hakkı Saklıdır ÖZET YÜKSEK LİSANS TEZİ

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131.

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131. Süleyman Demrel Ünverstes İktsad ve İdar Blmler Fakültes Y.008, C.3, S. s.-3. BİREYSEL EMEKLİLİK FONLARINDA FON YAPILARININ KARMA DENEMELER YÖNTEMİ İLE İNCELENMESİ EXAMINING THE STRUCTURE OF FUNDS BY MIXTURE

Detaylı

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ T SAKAYA ÜNİESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ELM201 ELEKTONİK- DESİ LAOATUA FÖYÜ DENEYİ YAPTAN: DENEYİN AD: DENEY NO: DENEYİ YAPANN AD ve SOYAD: SNF: OKUL NO: DENEY GUP NO: DENEY

Detaylı

Tek Yönlü Varyans Analizi (ANOVA)

Tek Yönlü Varyans Analizi (ANOVA) VARYANS ANALİZİ İ örne ortalaması arasında farın önem ontrolü, örne büyülüğüne göre z veya testlernden bryle yapılır. Bu testlerle, den fazla örne ortalamasını brlte test etme ve aralarında farın önem

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

BOOTSTRAP VAR MODELLER VE TÜRKİYE DE TANZİ ETKİSİ

BOOTSTRAP VAR MODELLER VE TÜRKİYE DE TANZİ ETKİSİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 89 108. BOOTSTRAP VAR MODELLER VE TÜRKİYE DE TANZİ ETKİSİ Dr. Mustafa Kemal BEŞER Eskşehr Osmangaz Ünverstes İİBF, İktsat Bölümü mkbeser@ogu.edu.tr ÖZET

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ

FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ Anadolu Tarım Blm. Derg., 2009,24(2):98-102 Anadolu J. Agrc. Sc., 2009,24(2):98-102 Araştırma Research FAKTÖR A ALĐZ SKORLARI KULLA ILARAK KARAYAKA KUZULARI DA CA LI AĞIRLIK TAHMĐ Đ Soner ÇA KAYA* Aydın

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

A EKONOMETRİ KPSS/1-AB-PÖ/2006

A EKONOMETRİ KPSS/1-AB-PÖ/2006 . 6. SOULI ŞĞIDKİ BİLGİLEE GÖE CEVPLYINIZ. Y =β +β X +... +β kxk + u denklem, n adet örnek ver ve k adet katsayı çn matrs ve vektörlerle Y = Xβ+ u şeklnde fade edlmştr. Burada ( kx ), X ( nxk ) ve u (

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

Cinsiyet Değişkeni Bağlamında Harcama Alt Grupları ve Gelir Đlişkisi: Dumlupınar Üniversitesi Öğrencileri Üzerine Bir Uygulama.

Cinsiyet Değişkeni Bağlamında Harcama Alt Grupları ve Gelir Đlişkisi: Dumlupınar Üniversitesi Öğrencileri Üzerine Bir Uygulama. Cnsye Değşken Bağlamında Harcama Al Grupları ve Gelr Đlşks: Dumlupınar Ünverses Öğrencler Üzerne Br Uygulama Mahmu ZORTUK * Öze: Đksa blmnn en öneml konuları arasında yer alan gelr le ükem lşks her dönem

Detaylı

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESON MODELİ Regresyon le ( ler) arasındak ortalama lşknn matematk fonksyonla fadesdr. f ( ) b b Bu lşk eğrselde olablr. Ortalama lşk aşağıdak gb fade edlr: E( ) f ( )

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ Anadolu Tarım Blm. Derg., 203,28(3):68-74 Anadolu J Agr Sc, 203,28(3):68-74 do: 0.76/anaas.203.28.3.68 URL: htt://dx.do.org/0.76/anaas.203.28.3.68 Derleme Revew FARKLI VERİ YAPILARINDA KULLANILABİLECEK

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

DEFORMASYONLARIN MODELLENMESİ. Levent TAŞÇI 1 ltasci@firat.edu.tr

DEFORMASYONLARIN MODELLENMESİ. Levent TAŞÇI 1 ltasci@firat.edu.tr DFORMSYOLRI MODLLMSİ Levent TŞÇI 1 ltasc@frat.edu.tr Öz: Deformasyonların belrleneblmes çn farklı çalışma grupları tarafından ortaya konulmuş farklı yaklaşımlar söz konusudur. Deformasyon analznde, bloklar

Detaylı

Erzurum Đlinde Buğday, Arpa ve Çavdarda Girdi Talebi Araştırması

Erzurum Đlinde Buğday, Arpa ve Çavdarda Girdi Talebi Araştırması Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/ournal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*)

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*) Gazosmanpaşa Ünverstes Zraat Fakültes Dergs Journal of Agrcultural Faculty of Gazosmanpasa Unversty http://zraatderg.gop.edu.tr/ Araştırma Makales/Research Artcle JAFAG ISSN: 1300-2910 E-ISSN: 2147-8848

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

Cebir Notları. Karmaşık Sayılar Testi z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır?

Cebir Notları. Karmaşık Sayılar Testi z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? Cebr Ntları Karmaşık Sayılar Test. + se Re() + Im()?. ( x y) + + ( x+ y ) se x + y tplamı kaçtır?. x + y ( x ) ve se y kaçtır?. ve se y x kaçtır?. sayısı kaça eşttr?. sayısı kaça eşttr? 7. x+ + ( y ) y

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değşkenl doğrusal olmayan karar modelnn çözümü Hazırlayan Doç. Dr. Nl ARAS Anadolu Ünverstes, Endüstr Mühendslğ Bölümü İST8 Yöneylem Araştırması Ders - Öğretm Yılı

Detaylı

HİD 473 Yeraltısuyu Modelleri

HİD 473 Yeraltısuyu Modelleri HİD 7 Yeraltısuyu Modeller Sayısal Analz Sonlu Farlar Yalaşımı Levent Tezcan - Güz Dönem Modelleme Problemn Tanımlanması Kavramsal Modeln Gelştrlmes Matematsel Modeln Gelştrlmes Hdroeolo Süreçler Sınır

Detaylı

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden

Detaylı

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM ECAS Uluslararası Yapı ve Deprem ühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye UZAY ÇERÇEVE SİSTEERİN STİK-PASTİK ANAİZİ İÇİN BİR YÖNTE Erdem Damcı, Turgay Çoşgun, Tuncer Çelk, Namık

Detaylı

REGRESYON ANALİZİ BÖLÜM 5-6

REGRESYON ANALİZİ BÖLÜM 5-6 REGRESYON ANALİZİ BÖLÜM 5-6 Yayın Tarh: 03-11-2007 Revzyon No:0 1 5. E.K.K. REGRESYONUNDA KARŞILAŞILAN PROBLEMLER VE BAZI KONU BAŞLIKLARI 2 1 EN KÜÇÜK KARELERDE KARŞILAŞILAN PROBLEMLER EKK da karşılaşılan

Detaylı