Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Fatih University- Faculty of Engineering- Electric and Electronic Dept."

Transkript

1 Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept.

2 Chapter 3 Boole Fonksiyon Sadeleştirmesi ve Uygulamaları

3 Karnaugh haritaları=> K Haritası Pratikte kullanılan Boole fonksiyonları çok karışık ve uzun ifadeler olabilir. Ancak, Boole cebri teoremleri aynı çıkışı veren basit devreler elde etmek için, yani Boole ifadelerini sadeleştirmek için kullanılabilir. Boole teoremleri sadeleştirme için kullanılabilmesine rağmen sadeleştirme işlemi için belirli kurallar ya da bir algoritma yoktur. Sistematik bir şekilde sadeleştirme yaparak minimum sayıda değişmez içeren basit ifade elde etmek için Karnaugh haritası veya kısaca K-haritası olarak bilinen grafiksel teknik kullanılır. Bu teknik SOP fonksiyolarına uygulandığında çıkan ifadede şunları garantiler : Ifadede minimum çarpım teriminin bulunmasını. Her terim minimum sayıda değişmez içermesini.

4 K-Haritası K-haritası kare hücrelerden oluşan bir diyagramdır. Her kare (hücre) bir mintermi temsil eder. Bu karelerin sayısı 2n e eşittir. Burada n fonksiyondaki değişkenlerin sayısıdır. Yani, doğruluk tablosuna benzer, ancak her hücre giriş değişkenlerinin nin bir kombinasyonunu temsil eden hücrelerin bir dizisi olarak düzenlenmiştir. Hücreler öyle yerleştirilmiştir ki verilen fonksiyonun sadeleştirilmesi için sadece hücrelerin uygun şekilde gruplanmasıyla yeter. K-haritaları 5 değişkene kadar olan ifadeler için kullanılır, ancak 5 değişkenlileri sadeleştirme biraz zor olabilir. Bu sebeple sadeleştirmelerde 4e kadar olan değişkenliler ele alınacaktır.

5 Doğruluk Tablosunu K-map e Haritalama Giriş Değişkenleri Minterm A B C m i A B C A B C A BC A BC AB C AB C ABC ABC K-haritasında 2x4 lük bir dizi olarak gruplandırılmış 8 hücre vardır. BC A m 0 m 1 m 3 m 2 1 m 4 m 5 m 7 m 6 Haritada bir hücreden komşu bir hücreye geçerken sadece 1 bit değişir. Haritanın dış kenarları da birbiriyle komşu sayılır (sol kenar ile sağ kenar yani m 0 ile m 2 ve m 4 ile m 6 komşudur.

6 Giriş Değişkenleri 4-Değişkenli K-Haritası Minterm A B C D m i m m m m m m m m m m 9 AB CD m 0 m 1 m 3 m 2 m 4 m 5 m 7 m 6 m 12 m 13 m 15 m 14 m 8 m 9 m 11 m m m m m 13 Üst kenar ile alt kenar komşudur. Sol kenar ile sağ kenar komşudur m m 15

7 K haritasına Standart SOP Fonksiyon Haritalama Kanonik SOP formundaki fonksiyonda bulunan mintermlerin olduğu hücrelere 1 yerleştirilir. Kalan hücrelere de 0 yerleştirilir BC A m 0 1 m 1 0 m 3 0 m m 4 0 m 5 1 m 7 1 m 6 0 f (A,B,C)=Σ m(0,5,7)

8 K-map gruplama kuralları K-haritasında fonksiyonu temsil eden tüm "1" leri girdikten sonra, aşağıdaki kurallara uygun şekilde "1 içeren bitişik hücreleri daire içine al: 1. Herhangi bir Grup 1, 2, 4, 8, veya 16 tane hücre içermelidir. Yani 2 nin katları sayısınca. (16 lı grup 4 değişkenli fonksiyonlar içindir) 2. Bir gruptaki her hücre gruptaki bir veya birden çok hücre ile komşu olmalıdır, ancak gruptaki bütün hücrelerin birbirine bitişik olması gerekmez. 3. Birinci kurala sadık kalmak şartıyla en çok sayıda 1 içeren grup oluşturulmalıdır. 4. Haritadaki her 1 en az bir gruba eklenmelidir. Herhangi bir 1 birkaç grupta aynı anda bulunabilir. Grupların birbirinden farklı hücreleri olduğu sürece problem olmaz

9 K-haritasındaki 1 lerin Gruplandırılması 4-değişkenli k-harita grupları 3-değişkenli k-harita grupları Grup3 Grup2 CD AB Grup1 Grup4 A BC Grup1 Grup3 Grup2

10 Kanonik SOP Boole fonksiyonunu u sadeleştirmek Guruplandırılmış haritadan en sade çarpım terimlerini ve böylece en sade SOP ifadeyi bulmak için 1. Her bir hücre grubu, grup içinde sadece tek form içeren (tümlenmiş yada tümlenmemiş) değişkenden bir çarpım terimi oluşturur. Grup içinde tümlenmiş veya tümlenmemiş her ikisini de içeren değişkenler elenir x'yz + x yz'= x'y 2. N-değişkenli fonksiyon için; 1-hücreli bir grup, aynı mintermi sağlar (minimizasyon yok), 2-hücreli grup bir değişken minimizasyonu kazancını ve dolayısıyla n-1 değişkenli bir çarpım terimi sağlar. 4-hücreli grup 2-değişken minimize edilmesini ve dolayısıyla n-2 değişkenli bir ürün terimi verir. 3. K-haritasındaki tüm minimum çarpım terimleri elde edildiğinde, minimum SOP ifadesi oluşturacakşekildeşekilde toplanır.

11 Haritadan minimum SOP İfade eldesi CD AB B AC ACD B + AC + ACD

12 3 lü K-Haritası BC A A B Grup3 Grup1 C Grup2 F(A,B,C)= BC+AB+A B C Grup 1 de A+A var ve B ile C nin kesişimi Grup 2 de C+C var ve A ile B nin kesişimi Grup 3 te yok ve A,B ve C nün kesişimi

13 4 lü K-Haritası A AB CD C D B 1. grup C+C var ve A,B ve D nin kesişimi 2. grupta A+A ve C+C var ve B ve D nün kesişimi 3. grupta yok ve A, B, C ve D nün kesişimi F(A,B,C,D)=A B D+BD +AB C D

14 K-harita örnekleri

15 K-Harita Örnekleri

16

17 Başlıca Gruplar Başlıca grup, haritada komşu kareleri mümkün olan maksimum sayıda birleştirerek elde edilen bir çarpım terimdir. Bir karedeki bir minterm, sadece bir başlıca grup kapsamına giriyorsa, o başlıca grubun gerekli olduğu söylenir. Sadeleştirme yapılırken önce gerekli başlıca gruplar kullanılır.

18 Başlıca gruplar A AB CD C B Başlıca gruplar AB, CD, AD, B C Buradaki bütün başlıca gruplar gereklidir D F(A,B,C,D)= (2,3,7,8,9,10,11,13,15)

19 Başlıca gruplar A AB CD C B Başlıca gruplar AB, CD, AD, B C, BD AD ve CD grubu gerekli başlıca grup değildir. D F(A,B,C,D)= (2,3,5,7,8,9,10,11,13,15)

20 İhmal edilen Koşullar Bazı durumlarda tüm ikili kombinasyonlar fonksiyonu tanımlamak için gerekli değildir (veya izin verilmez). Örneğin BCD kodu kombinasyonları: 1010, 1011, 1100, 1101, 1110, ve 1111 izin verilmez; bu durumlara çıktı üzerindeki etkileri açısından İhmal edilen" olarak davranılabilir. Doğruluk tablosunda ve K-haritasında ihmal edilen çıkışlar X olarak işaretlenir Bir K-haritası içinde, her X 0 veya 1 olarak kabul edilebilir. Böyle bir durumda en iyi sadeleştirmeyi sağlayan durum seçilmelidir. BCD nin ihmal edilen durumdaki izin verilmeyen kombinasyonlar: 1010, 1011, 1100, 1101, 1110, 1111 AB CD m0 m1 m3 m2 01 m4 m5 m7 m6 11 x x x x 10 m8 m9 x x

21 K-Haritası POS Sadeleştirme Yaklaşım aynıdır K-Haritasında 1 leri gruplamak yerine POS terimlerini ifade eden 0 lar gruplanır. Değişkenlerin 0 olduğu satır ve sütunlar kendisini 1 olduğu satır ve sütunlar tersini gösterir. BC A B A C

22 K-Haritası POS Sadeleştirme Gruplanan ifadeler POS formatında yazılır F (A,B,C)=(B+C )(A +C)(A +C) BC A B A C

23 Boole Fonksiyonlarının Gerçeklenmesi

24 İki aşamalı NAND ve NOR yapıları SOP & POS

25 İki Aşamalı NAND Devresi

26 NAND Kapısı Temel NAND kapısının sembol ve doğruluk tablosu aşağıdadır: AND-Invert (NAND): X Y NOT AND NAND ile gösterilir. X Y Küçük daire ters fonksiyonu temsil eder X Y NAND NAND sembolü Invert-OR olarak dabilinirir

27 NAND Kapısı Evrenseldir NAND kapıları ile herhangi bir Boole fonksiyonu gerçeklenebilir NAND kapıları, invertör veya VE / VEYA olarak kullanılabilir bir girişli NAND kapısı bir invertördür Çıkışı invert edilmiş NAND VE ile eşdeğerdir Girişleri invert edilmiş NAND VEYA ile eşdeğerdir

28 2-Seviyeli NAND Uygulaması Fonksiyonu sadeleştir ve SOP olarak ifade et. En az iki değişmezi olan her çarpım terimi için NAND kapısı çizin. Her NAND kapısının girişleri, terimin değişmezleridir dir. Bunlar birinci aşama NAND kapılarıdır. Birinci aşama kapıların çıkışlarının bağlandığı tek bir ikinci aşama NAND kapısı çizin. Tek değişmezli bir terim için birinci aşamada bir inverter kullanılabilir ya da değişmezin tersi alınarak ikinci aşama NAND kapısına direk bağlanabilir.

29 NAND NAND Uygulaması Aşağıdaki SOP İfadesini İnceleyin : F = XZ + WY Z Bir 2-level VE-VEYA VEYA devresi kolayca NAND- NAND devresine dönüştürülebilir. X Z W Y Z X Z W Y Z F X Z W Y Z F F F = XZ + WY Z

30 Çok aşamalı NAND devresi F=(CD+B).A+BC Her kapıyı NAND eşleniğine çevirin Aynı hat üzerindeki her ikili inverter grubu birbirini etkisiz hale getirir F = ( CD + B) A + BC

31 F=(AB +A B).(C+D )

32 İki Aşamalı NOR Devresi

33 NOR Kapısı Aşağıda Temel NOR kapısı sembol ve doğruluk tablosu verilmektedir : OR-Invert (NOR): X Y NOT OR, NOR ile gösterilir. X + Y Küçük daire ters fonksiyonu temsil eder X Y NOR Invert-AND sembolü NOR içinde kullanılabilir

34 NOR Uygulaması NOR kapıları herhangi bir Boole fonksiyonu uygulayabilirsiniz NAND kapıları, tersleyici olarak kullanılabilir, yada to implement AND / OR operatör Tek girişli bir NOR kapısı bir inverter dür NOR terslenmiş çıkış ile OR a denktir NOR terslenmiş giriş ile AND e denktir

35 2-Seviyeli NOR Uygulaması fonksiyonu sadeleştir ve POS olarak ifade et. En az iki değişmezi olan fonksiyonu her toplam terimi için NOR kapısı çizin. Her NOR kapısı girişleri, terimin değişmezleridir. Bu birinci düzey kapıların bir grubunu oluşturmaktadır. Birinci düzey kapıların çıkışlarından gelen girişleri ile tek bir ikinci düzey NOR kapısı çizin. Tek değişmezli bir terim, ikinci düzey NOR kapısının bir giriş olarak tamamlanır ve ilk seviye bir inverter veya tümleyeni olabilir. NAND uygulamasının ikizidir

36 NOR NOR uygulaması Aşağıdaki POS İfadesini İnceleyin : F = ( X + Z)( W + Y + Z) bir 2-level VE-VEYA VEYA devresi kolayca NOR-NOR devresine dönüştürülebilir. X Z W Y Z X Z W Y Z F X Z W Y Z F F

37 İki aşamalı NOR F=(A+B).(C+D).E Çok Aşamalı NOR F=(AB +A B)(C+D )

38 Exclusive OR Fonksiyonları: Tek & Çift Fonksiyon Parite Üretimi Kontrolü

39 Exclusive OR / Exclusive NOR Exclusive-OR (XOR) mantık devrelerinde yaygın olarak kullanılan önemli bir Boole fonksiyonudur. XOR fonksiyonu : Doğrudan kendine has bir elektronik devre üretilebilir. Ya da VE, üretilebilir. VEYA gibi standart kapılar kullanılarak Exclusive-NOR (XNOR) fonksiyonunun tümleyenidir fonksiyonu XOR ve XNOR kapıları kompleks kapılardır. XOR

40 XOR / XNOR Semboller ve Tablolar XOR X Y X Y XOR Sembolü XNOR X Y X Y XNOR Sembolü XNOR denklik fonksiyonu olarak da bilinir.

41 XOR / XNOR Kullanımı XOR/XNOR için SOP ifadesi: XOR fonksiyonu: X Y = X Y + X Y XNOR) fonksiyonu: X Y = X Y + X Y XOR ve XNOR kullanım alanları: Toplayıcı/Çıkarıcı/Çarpıcı birimleri Sayıcılar Parite üretici ve kontrol edicileri Aslen XOR ve XNOR kapıları sadece 2 giriş için tanımlıdır. İkiden fazla giriş için XOR a tek fonksiyonu XNOR a çift fonksiyonu denir.

42 XOR Uygulamaları XOR için SOP devresi : X Y = X Y + X Y

43 XOR / XNOR Özdeşlikler X 0 = X X X = 0 X 1 = X X X = 1 X Y = Y X X Y = X Y = X Y ( X Y) Z = X (Y ( X Y) Z = X (Y Z) = X Y Z Z) = X Y Z XOR ve XNOR birleşme özelliği olan operatörlerdir

44 Tek Fonksiyon XOR fonksiyonu, 3 veya daha fazla değişkene genişletilebilir. 3 den fazla değişken için, XOR tek fonksiyon olarak adlandırılır Değişkenlerdeki 1 lerin toplam sayısı tek ise fonksiyon 1 sonucu verir. X Y Z = X Y Z+X YZ +XY Z +XYZ YZ X X Y Z WX YZ W X Y Z

45 Çift Fonksiyon XNOR fonksiyonu, 3 veya daha fazla değişkene genişletilebilir. 3 den fazla değişken için, XNOR çift fonksiyon olarak adlandırılır Değişkenlerdeki 1 lerin toplam sayısı çift ise fonksiyon 1 sonucu verir. (X Y Z) = X Y Z +X YZ+XY Z+XYZ YZ X (X Y Z) WX YZ (W X Y Z)

46 Çift / Tek Fonksiyon uygulaması 2-girişli XOR ile 3-girişli tek fonksiyon tasarım: 3-girişli tek fonksiyon : F = (X Y) Z X Y Z F 2-girişli XOR ve XNOR kapıları ile 4-girişli çift fonksiyon tasarım : W 4-girişli çift fonksiyon : X F = (W X) (Y Z) Y Z F

47 Parite Üretimi ve Kontrolü n bitlik tek veya çift sayıda 1 e sahip bir koda parite biti eklenince (n +1) bitlik kod üretilir Tek parite biti: (n +1) bitlik kodda 1 lerin sayısı tektir Böylece tek parite biti oluşturmak için çift fonksiyon kullan Çift Parite biti: (n+1) +1)-bitlik kodda 1 lerin sayısı çifttir. Böylece çift parite biti oluşturmak için tek fonksiyon kullan Tek pariteyi kontrol etmek için (n+1) +1)-bit kod kontrolü için bir çift fonksiyon kullan Çift pariteyi kontrol etmek için (n+1) +1)-bit kod kontrolü için bir tek fonksiyon kullan

48 Parite Üretimi ve Kontrolü n-bit kod Verici Parite Üretici (n+1)-bit kod Parite Kontrol Error Alıcı 3-bit kod için çift parite üretim ve kontrolü gösterilmektedir 3-bit tek fonksiyonu çift parite bitini üretmek için kullanılır 4-bit tek fonksiyonu gönderilen kodlardaki parite hatasını kontrol eder (X,Y,Z) = (0,0,1) parite üretimi sonucu (X,Y,Z,P) = (0,0,1,1) ve E = 0 Eğer iletim sırasında bir bit bozulursa E çıkışından 1 alınır X Y Z X Y Z P P E

49 Parite Üretimi ve Kontrolü 3-bit kod Parite Hata X Y Z ÇP E X Y Z P X Y Z P E

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 6. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar KARNO HARITALARI İki ve Üç değişkenli Karno Haritaları Dört değişkenli Karno Haritaları Beş değişkenli

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 5. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. Birleşik Mantık Tanımı X{x, x, x, x n,}}

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 8. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar MULTIPLEXERS (VERİ SEÇİCİLER), ÜÇ DURUMLU BUFFERS, DECODERS (KOD ÇÖZÜCÜLER) BELLEK ELEMANLARI 2 8.2.

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-3 29.02.2016 Boolean Algebra George Boole (1815-1864) 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-4 07.03.2016 Standart Formlar (CanonicalForms) Lojik ifadeler, çarpımlar toplamı ya da toplamlar çarpımı formunda ifade

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-6 28.03.2016 Lojik Kapılar (Gates) Lojik devrelerin en temel elemanı, lojik kapılardır. Kapılar, lojik değişkenlerin değerlerini

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 4. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar Boole Cebiri Uygulamaları Standart Formlar Standart Formlar: Sop ve Pos Formlarının Birbirlerine Dönüştürülmesi

Detaylı

Minterm'e Karşı Maxterm Çözümü

Minterm'e Karşı Maxterm Çözümü Minterm'e Karşı Maxterm Çözümü Şimdiye kadar mantık sadeleştirme problemlerine Çarpımlar-ın-Toplamı (SOP) çözümlerini bulduk. Her bir SOP çözümü için aynı zamanda Toplamlar-ın-Çarpımı (POS) çözümü de vardır,

Detaylı

BOOLE CEBRİ. BOOLE cebri. B={0,1} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } Birli işlem: tümleme { } AKSİYOMLAR

BOOLE CEBRİ. BOOLE cebri. B={0,1} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } Birli işlem: tümleme { } AKSİYOMLAR OOLE ERİ 54 YILINDA GEORGE OOLE, LOJİĞİ SİSTEMATİK OLARARAK ELE ALIP OOLE ERİNİ GELİŞTİRDİ. 93 DE.E. SHANNON ANAHTARLAMA ERİNİ GELİŞTİREREK OOLE ERİNİN ELEKTRİKLİ ANAHTARLAMA DEVRELERİNİN ÖZELLİKLERİNİ

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Mantık Devreleri EEE307 5 3+0 3 3

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Mantık Devreleri EEE307 5 3+0 3 3 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Mantık Devreleri EEE307 5 3+0 3 3 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

DENEY 2-1 VEYA DEĞİL Kapı Devresi

DENEY 2-1 VEYA DEĞİL Kapı Devresi DENEY 2-1 VEYA DEĞİL Kapı Devresi DENEYİN AMACI 1. VEYA DEĞİL kapıları ile diğer lojik kapıların nasıl gerçekleştirildiğini anlamak. GENEL BİLGİLER VEYA DEĞİL kapısının sembolü, Şekil 2-1 de gösterilmiştir.

Detaylı

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir.

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir. BOOLEAN MATEMATİĞİ İngiliz matematikçi George Bole tarafından 1854 yılında geliştirilen BOOLEAN matematiği sayısal devrelerin tasarımında ve analizinde kullanılması 1938 yılında Claude Shanon tarafından

Detaylı

Katlı Giriş Geçitleri

Katlı Giriş Geçitleri Katlı Giriş Geçitleri Eviriciler ve tamponlar tek-girişli geçit devresi için olasılıkları çıkartır. Tamponlamak yada evirmekten başka tek mantık sinyali ile daha fazla ne yapılabilir? Daha fazla mantık

Detaylı

Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification)

Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification) BSE 207 Mantık Devreleri Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification) Sakarya Üniversitesi Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini

Detaylı

Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Bu derste... BİL 201 Birleşimsel Mantık (Combinational Logic) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Birleşimsel Devreler - Çözümlenmesi - Tasarımı Birleşimsel Devre Örnekleri - Yarım Toplayıcı

Detaylı

BÖL-1B. Fatih University- Faculty of Engineering- Electric and Electronic Dept.

BÖL-1B. Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı BÖL-1B Fatih University- Faculty of Engineering- Electric and Electronic Dept. İŞARETLİ SAYILAR Bilgisayar gibi

Detaylı

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü Elektrik Elektronik Mühendisliği Bölümü BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz

Detaylı

Temel Mantık Kapıları

Temel Mantık Kapıları Temel Mantık Kapıları Tüm okurlara mutlu ve sağlıklı bir yeni yıl diliyorum. Bu ay, bu güne kadar oynadığımız lojik değerleri, mantık kapıları ile kontrol etmeyi öğreneceğiz. Konuya girmeden önce, henüz

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE NEDİR? Mühendisler, elektronik

Detaylı

DENEY 5: KOD DÖNÜŞTÜRÜCÜLERİN TASARIMI

DENEY 5: KOD DÖNÜŞTÜRÜCÜLERİN TASARIMI DENEY 5: KOD DÖNÜŞTÜRÜCÜLERİN TASARIMI 1 Amaç Gray Kod dan İkili Kod a dönüştürücü tasarlamak ve gerçekleştirmek İkili Kod'dan 7-Bölmeli Gösterge ye (7-Segment Display) dönüştürücü tasarlamak ve gerçekleştirmek.

Detaylı

Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bölüm/Program Dersi Ders Tanım Bilgileri Dersin Adı

Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bölüm/Program Dersi Ders Tanım Bilgileri Dersin Adı Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bölüm/Program Dersi Ders Tanım Bilgileri Adı Mantıksal Tasarım ve Uygulamaları İngilizce Logic Design and Applications Adı Kodu Teori/Saat Uygulama/Saat

Detaylı

Mantık Devreleri Laboratuarı

Mantık Devreleri Laboratuarı 2013 2014 Mantık Devreleri Laboratuarı Ders Sorumlusu: Prof. Dr. Mehmet AKBABA Laboratuar Sorumlusu: Emrullah SONUÇ İÇİNDEKİLER Deney 1: 'DEĞİL', 'VE', 'VEYA', 'VE DEĞİL', 'VEYA DEĞİL' KAPILARI... 3 1.0.

Detaylı

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEYİN AMACI 1. Aritmetik birimdeki yarım ve tam toplayıcıların karakteristiklerini anlamak. GENEL BİLGİLER Toplama devreleri, Yarım Toplayıcı (YT) ve

Detaylı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı SYISL ELEKTRONİK Ege Üniversitesi Ege MYO Mekatronik Programı ÖLÜM 4 OOLEN RİTMETİĞİ VE DEMORGN TEOREMLERİ OOLEN TOPLM oolean toplama VEY işlemine eşittir. Toplamanın kuralı: 0+0=0 0+= +0= += oolean aritmetiğinde

Detaylı

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ İkili Kodlama ve Mantık Devreleri Özer Çelik Matematik-Bilgisayar Bölümü Kodlama Kodlama, iki küme elemanları arasında karşılıklığı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir.

Detaylı

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)

Detaylı

DENEY 1a- Kod Çözücü Devreler

DENEY 1a- Kod Çözücü Devreler DENEY 1a- Kod Çözücü Devreler DENEYİN AMACI 1. Kod çözücü devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kod çözücü, belirli bir ikili sayı yada kelimenin varlığını belirlemek için kullanılan lojik

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

MİNTERİM VE MAXİTERİM

MİNTERİM VE MAXİTERİM MİNTERİM VE MAXİTERİM İkili bir değişken Boolean ifadesi olarak değişkenin kendisi (A) veya değişkenin değili ( A ) şeklinde gösterilebilir. VE kapısına uygulanan A ve B değişkenlerinin iki şekilde Boolean

Detaylı

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi BÖLÜM 4 (Boolean lgebra and Logic Simplification) maçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Başlıklar Booleron Kurallarını

Detaylı

ELK-208 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003

ELK-208 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003 BÖLÜM : ANALOG VE SAYISAL KAVRAMLAR ELK-28 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 23 Öğretim Üyesi: Yrd. Doç. Dr. Şevki DEMİRBAŞ e@posta : demirbas@gazi.edu.tr

Detaylı

BÖLÜM - 5 KARNOUGH HARITALARI

BÖLÜM - 5 KARNOUGH HARITALARI ÖLÜM - 5 KRNOUGH HRITLRI KRNOUGH HRITLRI oolean fonksiyonlarını teoremler,kurallar ve özdeşlikler yardımı ile indirgeyebileceğimizi bir önceki bölümde gördük. ncak yapılan bu sadeleştirme işleminde birbirini

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir.

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir. 5. KOMBİNEZONSAL LOJİK DEVRE TASARIMI 5.1. Kombinezonsal Devre Tasarımı 1. Problem sözle tanıtılır, 2. Giriş ve çıkış değişkenlerinin sayısı belirlenir ve adlandırılır, 3. Probleme ilişkin doğruluk tablosu

Detaylı

1 ELEKTRONİK KAVRAMLAR

1 ELEKTRONİK KAVRAMLAR İÇİNDEKİLER VII İÇİNDEKİLER 1 ELEKTRONİK KAVRAMLAR 1 Giriş 1 Atomun Yapısı, İletkenler ve Yarı İletkenler 2 Atomun Yapısı 2 İletkenler 3 Yarı İletkenler 5 Sayısal Değerler (I/O) 8 Dalga Şekilleri 9 Kare

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 TEMEL LOJİK ELEMANLAR VE UYGULAMALARI DENEY SORUMLUSU Arş. Gör. Erdem ARSLAN Arş. Gör.

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 DENEYİN ADI: LOJİK FONKSİYONLARIN SADECE TEK TİP KAPILARLA (SADECE NAND (VEDEĞİL), SADECE NOR (VEYADEĞİL)) GERÇEKLENMESİ VE ARİTMETİK İŞLEM DEVRELERİ

Detaylı

(Random-Access Memory)

(Random-Access Memory) BELLEK (Memory) Ardışıl devreler bellek elemanının varlığı üzerine kuruludur Bir flip-flop sadece bir bitlik bir bilgi tutabilir Bir saklayıcı (register) bir sözcük (word) tutabilir (genellikle 32-64 bit)

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi Deneyin Amacı: Temel kapı devrelerinin incelenmesi, deneysel olarak kapıların gerçeklenmesi ve doğruluk tablolarının elde edilmesidir. Deney Malzemeleri:

Detaylı

T.C. BOZOK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ LOJĐK DEVRELER LABORATUARI DENEY FÖYÜ

T.C. BOZOK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ LOJĐK DEVRELER LABORATUARI DENEY FÖYÜ T.C. BOZOK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ LOJĐK DEVRELER LABORATUARI DENEY FÖYÜ Haziran 2009 ĐÇĐNDEKĐLER Deney-1 Temel Kapı Devreleri. 1 1.1 Ön Çalışma. 1 1.2 Deneyin Amacı 1 1.3

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

BÖLÜM 6. Karnaugh (Karno) Haritaları. (Karnaugh Maps) Amaçlar. Başlıklar

BÖLÜM 6. Karnaugh (Karno) Haritaları. (Karnaugh Maps) Amaçlar. Başlıklar Karnaugh (Karno) Haritaları ÖLÜM 6 (Karnaugh Maps) maçlar Lojik eşitliklerin sadeleştirilmesinde kullanılan Karnaugh Haritası yönteminin tanıtılması İki-üç-dört değişkenli Karnaugh Haritalarının hücrelerin

Detaylı

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler Bilgisayar Mühendisliğine Giriş 2 Elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan

Detaylı

5. LOJİK KAPILAR (LOGIC GATES)

5. LOJİK KAPILAR (LOGIC GATES) 5. LOJİK KPILR (LOGIC GTES) Dijital (Sayısal) devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilmektedir. Her lojik kapının bir çıkışı, bir veya birden fazla girişi vardır.

Detaylı

1. Temel lojik kapıların sembollerini ve karakteristiklerini anlamak. 2. Temel lojik kapıların karakteristiklerini ölçmek.

1. Temel lojik kapıların sembollerini ve karakteristiklerini anlamak. 2. Temel lojik kapıların karakteristiklerini ölçmek. DENEY Temel Lojik Kapıların Karakteristikleri DENEYİN AMACI. Temel lojik kapıların sembollerini ve karakteristiklerini anlamak.. Temel lojik kapıların karakteristiklerini ölçmek. GENEL İLGİLER Temel lojik

Detaylı

BİLİŞİM TEKNOLOJİLERİ

BİLİŞİM TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI BİLİŞİM TEKNOLOJİLERİ ARİTMETİK DEVRELER Ankara, 2013 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya

Detaylı

BİLİŞİM TEKNOLOJİLERİ

BİLİŞİM TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI BİLİŞİM TEKNOLOJİLERİ ARİTMETİK DEVRELER 523EO0025 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri

Detaylı

SAYISAL SİSTEMLER LABORATUVARI DENEYLERİ

SAYISAL SİSTEMLER LABORATUVARI DENEYLERİ SAYISAL SİSTEMLER LABORATUVARI DENEYLERİ Prof. Dr. Avni Morgül İÇİNDEKİLER ÖNSÖZ LABORATUVAR KURALLARI ii iii. Deney: LOJİK KAPILAR 2. Deney: LOJİK KAPILAR İLE TASARIM 6 3. Deney: YARIM VE TAM TOPLAMA

Detaylı

Sayısal Devreler ve Sistemler (EE203) Ders Detayları

Sayısal Devreler ve Sistemler (EE203) Ders Detayları Sayısal Devreler ve Sistemler (EE203) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Devreler ve Sistemler EE203 Güz 3 0 2 4 6 Ön Koşul Ders(ler)i

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol EEM122SAYISAL MANTIK BÖLÜM 6: KAYDEDİCİLER VE SAYICILAR Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol KAYDEDİCİLER VE SAYICILAR Flip-flopkullanan devreler fonksiyonlarına göre iki guruba

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

DENEY 3-1 Kodlayıcı Devreler

DENEY 3-1 Kodlayıcı Devreler DENEY 3-1 Kodlayıcı Devreler DENEYİN AMACI 1. Kodlayıcı devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kodlayıcı, bir ya da daha fazla girişi alıp, belirli bir çıkış kodu üreten kombinasyonel bir

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

1. LİNEER PCM KODLAMA

1. LİNEER PCM KODLAMA 1. LİNEER PCM KODLAMA 1.1 Amaçlar 4/12 bitlik lineer PCM kodlayıcısı ve kod çözücüsünü incelemek. Kuantalama hatasını incelemek. Kodlama kullanarak ses iletimini gerçekleştirmek. 1.2 Ön Hazırlık 1. Kuantalama

Detaylı

Lojik Devre Laboratuvarı

Lojik Devre Laboratuvarı 1. Deney ödev soruları 1. Verilen devreyi sadece NAND kapıları kullanarak gerçekleyin. 2. Verilen devreyi sadece NAND kapıları kullanarak gerçekleyin. 3. Verilen devreyi sadece NOR kapıları kullanarak

Detaylı

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRELER II LABORATUVARI DENEY 1 TOPLAYICILAR - ÇIKARICILAR

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRELER II LABORATUVARI DENEY 1 TOPLAYICILAR - ÇIKARICILAR KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRELER II LABORATUVARI DENEY 1 TOPLAYICILAR - ÇIKARICILAR DENEY 1: TOPLAYICILAR- ÇIKARICILAR Deneyin Amaçları Kombinasyonel lojik devrelerden

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

Sayısal Sistemler. Dr.Ziya Gökalp Altun

Sayısal Sistemler. Dr.Ziya Gökalp Altun Sayısal Sistemler Dr.Ziya Gökalp Altun 1. SAYI SİSTEMLERİ Kullanılan 4 temel sayı sistemi vardır: Onluk (Decimal), İkilik (Binary), Sekizlik (Octal) ve Onaltılık (Hexadecimal). Sayı sistemlerinin isimleri

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

Boolean Cebiri 1.

Boolean Cebiri 1. Boolean Cebiri 1 Boolean cebiri elektronik devre tasarımının temel matematiğidir. Tüm elektronik çipler, -ki buna bilgisayardaki CPU (mikroişlemcisi) de dahildir- boolean matematiğine dayanmaktadır. Boolean

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

DENEY #1 LOJİK KAPILAR. Lojik kapılarının doğruluk tablosunu oluşturmak

DENEY #1 LOJİK KAPILAR. Lojik kapılarının doğruluk tablosunu oluşturmak DENEY #1 LOJİK KAPILAR Deneyin Amacı : Lojik kapılarının doğruluk tablosunu oluşturmak Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Switch ve LED 3) Çeşitli Değerlerde Dirençler ve bağlantı kabloları

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi)

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

DENEY 5 RS FLİP-FLOP DENEYLERİ

DENEY 5 RS FLİP-FLOP DENEYLERİ Adı Soyadı: No: Grup: DENEY 5 RS FLİP-FLOP DENEYLERİ ÖN BİLGİ : Sayısal bilgiyi ( "0" veya "1" ) depolamada ve işlemede kullanılan temel devrelerden biri de F-F lardır. Genel olarak dört tipi vardır: 1-

Detaylı

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI 1-60) Dört çocuk, Ahmet, Ferit, Berk ve Mehmet koşu yarışı yapıyorlar. Yarışma sonucunda, Ahmet, "Ben birinci ve sonuncu

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Sayısal Elektronik Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine

Detaylı

Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) ÖLÜM 5 maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE, VEY ve DEĞİL işlemlerini tanıtıp, temel işlemleri gerçekleştirmek

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN İkilik Sayı Sistemi İkilik sayı sisteminde 0 lar ve 1 ler bulunur. Bilgisayar sistemleri yalnızca ikilik sayı sistemini kullanır. ( d 4 d 3 d 2 d 1 d 0 ) 2 = ( d 0. 2 0 ) + (

Detaylı

DENEY 2-5 Karşılaştırıcı Devre

DENEY 2-5 Karşılaştırıcı Devre DENEY 2-5 Karşılaştırıcı Devre DENEYİN AMACI 1. Dijital karşılaştırıcıların çalışma prensiplerini ve yapısını anlamak. GENEL BİLGİLER Bir karşılaştırma yapabilmek için en az iki sayı gereklidir. En basit

Detaylı

Bölüm 1 Temel Lojik Kapılar

Bölüm 1 Temel Lojik Kapılar Bölüm 1 Temel Lojik Kapılar DENEY 1-1 Lojik Kapı Devreleri DENEYİN AMACI 1. Çeşitli lojik kapıların çalışma prensiplerini ve karakteristiklerini anlamak. 2. TTL ve CMOS kapıların girişi ve çıkış gerilimlerini

Detaylı

SAYISAL DEVRE TASARIMI LABORATUVARI DENEY 1: TEMEL LOJİK KAPI KARAKTERİSTİKLERİNİN ÖLÇÜMÜ

SAYISAL DEVRE TASARIMI LABORATUVARI DENEY 1: TEMEL LOJİK KAPI KARAKTERİSTİKLERİNİN ÖLÇÜMÜ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY 1: TEMEL LOJİK KAPI KARAKTERİSTİKLERİNİN ÖLÇÜMÜ DENEYİN AMACI 1. Temel lojik kapı sembollerini ve karakteristiklerini anlamak. GENEL BİLGİLER TTL kapıların karakteristikleri,

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir. Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi

Detaylı

Sakarya Üniversitesi / İDÖ / HMYO/ Elektrik ve Endüstriyel Elektronik Prog. Malzemeler Select a Component penceresinden,

Sakarya Üniversitesi / İDÖ / HMYO/ Elektrik ve Endüstriyel Elektronik Prog. Malzemeler Select a Component penceresinden, Malzemeler Select a Component penceresinden, Kaynak için ; Sources ana grubundan Power_Sources alt grubundan DC_Power kaynağından 1 adet, Direnç için ; Basic ana grubunun Resistor alt grubundan 3kohm_5%

Detaylı

DENEY 4-1 Kodlayıcı Devreler

DENEY 4-1 Kodlayıcı Devreler DENEY 4-1 Kodlayıcı Devreler DENEYİN AMACI 1. Kodlayıcı devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kodlayıcı, bir ya da daha fazla girişi alıp, belirli bir çıkış kodu üreten kombinasyonel bir

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Karşılaştırma, Toplayıcı ve Çıkarıcı Devreler

Karşılaştırma, Toplayıcı ve Çıkarıcı Devreler Karşılaştırma, Toplayıcı ve Çıkarıcı Devreler Karşılaştırma Devresi Girişine uygulanan 2 sayıyı karşılaştırıp bu iki sayının birbirine eşit olup olmadığını veya hangisinin büyük olduğunu belirleyen devrelerdir.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı SAYISAL ELEKTRONİK Ege Ü. Ege MYO Mekatronik Programı BÖLÜM 2 Sayı Sistemleri İkilik, Onaltılık ve İKO Sayılar İkilik Sayı Sistemi 3 Çoğu dijital sistemler 8, 16, 32, ve 64 bit gibi, 2 nin çift kuvvetleri

Detaylı

Y.Doç.Dr.Tuncay UZUN 6. Ardışıl Lojik Devreler 2. Kombinezonsal devre. Bellek. Bellek nedir? Bir bellek şu üç önemli özelliği sağlamalıdır:

Y.Doç.Dr.Tuncay UZUN 6. Ardışıl Lojik Devreler 2. Kombinezonsal devre. Bellek. Bellek nedir? Bir bellek şu üç önemli özelliği sağlamalıdır: 6.ARDIŞIL LOJĐK DEVRELER 6.1.Ardışıl Lojik Devre Temelleri SR Tutucu Flip-Flop(FF) Saat, Kenar tetikleme D FF, JK FF, T FF 6.2.Ardışıl Devrelerin Analizi Moore modeli: Çıkışlar= f(şimdiki durum) Mealy

Detaylı

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 Günümüzde kullanılan elektronik kontrol üniteleri analog ve dijital elektronik düzenlerinin birleşimi ile gerçekleşir. Gerilim, akım, direnç, frekans,

Detaylı

Dosya Sıkıştırma (File Compression) Kütük Organizasyonu 1

Dosya Sıkıştırma (File Compression) Kütük Organizasyonu 1 Dosya Sıkıştırma (File Compression) Kütük Organizasyonu İçerik Dosya sıkıştırma nedir? Dosya sıkıştırma yöntemleri nelerdir? Run-Length Kodlaması Huffman Kodlaması Kütük Organizasyonu 2 Dosya Sıkıştırma

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek.

1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek. DENEY 7-2 Sayıcılar DENEYİN AMACI 1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek. GENEL BİLGİLER Sayıcılar, flip-floplar

Detaylı