KAFES SİSTEMLER. Mühendislik Yapıları. birleştirilen doğrusal elemanlar) oluşurlar.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KAFES SİSTEMLER. Mühendislik Yapıları. birleştirilen doğrusal elemanlar) oluşurlar."

Transkript

1 KAFES SİSTEMLER Mühendislik Yapıları a) Kafesler: İki-kuvvet elemanlarından (uçlarından birleştirilen doğrusal elemanlar) oluşurlar. b) Çerçeveler: En az bir birçok kuvvetin etkisindeki eleman içerenler c) Makineler: Hareketli parçalar içeren yapılardır. Kuvvet iletimi ve dönüşümü için projelendirilirler. (Mekanizmalar: dönüşüm yoktur, verim yoktur)

2 Kafesler Çerçeveler Makineler, Mekanizmalar Kafes Yapısı (Çatı)

3 Kafes Yapısı (Köprü)

4 Çatı Kafesi Köprü Kafesi Diğer Kafesler KAFES SİSTEMLER KAFES; doğru eksenli çubukların, mafsallarla birbirlerine bağlandığı ve yüklerin sadece mafsal noktalarına etkidiği kabul edilen çok parçalı taşıyıcı sistemlerdir. Geniş açıklıkları geçmek için gövdeli çubuklar kullanılırsa, büyük kesit alanları nedeniyle taşıyıcı sistem ağırlaşmakta ekonomik olmaktan çıkmakta. Köprü ve çatı gibi projelerde kafes tercih edilmesi hafif olmasındadır. Doğru eksenli kafes sistem çubukları sadece basınç ya da çekme kuvveti aktarırlar!!!!!

5 KAFES SİSTEMLER Kafes sistemin çubukları yalnız uç noktalarından birbirine bağlanmıştır, hiçbiri düğüm noktalarından ileri geçmez. KAFES SİSTEMLER Çubukların birleşim (mafsal) noktaları kaynaklı, bulonlu ya da perçinli olabilir ve bu mafsal noktalarına da düğüm noktası denir.

6 Kafesteki bir bağlantı levhasına perçin, bulon ya da kaynak ile sabitlenmiş çubuk elemanların oluşturduğu bir düğüm noktasında, tüm çubukların eksenleri tek bir noktada kesişiyorsa, burada mafsal koşulu genellikle sağlanır. Çekme KAFES SİSTEMLER Basma Kuvvetler çubuğu çekmeye çalışırsa, çekme etkisi altındadır, basmaya çalışırsa basma etkisi altındadır.

7 KAFES SİSTEMLER Çubuklar perçinli yada kaynaklı birleştirilmişlerse de, çubukların mafsallı (pinli) birleştirildiği kabul edilir; yani bir çubuğun her iki ucuna etkiyen kuvvetler bir tek eksenel kuvvet olur ve moment meydana gelmez. Böylece kafes sistem çubuğuna uygulandığı kabul edilen kuvvetler, çubuğun her iki ucundaki münferit kuvvetlerdir. Buna göre çubuk yalnız normal kuvvet etkisindeki bir eleman olarak ele alınabilir ve kafes bir mafsallar ve normal kuvvet etkisindeki elemanlar grubu olarak kabul edilebilir. TAŞIYICI SİSTEMLER Bu bölümde yalnız sisteme etkiyen dış kuvvetleri değil, sistemin çeşitli parçalarını bir arada tutan kuvvetleri de göreceğiz. Bu kuvvetler sistemin bütünü açısından iç kuvvetlerdir. Şekilde AD, CF, BE kirişleri, A da mafsal ve DG kablosuyla mesnetlenmiştir. Dış kuvvetler W ağırlığı, A daki tepki bileşenleri, ve kablonun D de uyguladığı T kuvvetidir. Parçaları bir arada tutan iç kuvvetler görülmemektedir. Fakat, elemanlar birbirinden ayrılırsa, üç kirişi bir arada tutan kuvvetlerin de gösterilmesi gerekir, çünkü bunlar parçalar bakımından dış kuvvetlerdir.

8 B de BE elemanının AD elemanına uyguladığı kuvvetin, aynı noktada AD nin BE ye uyguladığı kuvvete eşit ve zıt yönlü gösterilir. Bu husus, temasta olan cisimlerin arasındaki etki ve tepki kuvvetlerinin aynı şiddette, aynı doğrultuda ve zıt yönde olduğunu ifade eden Newtonun 3. kanunudur. BASİT KAFESLER En küçük Basit Kafes Sistem yanda görülen Üçgendir. Bir basit kafes, temel bir üçgen kafese 2 çubuk ve bir bağlantı (düğüm) noktası eklenerek oluşturulabilir. Yandaki üçgene BD ve CD gibi iki çubuk eklenerek daha büyük bir rijit kafes sistem elde edilebilir. Bu işlem istenildiği kadar tekrar edilebilir.

9 BASİT KAFES SİSTEMLER Rijit bir kafes yük altında göçmez Rijit değil Rijit kafes BASİT KAFESLER m=2n-3 (İki boyutta) Bir basit kafeste, m=2n-3 eşitliği geçerlidir. Burada m eleman (çubuk) sayısı, n ise bağlantı (düğüm) noktası sayısıdır.

10 BASİT KAFESLER m=2n-3 BASİT KAFESLER Bir basit kafes sitemin yalnız üçgenlerden yapılmasının gerekli olmadığına dikkat edilmelidir. Diğer taraftan üçgenlerden yapılmış olsalar da rijit kafes sistemler daima basit kafes sitem değildir. m=2n-3

11 Kafeslerin Düğüm Noktaları Metodu ile Hesabı Bir kafes sistem statik olarak dengede ise, sistemdeki bütün düğüm noktaları da dengededir. Dengedeki sistemde, her bir düğüm noktası için F x =0 ve F y =0 denge şartları sağlanmalıdır. Düğüm Noktaları Metodu Sistemin elemanlarını birbirinden ayırıp, her mafsal ve çubuk için bir SCD çizebiliriz. Her çubuğa, her biri bir uçta, şiddet ve doğrultuları aynı yönleri zıt iki kuvvet etki etmektedir. Bir çubuğun birleştirdiği iki mafsala uyguladığı kuvvetler, çubuk doğrultusunda eşit ve zıt yönlüdür. Kafesin tamamı dengede olduğundan, her bir mafsal dengede olmalıdır.

12 m=2n-3 Kafeste n tane mafsal varsa 2n sayıda bilinmeyenin çözülebileceği, 2n sayıda denklem yazılabilir. Bir basit kafes sistem durumunda, m=2n-3 yada 2n=m+3 dir ve mafsalların SCD ından bulunabilecek bilinmeyen sayısı m+3 dür. Bu, mafsalların SCD ini göz önüne alarak, bütün çubuklardaki kuvvetlerle birlikte R 1 tepkisinin iki bileşenin ve R 2 tepkisinin bulunabileceğini gösterir. Özel Yükleme Durumları Üç çubuğu birleştiren ve P yükünü taşıyan düğüm noktasını ele alırsak. Çubukların ikisi aynı doğrultudadır ve P yükü üçüncü çubuk boyunca etki etmektedir. Böylece, aynı doğrultudaki iki karşıt çubukta kuvvetlerin eşit ve diğer elemandaki kuvvetin P ye eşit olması gerekir. Düğüm noktasına bir yük uygulanmadığında P=0 olur ve AC çubuk kuvveti sıfırdır. AC çubuğu Sıfır Kuvvet çubuğudur.

13 Özel Yükleme Durumları Aynı doğrultuda iki elemanı birleştiren düğüm noktasında, denge için bu iki çubuktaki kuvvetlerin eşit olması gerekir. Yandaki durumda, her iki çubuktaki kuvvetler sıfır olmadıkça denge mümkün değildir, yani çubuklar sıfır-kuvvet çubukları olmalıdır. Sıfır Kuvvet Çubukları Sıfır kuvvet çubukları gereksiz değildir. Özel yükleme durumlarında, yükleme durumu değişince yük taşıyabilirler. Bu elemanlar, kafesin kendi ağırlığını taşıması ve kafesin biçimini koruması yönünden de gereklidir.

14

15 Problem Şekildeki kafeste her bir çubuktaki kuvveti bulunuz, etkinin çekme mi basma mı olduğunu belirtiniz. B noktasında (düğümünde) Basma (C) Çekme (T)

16 C noktasında (düğümünde) Çekme Basma A noktasında (düğümünde)

17 Problem Şekildeki kafeste her bir çubuktaki kuvveti bulunuz.

18 C düğüm noktası

19 D düğüm noktası

20 Problem Şekildeki kafeste her bir çubuktaki kuvveti bulunuz. Etkinin basma mı çekme mi olduğunu belirtiniz. Mesnetlerde oluşan tepkiler

21 A düğüm noktası D düğüm noktası

22 C düğüm noktası Basma Basma Çekme Basma Çekme

23 Problem Şekildeki kafeste sıfır kuvvet çubuklarını bulunuz (düğüm noktası metoduyla) G düğüm noktası D düğüm noktası

24 F düğüm noktası B düğüm noktası Uzay Kafes Sistemleri Bir çok doğrusal eleman, üç boyutlu bir biçim oluşturacak şekilde, uçlarından birbirine bağlandığı zaman elde edilen sisteme uzay kafes sistemi denir. En basit rijit uzay kafes sistem bir ABCD dörtyüzlüsünün kenarlarını oluşturacak şekilde uç noktalarından birbirine bağlanmış (dört noktada) altı eleman ihtiva eder (tetrahedron).

25 Uzay Kafes Sistemleri Bu biçime her defasında AE, BE ve CE gibi üç eleman ekleyip bunları ayrı düğüm noktalarına bağlayarak ve yeni bir düğüm noktasında birleştirerek basit uzay kafes sistem olarak tanımlanan daha büyük rijit bir sistem elde edilebilir. n toplam düğüm noktası sayısı olduğuna göre, bir basit uzay kafes sisteminde toplam çubuk sayısı m=3n-6 olur. Bir uzay kafesin tam bağlanması ve mesnetlerdeki tepkilerin statikçe belirli (izostatik) olması istenirse, mesnetler altı bilinmeyen tepki oluşturacak sabit ve kayıcı mafsalların bir kombinasyonu olmalıdır. Uzay kafeste her düğüm noktasının mafsallı olduğu kabul edilir (kaynaklı olsa bile). Böylece çubuklara moment etki etmez ve çubuklar normal kuvvet elemanı olarak kabul edilir. Her düğüm noktası için denge şartları ΣF x =0, ΣF y =0, ve ΣF z =0

26 Problem Şekildeki kafesteki çubuk kuvvetlerini düğüm noktaları metodunu kullanarak bulunuz

27

28

29

30 Kafes Sistemlerin Kesim Metodu ile Hesabı Kafes statik olarak dengede ise, kafesin herhangi bir parçası da dengededir. Çekme Basma Kesim Metodu Kafesin bir parçasına üç denge denklemi uygulayabileceğimiz için, seçeceğimiz parça, kuvvetin bilinmediği en fazla üç çubuktan geçmelidir.

31 Kesim Metodu Düğüm noktaları metodu bir kafesteki bütün çubukların bulunması istenirse uygundur fakat bir çubuk yada az sayıdaki çubuktaki kuvvetlerin bulunması istenirse kesim metodu daha uygundur. Örneğin BD çubuğundaki kuvveti bulmak isteyelim. Bunun için çubuğun B yada D ye uyguladığı kuvveti bulmalıyız. Düğüm noktaları metoduyla, B yada D yi serbest cisim olarak seçecektik. Bununla beraber sitemin birçok noktadan oluşan bir parçasını, aranan kuvvetin bu parçaya etkiyen bir dış kuvvet olmasışartı ile serbest cisim olarak seçebiliriz.

32 Kesim Metodu Ek olarak, kafes parçası buna toplam üç bilinmeyen etkiyecek şekilde seçilirse, aranılan kuvvet bu kafes parçası için yazılacak denge denklemlerini çözerek bulunabilir. Pratikte kullanılacak sistem parçası, kafesin üç çubuğunu kesen bir kesim yaparak, yani kafesi ikiye bölen fakat üçten fazla çubuk kesmeyen bir çizgi çizerek elde edilir. ABDF rijit kafes sistemi Fink rijit kafes sistemi Bileşik Kafes Sistemler Birçok basit kafes sitemin rijit olarak bağlanması ile yapılan kafes sistemler bileşik kafes sistemler olarak bilinir. Bir bileşik kafes sisteminde m=2n-3 bağıntısı gerçekleşir (kafes rijittir). Bir mafsal ve bir kayıcı mafsal, yada eşdeğer bir mesnet sistemiyle mesnetlenmiş bileşik kafesler izostatik, rijit ve tam bağlıdır (sistem göçmez ve oynak değildir).

33 Bileşik Kafes Sistemler Yandaki şekilde çubuk sayısı 2n-3 den fazladır. Elde edilen kafes sistem fazla rijittir ve dört BD, BE, CD, CE çubuğundan biri fazla bağdır. Sistem A da bir mafsal ve F de bir kayıcı mafsalla mesnetlenmişse, toplam bilinmeyen m+3 olup bu 2n den (yazılabilecek bağımsız denklem) büyüktür, Kafes sistem statikçe belirsizdir (hiperstatik). Bileşik Kafes Sistemler Rijit değil m < 2n 3 Yandaki kafes sisteminde, m çubuk sayısı 2n-3 den küçüktür. Kafes rijit değildir ve kendi ağırlığı ile göçer. Fakat bunu mesnetlemek için iki mafsal kullanılırsa rijit olur ve göçmez. Fakat, sistem mesnetlerden ayrılınca, rijitliğini kaybeder ve sistemin dengesi için yeterli değildir. Rijit m < 2n 4

34 Problem Şekildeki kafeste GE, GC ve BC çubuklarındaki kuvvetleri bulunuz, türlerini belirtiniz.

35 Problem Şekildeki kafeste CF çubuğundaki kuvveti ve türünü bulunuz. (düğümlerin pimli olduğunu kabul ediniz)

36

37 Problem Şekildeki kafeste EB çubuğundaki kuvveti ve türünü bulunuz

38 Problem Şekildeki kafeste FH, GH ve GI çubuklarındaki kuvvetleri bulunuz???

39

40

41 Problem???

42 Problem???

43 Problem Şekildeki kafeste çubuklardaki kuvvetleri bulunuz.

44 A noktası B noktası

45 ÇERÇEVELER ÇERÇEVELER VE MAKİNELER Çerçeveler ve Makineler üç yada daha çok kuvvetin etkilediği elemanları bulunan sistemlerdir. Çerçeveler yükleri taşımak için projelenen, sabit, tam bağlı sistemlerdir. Makineler, yükleri iletmek ve değiştirmek için projelenir; sabit olmayabilir ve hareketli parçaları ihtiva eder. ÇERÇEVE MAKİNE

46 ÇERÇEVELERİN HESABI Parçaları bir arada tutan iç kuvvetlerin bulunması için, elemanları birbirinden ayırmamız ve her bir bileşen için SCD çizmemiz gerekir. C de bir çok kuvvet etkisinde iki eleman birleştirilmiştir. Problem Şekildeki çerçeve 50kg lik yükü taşımaktadır. A ve C mesnetlerindeki tepkileri bulunuz.

47

48 şı Problem ACE ve BCD parçaları, C noktasındaki pimle ve DE bağlantıçubuğu ile birleştirilmiştir. Şekildeki yükleme durumunda DE çubuğunda oluşan kuvveti ve C piminde BCD parçasına karşıoluşan tepkileri bulunuz. F y = 0 = A 480 N A y y = 480 N ( 480 N)( 100 mm) ( 160 mm ) M A = 0 = + B B = 300 N F = 0 = B + A x = 300 N x A x α = tan = 28.07

49 M F C DE ( F sin α )( 250 mm ) + ( 300 N )( 60 mm ) + ( 480 N )( 100 mm ) = 0 = DE = 561 N F DE = 561 N C F x = 0 = C 0 = C x x F DE cos α N ( 561 N) cos α N C x = 795 N F y = 0 = C 0 = C y y F DE sin α 480 N ( 561 N) sin α 480 N C y = 216 N MAKİNELER

50 MAKİNELER Makineler kuvvetleri iletmek ve dönüştürmek için tasarlanmış sistemlerdir. Bunlar ister basit aletler, isterse karışık mekanizmalar olsun, amaçları verilen kuvvetleri alınan kuvvetlere dönüştürmektir. Makineleri oluşturan, belli bir fonksiyonu yerine getiren elemanlara Makine Elemanları denir. MAKİNELER Tel kesme makasının kollarına eşit ve zıt yönlü P ve P kuvvetlerini uygularsak, tele eşit ve zıt yönlü Q ve Q kuvvetleri etki eder. Kuvvetlerin P şiddeti bilindiğinde alınan kuvvetlerin Q şiddetini bulmak için, P ve P kuvvetlerini ve telin makasa uyguladığı Q ve Q tepkilerini gösteren, makasın bir SCD ini çizeriz.

51 Makine rijit olmayan bir yapıdır. Bu nedenle, bilinmeyen kuvvetleri bulmak için, bileşen parçalarından birini serbest cisim olarak kullanırız. Örnek olarak A noktasına göre moment yazılırsa, Q yu P cinsinden, tanımlayıp şu bağıntılar elde edilir. M A = 0 = ap bq Q = a b P MAKİNELER Daha karışık makineler durumunda, birçok serbest cisim diyagramının kullanılması ve birçok iç kuvveti ihtiva eden denklemlerin çözülmesi gereklidir. Serbest cisimler giriş kuvvetlerini ve çıkış kuvvetlerine karşı olan tepkileri ihtiva edecek şekilde seçilmeli ve bilinmeyen kuvvetlerin sayısı, bağımsız denklem sayısını aşmamalıdır.

52

53 Problem

54 Problem Kablolardaki gerilmeleri ve 600N lik yükü taşıyabilecek P yükünü bulunuz. (makaralarda sürtünme yoktur)

55 C makarası B makarası A makarası KİRİŞLER

56 KESİT TESİRLERİ İç Kuvvet: Bir taşıyıcının dış yüklere karşı geliştirdikleri iç dirence İç Kuvvet denir. İç kuvvetler çubuğun x ekseni boyunca farklışiddetlerde ve doğrultularda karşımıza çıkar. Kesit Tesiri: Çubuk ağırlık merkezine indirgediğimiz iç kuvvet ve moment büyüklükleri. (2 Boyut)

57 (3 Boyut)

58

59 İç Kuvvetler AB doğru eksenli normal kuvvet elemanı F ve F kuvvetlerinin etkisinde dengededir. Şimdi elemanı C noktasından keselim, AC ve CB cisimlerinin dengesini sağlamak için AC ve F kuvvetine eşit ve zıt yönlü bir F ve CB uygulamalıyız. ABCD elemanı dengededir. Elemanı J noktasında kesip JD ve AJ parçalarını SCD çizelim. JD cismini alıp J ye, T nin düşey bileşenini dengeleyecek bir F kuvveti, T nin yatay bileşenini dengeleyecek bir V kuvveti ve T nin J ye göre momentini dengeleyecek bir M kuvvet çifti uygulayarak bir parçanın dengesinin sağlanabileceğini görürüz. F kuvvetine normal kuvvet V kuvvetine kesme kuvveti M momentine de J deki eğilme momenti denir

60 KİRİŞLER Eleman boyunca uygulanan çeşitli yükleri taşıyabilecek şekilde projelendirilen yapı elemanına KİRİŞ adı verilir. Birçok durumda yükler kiriş eksenine diktir ve bunlar kirişte kesme kuvveti ve eğilme momenti oluşturur. Yükler kiriş eksenine dik olmadığı zaman, normal kuvvetler de oluştururlar. Kiriş hesabında genellikle normal kuvvetler ihmal edilir, zira kirişin kesme ve eğilmeye karşı koyması daha kritiktir. Kirişlerin Hesabı Kirişin hesabı iki kısımdan oluşur; Kesme kuvvetleri ve eğilme momentleri bulunur. Hesaplanan kesme kuvvetleri ve eğilme momentlerini en iyi taşıyabilecek kesit seçimi (Mukavemet dersinde).

61 Yük ve Mesnet Türleri Bir kiriş tekil veya yayılı yükler veya bu ikisinin karışımı olan yüklerin etkisi altında olabilir. Kirişler mesnetleme şekillerine göre sınıflandırılırlar. Mesnetler arası L uzaklığına açıklık denir.

62 Kiriş Türleri Tam Bağlı (Statikçe Belirli, İzostatik) Mesnetlerde üç bilinmeyen bulunması durumunda tepkiler izostatik olur. Dış etkiler sonucu oluşan mesnet tepkisi, şekil değiştirme ve yer değiştirme denge denklemleri ile hesaplanabilen sistemlerdir. Bilinmeyen sayısı ve denklem sayısı eşittir. Basit kirişler bu tip sistemlere örnek olarak gösterilebilir.

63 Fazla Bağlı (Statikçe Belirsiz, Hiperstatik) Bütün kesit zorlarını ve bunlara bağlı olarak şekil değiştirmelerin ve yer değiştirmelerin hesabı için denge denklemlerinin yeterli olmadığı sistemlere Hiperstatik Sistemler denir. Eksik Bağlı (Oynak) Bağ kuvvetleri sayısı, denge denklemleri sayısından az olan cisimlerdir.

64 Yetersiz Bağlı Bilinmeyen bağ sayısı ile denge denklemlerinin sayısı birbirine eşit olmasına rağmen mesnet koşulları uygun birşekilde seçilmemiş taşıyıcı sistemler olabilir. Kirişlerde Kesme Kuvveti ve Eğilme Momenti Kirişin bir noktasındaki kesme kuvveti ve eğilme momentini bulmak istediğimizde. Önce kirişi bir cisim olarak düşünüp mesnetlerindeki tepkileri (R A ve R B ) buluruz. C deki iç kuvvetleri bulmak için kirişi C de keseriz. AC ve CB parçalarının SCD çizeriz. AC ye etkiyen kuvvetlerin düşey bileşenlerinin toplamını sıfıra eşit yazarak C deki V kesme kuvvetini buluruz. AC ye etkiyen kuvvetlerin C ye göre moment toplamını sıfıra eşit yazarak C deki M eğilme momentini buluruz.

65 Bir kirişte kesme kuvvetlerinin bulunmasında, V ve V iç kuvvetlerinin yukarıdaki gibi yönlendiğini kabul edeceğiz. V için elde edilen pozitif değer kabulün doğru olduğunu gösterir. Negatif değer, kesme kuvvetinin zıt yönde olduğunu gösterir. Problem Kirişteki 6kN lik yükün hemen solundaki B noktasında ve sağındaki C noktasındaki normal kuvvet, kesme kuvveti ve eğme momentini bulunuz.

66 Öncelikle Mesnetlerdeki Tepkiler Bulunur (9 kn serbest vektördür, istenilen yere konulabilir)

67 Problem Kirişteki C noktasındaki normal kuvvet, kesme kuvveti ve eğme momentini bulunuz.

68

69 Problem Şekildeki çerçevede B noktasındaki normal kuvvet, kesme kuvveti ve eğme momentini bulunuz. Öncelikle mesnet tepkileri bulunur CD çubuğu iki kuvvet etkisindeki bir çubuk olduğundan, denge denklemleri sadece AC çubuğuna uygulanır.

70

71 Kesme Kuvveti ve Eğilme Momenti Diyagramları Kesme kuvveti ve eğilme momentinin kirişin bir noktasındaki değerini, kirişin bir ucundan olan x uzaklığına göre çizerek gösterebiliriz. Bu grafiklere, kesme kuvveti diyagramı ve eğilme momenti diyagramı denir. Mesnetlerdeki tepkileri belirleriz. Kirişi C noktasında kesip, AC parçasını ele alırsak, V =+ P 2 M = + Px 2 Kirişi E noktasında kesip EB parçasını ele alırsak, ( ) 2 V= P 2 M=+ PL x

72 Yalnız tekil yükler altındaki bir kirişte, kesme kuvveti uygulama noktaları arasında sabittir ve eğme momenti doğrusal (lineer) değişir. Kesme kuvveti Eğme momenti

73 Bu örnekte yük eğrisinin yatay bir doğru, kesme kuvveti eğrisinin eğik bir doğru ve eğilme momenti eğrisinin parabol olduğunu görüyoruz. Yük eğrisi eğik bir doğru (1. derece) olsaydı, kesme kuvveti eğrisi bir parabol (2. derece), ve eğilme momenti eğrisi kübik parabol (3. derece) olacaktı. Kesme ve eğilme momenti eğrileri yük eğrisinden sırasıyla bir ve iki daha yüksek derecede olacaklardır.

74 Kesme Kuvveti ve Eğme Momentinin İşaretleri Örnekler

75

76

77 Problem

78

79

80 Kesme kuvveti tekil yükler arasında sabittir Eğilme momenti doğrusal olarak değişir.

81 Problem

82

83 Problem Şekildeki kirişte, kesme kuvveti ve eğilme momenti diyagramını çiziniz.

84 F = 0 : 20 kn V 1 = 0 y V1 = 20 kn M ( 20kN)( 0m) + M1 = 0 2 = 0 : M 1 = 0 V V V V = 26kN = 26kN = 26kN = 26kN M M M M = 50kN m = 50kN m = 50kN m = 50kN m Kayma kuvveti münferit yükler arasında sabittir ve Eğilme momenti doğrusal olarak değişir.

85 Problem

86 Problem

87 KABLOLAR KABLOLAR Taşıyıcı olarak kullanılan kablolar, asma köprülerde, enerji nakil hatlarında, teleferiklerde, kulelerde gergi teli olarak karşımıza çıkar. Kabloda, eğilme mukavemeti ihmal edilir, kablo kuvveti de daima kablo teğeti yönündedir. Kablo hesabı iki varsayıma dayanır!!!! Esneklik Varsayımı: kablonun eğilme dayanımı yoktur. Uzamasızlık Varsayımı: kablo boyunda bir değişim olmaz.

88 Kablolar Kablolar yükleme durumlarına göre ikiye ayrılır, (1) Münferit (Tekil) yükler taşıyan kablolar (2) Yayılı yükleyen taşıyan kablolar Tüm kablolar için geçerli olan iki not En büyük kablo kuvveti, eğimi en fazla olan kablo parçasında oluşur. Farklı eğimli kablo parçalarında oluşan kablo kuvvetlerinin yatay bileşenleri birbirlerine eşittir

89 Münferit Yükler Etkisindeki Kablolar Kablonun şeklini belirlemeye çalışırız (her bir yükün, A noktasından olan düşey uzaklığı) Tüm kabloyu rijit cisim olarak düşün. Aşağı Mesnetlerdeki 4 bilinmeyeni çözemeyiz!! Koordinatlarıbilinen D de kabloyu keseriz, AD parçasının statik dengesini göz önüne alırız. ğıdaki ek denklemle bilinmeyenleri buluruz. = 0. M D Yüklerin etkidiği noktalardan kesimler yapılır, ve parçalar üstünde denge denklemleri yazılarak kablo kuvvetleri ile yüklerin koordinatları belirlenebilir.

90 Yayılı Yük Etkisindeki Kablolar Münferit yükler taşıyan bir kablo için bir noktadaki iç kuvvet, kablo doğrultusundaki bir çekme kuvvetidir. Yayılı yük taşıyan kabloda kablo eğrisel bir biçim alır ve D noktasındaki iç kuvvet, eğrinin teğeti doğrultusunda etkiyen T çekme kuvveti olur. Kablonun en alt C noktasından, bir D noktasına kadar olan parçasını alırsak, cisme etkiyen kuvvetler C de yatay konumdaki T 0 çekme kuvveti, ve D de kablonun D noktasındaki teğeti doğrultusunda etkiyen T çekme kuvveti. Kuvvetler üçgenini çizersek: T T cos = θ = T 0 2 T 0 + W 2 T tan sin θ θ = W W = T 0 T çekme kuvvetinin yatay bileşeni her noktada aynıdır ve T nin düşey bileşeninin en alt noktada ölçülen yükün W şiddetine eşittir Çekme en aşağı noktada minimum, A ve B noktalarında maksimumdur.

91 Problem Şekildeki kabloda, her bir parçadaki (bölümdeki) gerilmeyi bulunuz.

92

93

94 Problem

95

96

97 SÜRTÜNME

98 SÜRTÜNEN YÜZEYLER Yüzeyler iki sınıfa ayrılır: Cilalı yüzey Pürüzlü yüzey Sürtünme Sıvı sürtünmesi Kuru sürtünme

99 SÜRTÜNME KUVVETİ VE SÜRTÜNME KATSAYISI İki cisim arasında temas yüzeyi pürüzlü ise, A cisminin SCD Şekildeki gibi olur. İki yüzey arasındaki etkileşim kuvveti R, yüzey normali ile bir açı yapar. R iki bileşene ayrılabilir. O zaman temas yüzeyine dik N bileşenine normal kuvvet, temas yüzeyine teğet ve hareketin tersi yönündeki Fs bileşenine sürtünme kuvveti denir. Sürtünme Kuvveti:İki yüzey birbiri ile temasta iken, biri ötekine göre hareket zorlanınca ortaya çıkan, hareketle zıt yönlü ve sürtünen yüzeylere teğet olan kuvvete verilen addır. Sürtünme kuvveti ısı biçiminde enerji kaybına neden olur. A cismi dengede ise, denge denklemlerişöyledir; R yi bileşenlerine ayırmakta kullanılan açıya sürtünme açısı denir. Bilinmesi gereken, sürtünme kuvvetinin şiddeti için daima bir üst sınır vardır. Bazı durumlarda sürtünmeden kaçınılırken, bazı durumlarda yararlanılmaya çalışılır. Örneğin bir makine çalışırken sürtünme elde edilir. Son olarak integrali hesaplanırsa,

100 Bu bağıntı, sabit silindirik tambura sarılı kayış ya da halat ile fren kayışı için tam kayma hareketinin başlayacağı sırada kullanılmalıdır. Burada radyan cinsinden kullanılan açı >2 olabilir, örneğin halat direğe n kere sarılıysa, = 2 n olur. Eğer kayış, halat, fren kaymıyorsa ya da kayma başlangıcında değilse denklem kullanılamaz. Kayışlı transmisyonlar sıklıkla V biçimindedirler (V kayışı). Hareket halindeki kayışta çekme kuvveti T2, direnen kayış kuvveti T1 ve kasnak ile kayış arasındaki statik sürtünme katsayısı s ise kayış kuvvetleri arasındaki ilişki; yazılabilir. Burada kayış yanaklarındaki sürtünmeyi gözeten ilişki, Sürtünme Sürtünme, birbiriyle izafi hareket yapan iki katı yüzeyin harekete ya da hareketin ihtimaline göstermiş oldukları dirençtir. En genel olarak: Kuru, Sıvı, Yarı-sıvı Kayma-Yuvarlanmalı

101 Kuru Sürtünme Bağıl hareket yapan iki kuru parça temas yüzeylerinde meydana gelen sürtünme türü olup, parçalar birbirleri üzerinde yüzey pürüzleri üzerinde kayar. Aşınma: Sürtünen yüzeylerde malzemenin, mekanik etkilerle istenmeyen bir şekilde kopması ve ana parçalardan ayrılmasıdır. Daha önceki bölümlerde, birbiriyle temasta olan yüzeylerin sürtünmesiz (cilalı) veya pürüzlü oldukları kabul edilmişti. Sürtünmesiz (cilalı) olmaları durumunda yüzeylerden birinin diğerine uyguladığı kuvvet normal oluyordu ve yüzeyler birbirine göre serbestçe hareket edebiliyordu. pürüzlü olmaları halinde ise yüzeylerin birbirine göre hareketini engelleyen teğetsel kuvvetlerin ortaya çıktığı kabul ediliyordu.

102 Kuru sürtünme (Coulomb sürtünmesi) ve Sıvı sürtünmesi olmak üzere iki tür sürtünme vardır. Sıvı sürtünmesi yağlanmış mekanizmalarda (yüzeylerde) dikkate alınır. Sıvı sürtünmesi sıvının çeşitli hızlarda hareket eden sıvı tabakaları arasında ortaya çıkar. Sıvıların borulardan akımı ve hareketli sıvılara batmış cisimlerle uğraşan problemklerde sıvı sürtünmesi önem taşır. Biz şimdilik yağlanmamış yüzeyler boyunca birbiriyle temas eden rijit cisimlerle ilgileneceğiz. Kuru Sürtünme Kanunları. Sürtünme Katsayıları Şekildeki cisme etki eden kuvvetler, cismin ağırlığı (W) ve zeminin tepkisidir (N). Cisme yatay P kuvveti etki ederse, cismin dengede sabit durması için zemin tepki kuvvetinin yatay bileşeni (F) gerekir, buna statik sürtünme kuvveti denir. P büyüdükçe, F de maksimum bir değere kadar büyür (F m ). Fm = µ s N P yi daha da arttırırsak cisim harekete başlar ve F daha düşük bir değere (F k ) düşer (F k : kinetik sürtünme kuvveti). Fk = µ k N

103 Max. Statik sürtünme katsayısı: Fm = µ s N Kinetik sürtünme katsayısı: F k = µ N µ k k 0.75µ s Maksimum statik sürtünme kuvveti ve kinetik sürtünme kuvveti Normal kuvvetle orantılıdır Temas yüzeyinin tipi ve şartlarına bağlıdır Temas alanından bağımsızdır Sürtünme yok, (P x = 0) Hareket yok, (P x < F m ) Hareket başlangıcı, (P x = F m ) Hareket, (P x > F m )

104 SÜRTÜNME AÇISI Bazı hallerde N normal kuvveti ile F sürtünme kuvveti yerine bileşkeleri olan R yi koymak daha uygundur. Sürtünme yok Hareket yok Hareket başlangıcı Hareket tanφ tanφ Fm s = N s = µ s µ = s N N tanφ k tanφ k F = k N = µ k µ = k N N Sürtünme yok Hareket yok Hareket başlangıcı Hareket

105 Kuru Sürtünme ile İlgili Problemler Etki eden kuvvetler biliniyor Statik sürtünme katsayısı biliniyor Cisim hareket eder mi? Etki eden kuvvetler biliniyor Hareket başlangıcı Statik sürtünme katsayısını bul Statik sürtünme katsayısı biliniyor Hareket başlangıcı Kuvvetlerden birinin şiddeti veya yönünü bul Problem

106

107 Problem

108 Çözüm

109 KAMALAR Kamalar, büyük blokları ve ağır yükleri kaldırmada kullanılan basit makinelerdir. Bu yükler kamaya yükün ağırlığından çok daha küçük yükler uygulayarak kaldırılabilir. Kamalar uygun şekil verilmek suretiyle, sürtünme kuvveti nedeniyle yük altında sıkıştırılınca yerlerinde kalırlar. Sürtünme kamanın dışarı kaymasını engeller. Amacımız yükü kaldırmak için gereken minimum yükü bulmaktır. KAMALAR N F 1 F x y Blok = 0 : + µ N = 0 : W µ N veya r R r s s 1 2 = 0 + N v R2 + W = = 0 0 Kama µ N F s F N x y 2 = 0 : 2 + P = 0 = 0 : + N veya r r P R N 3 3 ( µ cos6 sin 6 ) s ( cos6 µ sin 6 ) = 0 r 2 + R3 = 0 s

110 W H T S F = T D / 2 2T = D L H W τ = F 2T = A DLW

111 Kare-Dişli Vidalar Kare dişli vidalar, kriko, pres ve diğer mekanizmalarda çok kullanılır. Bunların hesabı eğik bir düzlem üzerinde kayan bir blok hesabına benzer. Q kuvvetinin momenti P kuvvetinin momentine eşittir. Q = Pa r Kare-Dişli Vidalar Yukarı doğru hareket başlangıcı φ >θ, s φ s > θ,

112 Kare-Dişli Vidalar Disli yüksekliği l, çapı 2r, açısıθ, Eksenel kuvvet W, döndürme momenti M

113 Mil Yatakları. Dingil Sürtünmesi Mil yatakları dönen millere ve dingillere yatay mesnet sağlamak için kullanılır. Basınç yatakları ise mil ve dingillere eksenel mesnet sağlar. Mil yatağı tamamen yağlanmışsa sürtünme direnci dönme hızına, dingille yatak arasındaki boşluğa ve yağın viskozitesine bağlıdır. Kısmen yağlanmış mil ve yataklar bir çizgi boyunca doğrudan temasta kabul edilebilir. Mil Yatakları. Dingil Sürtünmesi Bir yatağa etki eden kuvvetler, tekerleğin ve milin W ağırlıkları, hareketi sürdürmek için gereken M kuvvet çifti, ve yatağın R tepkisi (bileşkesi). Bu kuvvet düşey W ye eşit ve zıt yönlüdür. Fakat milin O merkezinden geçmez; R kuvveti O nun sağında ve O ya göre momenti kuvvet çiftinin M momentini dengeleyecek şekilde belirli bir uzaklıkta bulunur.mil ile yatak arasında temas en alçak A noktasında olmaz, B noktasında yada şekil düzlemini B de kesen bir doğru boyunca olur. Bu fiziksel olarak, tekerlek harekete başladığı zaman, milin kaymaya başlayıncaya kadar yatak içinde tırmandığı gerçeği ile açıklanır.

114 Grafik çözüm için, R (tesir çizgisi) sürtünme çemberine teğet olmalıdır. M = Rr sinφ Rrµ k k r f = r sinφ rµ k k Basınç Yatakları. Disk Sürtünmesi Dönen millere ve dingillere eksenel mesnet sağlamak için kullanılırlar. İki türde olurlar: (1) Uç yatakları ve (2) Boyun (Bilezik) yatakları. Boyun yataklarında birbirine değen halka biçimli iki alan arasında sürtünme oluşur. Uç yatakları durumunda bütün dairesel alanlarda yada mil ucunun içi boş olduğu zaman halka biçiminde alanlar boyunca sürtünme oluşur.

115 Basınç Yatakları. Disk Sürtünmesi M = r F = rµ N = rµ k rµ k P A = π 2 2 ( R 2 R ) 1 k P A A Dönen içi boş mil durumu: Bir M kuvvet çifti mili sabit bir hızla döndürmekte ve bir P kuvveti bunun sabit yatakla temasını sağlamaktadır. Yatakla mil arasındaki değme iç yarıçapı R1 ve dış yarıçapı R2 olan halka bir alan boyunca olur. A alanlı elemana uygulanan normal kuvvet N=P A/A olur. Milin dengesi, uygulanan kuvvet çiftinin M momentinin F sürtünme kuvvetlerinin momentlerinin toplamına eşit olmasını gerektirir. M 2 3 2π R µ k P 2 2 ( R R ) = π = 2 R µ k P R R R R 2 1 r 2 drdθ Basınç Yatakları. Disk Sürtünmesi Değme R yarıçaplı bir tam çember boyunca olduğu zaman 2 3 M = µ k PR Buna göre M değeri mille yatak arasındaki değmenin mil ekseninden 2R/3 uzaklıkta bulunan bir tek noktada yer alması durumu için elde edilen değerin aynısı olur.

116 Tekerlek Sürtünmesi, Yuvarlanma Direnci Tekerleğin kullanımı ağır yüklerin küçük gayretlerle hareket ettirilmesini mümkün kılar. Herhangi bir anda tekerleğin yere değen noktasının yere göre bağıl hareketi olmadığı için, tekerlek yükün yere dolaysız değmesi durumunda ortaya çıkacak büyük sürtünme kuvvetlerini yok eder. Bununla beraber tekerlek kusursuz değildir ve biraz direnç vardır. Bu direncin iki nedeni vardır. (1) Dingil sürtünmesi ve kenardaki sürtünmenin bileşik etkisi. (2) tekerlekle yer arasında yalnız bir noktada değil, belirli bir alanda değme sonucunu doğuran, tekerlek ve yerin şekil değiştirmesi gerçeğinden bir direnim (mukavemet) ortaya çıkar. Tekerlek Sürtünmesi, Yuvarlanma Direnci Sürtünme yok ideal durum Sürtünme olmadığında tekerlek kayar. Tekerleğin ve zeminin deformasyonu B de bir tepki kuvveti oluşturur. W nin B deki momentini dengelemek için P gerekir. Pr = Wb b = yuvarlanma direnci katsayısı r=tekerlek yarıçapı

117 KAYIŞ SÜRTÜNMESİ Sabit bir silindirik tamburun üzerinden geçen bir kayışı göz önüne alalım. Kayış sağa doğru kaymak üzere bulunduğu anda kayışın iki tarafındaki T1 ve T2 çekme kuvvetleri arasında mevcut bağıntıyı bulmak istiyoruz. Kayıştan θ açısı ile belirlenen küçük bir PP elemanını çıkarırız. P deki kuvvet T, P deki T+ t ile gösteririz. İki yandaki kuvvetlerden başka cisme etkiyen kuvvetler, tamburdan gelen tepkinin N normal bileşeni ile F sürtünme kuvvetidir. KAYIŞ SÜRTÜNMESİ F θ θ ( T + T ) cos T cos N 0 = 0 : s = 2 2 x µ Fy θ θ ( T + T ) sin T sin 0 = 0 : N = 2 2 T θ T sin cos µ s T + θ 2 2 ( θ 2) θ 2 dt dθ µ s T = 0 T T µ β ln 2 = µ β e s s or 2 = T1 T1

118

119 Problem

120 Problem

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

olup uygu kaması A formuna sahiptir. Müsaade edilen yüzey basıncı p em kasnak malzemesi GG ve mil malzemesi St 50 dir.

olup uygu kaması A formuna sahiptir. Müsaade edilen yüzey basıncı p em kasnak malzemesi GG ve mil malzemesi St 50 dir. ÖRNEK 1: Düz kayış kasnağı bir mil üzerine radyal yönde uygu kaması ile eksenel yönde İse bir pul ve cıvata ile sabitleştirilmiştir. İletilecek güç 1 kw ve devir sayısı n=500 D/d olup uygu kaması A formuna

Detaylı

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEY FÖYÜ (TEK EKSENLİ EĞİLME DENEYİ) ÖĞRETİM ÜYESİ YRD.DOÇ.DR. AHMET TEMÜGAN DERS ASİSTANI ARŞ.GÖR. FATİH KAYA

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi ÖLÜM IV üzlem Kafesler En çok kullanılan köprü kafesleri En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi Mühendislik olalarında genel olarak birden çok katı cisim birbirine

Detaylı

Makine Elemanları I Prof. Dr. İrfan KAYMAZ. Temel bilgiler-flipped Classroom Bağlama Elemanları

Makine Elemanları I Prof. Dr. İrfan KAYMAZ. Temel bilgiler-flipped Classroom Bağlama Elemanları Makine Elemanları I Prof. Dr. İrfan KAYMAZ Temel bilgiler-flipped Classroom Bağlama Elemanları 11/22/2014 İçerik Bağlama Elemanlarının Sınıflandırılması Şekil Bağlı bağlama elemanlarının hesabı Kuvvet

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR İçerik Giriş Helisel dişli geometrisi Kavrama oranı Helisel dişli boyutları Helisel dişlilerin mukavemet

Detaylı

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436 01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436 ELEKTRİK AKIMI VE LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Düz Dişli Çarklar DİŞLİ ÇARKLAR HESAPLAMA

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Düz Dişli Çarklar DİŞLİ ÇARKLAR HESAPLAMA Makine Elemanları II Prof. Dr. Akgün ALSARAN Düz Dişli Çarklar DİŞLİ ÇARKLAR HESAPLAMA İçerik Giriş Dişli çarklarda ana ölçülerin seçimi Dişlilerde oluşan kuvvetler ve etkileyen faktörler Dişli çarkların

Detaylı

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü Deney-2 /5 DENEY 2 SĐLĐNDĐR ÜZERĐNE ETKĐ EDEN SÜRÜKLEME KUVVETĐNĐN BELĐRLENMESĐ AMAÇ Bu deneyin amacı, silindir üzerindeki statik basınç dağılımını, akışkan tarafından silindir üzerine uygulanan kuvveti

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Taşıyıcı Sistem Elemanları

Taşıyıcı Sistem Elemanları BETONARME BİNALARDA OLUŞAN YAPI HASAR BİÇİMLERİ Bu çalışmanın amacı betonarme binaların taşıyıcı sistemlerinde meydana gelen hasarlar ve bu hasarların nedenleri tanıtılacaktır. Yapılarda hasarın belirtisi

Detaylı

Akışkanlar Mekaniği. Dr. Osman TURAN. Makine ve İmalat Mühendisliği. osman.turan@bilecik.edu.tr

Akışkanlar Mekaniği. Dr. Osman TURAN. Makine ve İmalat Mühendisliği. osman.turan@bilecik.edu.tr Akışkanlar Mekaniği Dr. Osman TURAN Makine ve İmalat Mühendisliği osman.turan@bilecik.edu.tr Kaynaklar Ders Değerlendirmesi 1. Vize 2. Vize Ödev ve Kısa sınavlar Final % 20 % 25 % 15 % 40 Ders İçeriği

Detaylı

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI 1 Güç Kaynağı AC Motor DC Motor Diesel Motor Otto Motor GÜÇ AKIŞI M i, ω i Güç transmisyon sistemi M 0, ω 0 F 0, v 0 Makina (doğrusal veya dairesel hareket) Mekanik

Detaylı

Makina Dinamiği MEKANİZMALARDA HIZ VE İVMELERİN BELİRLENMESİ

Makina Dinamiği MEKANİZMALARDA HIZ VE İVMELERİN BELİRLENMESİ MEKANİZMALARDA HIZ VE İVMELERİN BELİRLENMESİ Mekanizmalar daha çok düzlemsel mekanizmalardan meydana gelir. Hacimsel mekanizmalara çok az rastlanır. Düzlemsel mekanizma denilince derinliği olmayan veya

Detaylı

4. Numaralandırdığımız her boru parçasının üzerine taşıdıkları ısı yükleri yazılır.

4. Numaralandırdığımız her boru parçasının üzerine taşıdıkları ısı yükleri yazılır. 4. KOLON ŞEMASI VE BORU ÇAPI HESABI Tesisatı oluşturan kazan, kollektörler, borular,,vanalar, ısıtıcılar,genleşme deposu ile diğer donanım ve armatürlerin tümünün düşey görünüşünü iki boyutlu olarak gösteren

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi FOTOGRAMETRİ I Fotogrametrik Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi Tanımlar Metrik Kameralar Mercek Kusurları

Detaylı

SU YAPILARI. Su Alma Yapıları. 5.Hafta. Doç.Dr.N.Nur ÖZYURT nozyurt@hacettepe.edu.tr

SU YAPILARI. Su Alma Yapıları. 5.Hafta. Doç.Dr.N.Nur ÖZYURT nozyurt@hacettepe.edu.tr SU YAPILARI 5.Hafta Su Alma Yapıları Doç.Dr.N.Nur ÖZYURT nozyurt@hacettepe.edu.tr Su alma yapısı nedir? Akarsu ya da baraj gölünden suyu alıp iletim sistemlerine veren yapılara su alma yapısı denir. Su

Detaylı

16.07.2012 11. ŞEV DURAYLILIĞI

16.07.2012 11. ŞEV DURAYLILIĞI 11. ŞEV DURAYLILIĞI ŞEV DURAYLILIĞI (Slope Stability) Şev: Düzensiz veya belirli bir geometriye sahip eğimli yüzeydir. Şevler Düzensiz bir geometriye sahip doğal şevler (yamaç) Belirli bir geometriye sahip

Detaylı

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK 2. KUVVETLERİN VEKTÖREL TOPLANMASI AMAÇ Hazırlaan Arş. Grv. A. E. IRMAK Eş zamanlı kuvvetler etkisinde dengede bulunan bir cismin incelenmesi, analitik ve vektörel metotları kullanarak denge problemlerinin

Detaylı

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik ve Ölçme Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik kanunları temel büyüklükler(nicelikler) cinsinden ifade edilir. Mekanikte üç temel büyüklük vardır; bunlar uzunluk(l), zaman(t)

Detaylı

Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları

Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul gunayozmen@hotmail.com 1. Giriş Çağdaş deprem yönetmeliklerinde, en çok göz önüne

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 10 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 8 Aralık 1999 Saat: 09.54 Problem 10.1 (a) Bir F kuvveti ile çekiyoruz (her iki ip ile). O

Detaylı

Mak-204. Üretim Yöntemleri II. Vida ve Genel Özellikleri Kılavuz Çekme Pafta Çekme Rayba Çekme

Mak-204. Üretim Yöntemleri II. Vida ve Genel Özellikleri Kılavuz Çekme Pafta Çekme Rayba Çekme Mak-204 Üretim Yöntemleri II Vida ve Genel Özellikleri Kılavuz Çekme Pafta Çekme Rayba Çekme Kubilay ASLANTAŞ Afyon Kocatepe Üniversitesi Teknik Eğitim Fakültesi Makine Eğt. Bölümü Üretim Yöntemleri 1

Detaylı

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

ÇELİK YAPI BİRLEŞİM ELEMANLARI

ÇELİK YAPI BİRLEŞİM ELEMANLARI ÇELİK YAPI BİRLEŞİM ELEMANLARI Çelik yapılarda, kullanılan üç farklı birleşim elemanı vardır. Bunlar; 1. Perçinli birleşimler, 2. Cıvatalı (Bulonlu) birleşimleri. 3. Kaynaklı birleşimler 2 1 1. PERÇİNLİ

Detaylı

Şaft: Şaft ve Mafsallar:

Şaft: Şaft ve Mafsallar: Şaft ve Mafsallar: Motor ve tahrik aksı farklı yerde olan araçlarda, vites kutusu ile diferansiyel arasında hareket iletimi için şaft ve açısal sapmalar için gerekli olan mafsallar karşımıza çıkmaktadır.

Detaylı

Hesapların yapılması;modül,mil çapı,rulman,feder ve yağ miktarı gibi değerlerin seçilmesi isteniyor.

Hesapların yapılması;modül,mil çapı,rulman,feder ve yağ miktarı gibi değerlerin seçilmesi isteniyor. PROJE KONUSU : İKİ KADEMELİ REDÜKTÖR. VERİLEN BİLGİLER VE İSTENENLER : Giriş gücü = P giriş =,5 kw Kademe sayısı = Giriş mil devri = n g = 750 devir/dakika.kademe dişli tipi = Düz dişli çark Çıkış mil

Detaylı

Üç-fazlı 480 volt AC güç, normalde-açık "L1", "L2" ve "L3" olarak etiketlenmiş vida bağlantı uçları yoluyla kontaktörün tepesinde kontak hale gelir

Üç-fazlı 480 volt AC güç, normalde-açık L1, L2 ve L3 olarak etiketlenmiş vida bağlantı uçları yoluyla kontaktörün tepesinde kontak hale gelir Kontaktörler Röle kontakları üzerinden büyük bir miktar elektrik gücü anahtarlamak için kullanıldığında kontaktör terimi ile adlandırılır.. Kontaktörler tipik olarak çoklu kontaklara sahiptir ve kontakları

Detaylı

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün Veri Toplama Yöntemleri Prof.Dr.Besti Üstün 1 VERİ (DATA) Belirli amaçlar için toplanan bilgilere veri denir. Araştırmacının belirlediği probleme en uygun çözümü bulabilmesi uygun veri toplama yöntemi

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 1

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 1 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi 2/25 Görünüşler Birinci İzdüşüm Metodu Üçüncüİzdüşüm Metodu İzdüşüm Sembolü Görünüşlerin Çizilmesi Görünüş Çıkarma Kuralları Tek Görünüşle

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ DENEY SORUMLUSU Arş.Gör. Şaban ULUS Haziran 2012 KAYSERİ

Detaylı

ZEMİN MUKAVEMETİ: LABORATUVAR DENEY YÖNTEMLERİ

ZEMİN MUKAVEMETİ: LABORATUVAR DENEY YÖNTEMLERİ ZEMİN MUKAVEMETİ: LABORATUVAR DENEY YÖNTEMLERİ Arazide bir yapı temeli veya toprak dolgu altında kalacak, veya herhangi bir başka yüklemeye maruz kalacak zemin tabakalarının gerilme-şekil değiştirme davranışlarını

Detaylı

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu Atom Maddelerin en küçük yapı taşlarına atom denir. Atomlar, elektron, nötron ve protonlardan oluşur. 1.Elektronlar: Çekirdek etrafında yörüngelerde bulunurlar ve ( ) yüklüdürler. Boyutları çok küçüktür.

Detaylı

Reynolds Sayısı ve Akış Rejimleri

Reynolds Sayısı ve Akış Rejimleri 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün akım çizgileriyle belirtilen çok düzenli akış hareketine laminer akış denir. Düşük hızlarda yağ gibi yüksek viskoziteli

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

Mahya Aşığı. Kenar Aşık

Mahya Aşığı. Kenar Aşık . AŞIK HESABI.1 Yük Analizi lar makas üzerine basit mesnetli olarak teşkil edildikleri için, çatı örtüsü vasıtasıla her iki taraftan gelen alan ükünün arısına maruz kalacakları kabul edilebilir. Bu durumda;

Detaylı

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ 1 1. KARE VİDA AÇMA

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ 1 1. KARE VİDA AÇMA ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ 1 AMAÇ Kare vida çekme işlemlerini yapabileceksiniz. ARAŞTIRMA Kare vidaların kullanım alanları hakkında bilgi toplayınız. 1. KARE VİDA AÇMA Diş dolusu ve diş boşluğu

Detaylı

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR.

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. EYLÜL 2013-201 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. 9-13 Örüntü ve Süslemeler Dönüşüm Geometrisi 1. Doğru, çokgen ve çember modellerinden

Detaylı

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI MALZEME KUSURLARI Deformasyonda Birinci Özelliğe Sahip Hatalar: A. Noktasal Hatalar: Kafes düzeninin çok küçük bölgelerindeki (1-2 atom boyutu) bozukluğa verilen addır. Bunlar ; 1. Boşluklar : Kafeslerde

Detaylı

2.4. ELASTĠK DEPREM YÜKLERĠNĠN TANIMLANMASI : SPEKTRAL ĠVME KATSAYISI

2.4. ELASTĠK DEPREM YÜKLERĠNĠN TANIMLANMASI : SPEKTRAL ĠVME KATSAYISI 2.4. ELASTĠK DEPREM YÜKLERĠNĠN TANIMLANMASI : SPEKTRAL ĠVME KATSAYISI Deprem yüklerinin belirlenmesi için esas alınacak olan Spektral İvme Katsayısı, A(T), Denk.(2.1) ile verilmiştir. %5 sönüm oranı için

Detaylı

KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1

KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1 KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1 GİRİŞ Sabit yu klerden meydana gelen kesit tesiri fonksiyonlarından elde edilen grafiklere Kesit Tesir Diyagramları denir. Du zlem c ubuk sistemlerde M, N, T (V)

Detaylı

7-Sürtünme. Daha önceki bölümlerde temas yüzeylerinde sürtünme olmadığını kabul etmiştik. Yüzeyler diğerlerine göre serbestçe hareket edebilmekteydi

7-Sürtünme. Daha önceki bölümlerde temas yüzeylerinde sürtünme olmadığını kabul etmiştik. Yüzeyler diğerlerine göre serbestçe hareket edebilmekteydi 7-Sürtünme Daha önceki bölümlerde temas yüzeylerinde sürtünme olmadığını kabul etmiştik. Yüzeyler diğerlerine göre serbestçe hareket edebilmekteydi Gerçekte tam sürtünmesiz yüzey yoktur. Birbiriyle temas

Detaylı

OTOMATİK TRANSMİSYONLAR

OTOMATİK TRANSMİSYONLAR OTOMATİK TRANSMİSYONLAR Taşıtın hızına, gaz kelebeği pozisyonuna yük ve yol şartlarına bağlı olarak viteslerin otomatik olarak değişmelerine imkan veren bir sistemdir. Otomatik transmisyonla,mekanik ve

Detaylı

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER Şekil-1: BREADBOARD Yukarıda, deneylerde kullandığımız breadboard un şekli görünmektedir. Bu board üzerinde harflerle isimlendirilen satırlar ve numaralarla

Detaylı

A)1/2 B)2/3 C)1 D)3/2 E)2

A)1/2 B)2/3 C)1 D)3/2 E)2 SORU1: Eşit bölmeli bir çubuğa büyüklükleri 2F,F olan F1,F2 kuvvetleri şekildeki gibi dik olarak uygulanıyor. F1,F2 kuvvetlerinin O noktasına göre momentlerinin büyüklüğü sırasıyla M1,M2 olduğuna göre,m1/m2

Detaylı

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ 6. Hafta Oda Akustiği Sesin Oda İçerisinde Yayınımı Akustik olarak sesin odada yayınımı için, sesin dalga boyunun hacmin boyutlarına göre oldukça küçük olması gerekmektedir.

Detaylı

STATİK-BETONARME PROJE KONTROL FORMU Evet Hayır

STATİK-BETONARME PROJE KONTROL FORMU Evet Hayır STATİK-BETONARME PROJE KONTROL FORMU Evet Hayır 1. TAŞIYICI SİSTEM SEÇİMİ Mimari ve statik proje kolon sistemi uyumluymuş Mimari projedeki kat planları ile statik projedeki kalıp planları uyumluymuş. Mimari

Detaylı

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır.

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır. BÖLME, BÖLÜNEBİLME A. Bölme İşlemi A, B, C, K doğal sayılar ve B 0 olmak üzere, Bölünen A 75, bölen B 9, bölüm C 8 ve kalan K tür. Yukarıdaki bölme işlemine göre, 1. 9 yani, K B dir. işlemine bölme denir.

Detaylı

BÖLÜM.7 İŞ VE ENERJİ

BÖLÜM.7 İŞ VE ENERJİ ÖLÜM.7 İŞ VE EERJİ 7. Giriş undan önceki bölümde, maddesel noktanın hareketi ile ilgili problemler F = a hareket denklemi kullanılarak çözülmüştü. ir F kueti etkisinde bulunan bir maddesel nokta erilmişken

Detaylı

SORU 6: Su yapılarının tasarımında katı madde hareketinin (aşınma, oyulma, yığılma vb. olayları) incelenmesi neden önemlidir, açıklayınız (4 puan).

SORU 6: Su yapılarının tasarımında katı madde hareketinin (aşınma, oyulma, yığılma vb. olayları) incelenmesi neden önemlidir, açıklayınız (4 puan). KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 014-015 GÜZ YARIYILI SU KAYNAKLARI MÜHENDİSLİĞİ I ARASINAV SORULARI Tarih: 16 Kasım 014 SORULAR VE CEVAPLAR Adı Soyadı: No: İmza:

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ 5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ KONULAR 1. Kumanda Devreleri 2. Doğru Akım Motorları Kumanda Devreleri 3. Alternatif Akım Motorları Kumanda Devreleri GİRİŞ Otomatik kumanda devrelerinde motorun

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

MAK585 Dinamik Sistemlerin Modellenmesi ve Simülasyonu

MAK585 Dinamik Sistemlerin Modellenmesi ve Simülasyonu MAK585 Dinamik Sistemlerin Modellenmesi ve Simülasyonu 06-Bahar Dönemi Gebze Teknik Üniversitesi Makine Mühendisliği Bölümü Prof.Dr. Selim Sivrioğlu s.selim@gtu.edu.tr.03.06 Hareket denklemi: Enerji Metodu

Detaylı

DEVRELER VE ELEKTRONİK LABORATUVARI

DEVRELER VE ELEKTRONİK LABORATUVARI DENEY NO: 1 DENEY GRUBU: C DİRENÇ ELEMANLARI, 1-KAPILI DİRENÇ DEVRELERİ VE KIRCHHOFF UN GERİLİMLER YASASI Malzeme ve Cihaz Listesi: 1. 10 Ω direnç 1 adet 2. 100 Ω direnç 3 adet 3. 180 Ω direnç 1 adet 4.

Detaylı

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ MALZEMELERİN FİZİKSEL ÖZELLİKLERİ (Ders Notu) Manyetik Özellikler Doç.Dr. Özkan ÖZDEMİR MANYETİK ÖZELLİK Giriş Bazı malzemelerde mevcut manyetik kutup çiftleri, elektriksel kutuplara benzer şekilde, çevredeki

Detaylı

MİKRO İKTİSAT ÇALIŞMA SORULARI-10 TAM REKABET PİYASASI

MİKRO İKTİSAT ÇALIŞMA SORULARI-10 TAM REKABET PİYASASI MİKRO İKTİSAT ÇALIŞMA SORULARI-10 TAM REKABET PİYASASI 1. Firma karını maksimize eden üretim düzeyini seçmiştir. Bu üretim düzeyinde ürünün fiyatı 20YTL ve ortalama toplam maliyet 25YTL dir. Firma: A)

Detaylı

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak

Detaylı

Dr. Erdener ILDIZ Yönetim Kurulu Başkanı ILDIZ DONATIM SAN. ve TİC. A.Ş.

Dr. Erdener ILDIZ Yönetim Kurulu Başkanı ILDIZ DONATIM SAN. ve TİC. A.Ş. UÇAK SIĞINAKLARININ DIŞ KABUĞUNU EPDM SU YALITICISI İLE KAPLARKEN KABUK ÜZERİNDE MEYDANA GELEN RÜZGAR YÜKLERİVE BU YÜKLERE KARŞI ALINMASI GEREKEN ÖNLEMLERİN İNCELENMESİ Dr. Erdener ILDIZ Yönetim Kurulu

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Saplama ark kaynağı (Stud welding) yöntemi 1920'li yıllardan beri bilinmesine rağmen, özellikle son yıllarda yaygın olarak kullanılmaktadır.

Saplama ark kaynağı (Stud welding) yöntemi 1920'li yıllardan beri bilinmesine rağmen, özellikle son yıllarda yaygın olarak kullanılmaktadır. SAPLAMA KAYNAĞI Saplama ark kaynağı (Stud welding) yöntemi 1920'li yıllardan beri bilinmesine rağmen, özellikle son yıllarda yaygın olarak kullanılmaktadır. Arkın metalleri ergitme özelliğinden yararlanarak

Detaylı

Bu konuda cevap verilecek sorular?

Bu konuda cevap verilecek sorular? MANYETİK ALAN Bu konuda cevap verilecek sorular? 1. Manyetik alan nedir? 2. Maddeler manyetik özelliklerine göre nasıl sınıflandırılır? 3. Manyetik alanın varlığı nasıl anlaşılır? 4. Mıknatısın manyetik

Detaylı

Foton Kutuplanma durumlarının Dirac yazılımı

Foton Kutuplanma durumlarının Dirac yazılımı Foton Kutuplanma durumlarının Dirac yazılımı Yatay Kutuplanmış bir foton h ve düşey kutuplanmış bir foton ise ν ile verilmiştir. Şekil I: Foton kutuplanma bazları h, ν ve +45, 45 in tanımı. ±45 boyunca

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

Elektrik Makinaları I. Senkron Makinalar Stator Sargılarının oluşturduğu Alternatif Alan ve Döner Alan, Sargıda Endüklenen Hareket Gerilimi

Elektrik Makinaları I. Senkron Makinalar Stator Sargılarının oluşturduğu Alternatif Alan ve Döner Alan, Sargıda Endüklenen Hareket Gerilimi Elektrik Makinaları I Senkron Makinalar Stator Sargılarının oluşturduğu Alternatif Alan ve Döner Alan, Sargıda Endüklenen Hareket Gerilimi Bir fazlı, iki kutuplu bir stator sargısının hava aralığında oluşturduğu

Detaylı

Soğutma kompresörlerini aşağıdaki şekilde sınıflandırmak mümkündür. 5. Santrifüj (Turbo) Kompresörler( günümüzde pek kullanılmamaktadırlar)

Soğutma kompresörlerini aşağıdaki şekilde sınıflandırmak mümkündür. 5. Santrifüj (Turbo) Kompresörler( günümüzde pek kullanılmamaktadırlar) 4. KOMPRESÖRLER Soğutucu akışkanın çevrim boyunca dolaştırılarak soğuk kaynaktan sıcak kaynağa ısı iletilmesi kompresörler yardımıyla meydana gelir.yani kompresörler, soğutma devrelerinde buharlaştırıcıda

Detaylı

Öğrenci Seçme Sınavı (Öss) / 14 Haziran 2009. Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 =

Öğrenci Seçme Sınavı (Öss) / 14 Haziran 2009. Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 = Öğrenci Seçme Sınavı (Öss) / 4 Haziran 009 Matematik I Soruları ve Çözümleri. ( ).( + ) işleminin sonucu kaçtır? A) 6 B) 6 C) D) 6 E) 6 Çözüm ( ).( + ) 0 ( ).( ) + ( 4 9 ). 6 36 6 36. 6 6. 0, 0,0 0,0 işleminin

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- Giriş 2 Denge denklemlerini, mafsala bağlı elemanlarda oluşan yapıları analiz etmek için kullanacağız. Bu analiz, dengede olan bir yapının

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi 3B Kuvvet Momenti Üç Boyutlu Kuvvet Sistemi M = r (vektör) X F (vektör) Her F kuvvetinin uzunluk r vektörünü bul Eğer verilmemişse, F kuvvetini de vektörel ifade et. Uzunluk vektörünü r bulmak için: Uzunlık

Detaylı

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com Giriş Yönetim alanında yaşanan değişim, süreç yönetimi anlayışını ön plana çıkarmıştır. Süreç yönetimi; insan ve madde kaynaklarını

Detaylı

t xlo ) boyutlarında bir alan yükü etkir (P k ). t xlo )+( 2 t xlo ) boyutlarında bir alan yükü etkir (P m ).

t xlo ) boyutlarında bir alan yükü etkir (P k ). t xlo )+( 2 t xlo ) boyutlarında bir alan yükü etkir (P m ). 3. KES (KİRİŞ) SİSTEM HESI 3.1 Kafes Sistem Yük nalizi Kafes kirişler (makaslar), aşıkları, çatı örtüsünü ve çatı örtüsü üzerine etkiyen dış yükleri (rüzgar, kar) taşırlar ve bu yükleri aşıklar vasıtasıyla

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: KUVVET ve HAREKET 3. Konu TORK, AÇISAL MOMENTUM ve DENGE ETKİNLİK ve TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: KUVVET ve HAREKET 3. Konu TORK, AÇISAL MOMENTUM ve DENGE ETKİNLİK ve TEST ÇÖZÜMLERİ 11. SINIF ONU ANAIMI 2. ÜNİE: UVVE ve HAREE 3. onu OR, AÇISA MOMENUM ve DENGE EİNİ ve ES ÇÖZÜMERİ 2 2. Ünite 3. onu ork, Aç sal Momentum ve Denge A n n Yan tlar 1. Çubuk dengede oldu una göre noktas na

Detaylı

ERGONOMĐK ĐŞ ARAÇLARI ve ALETLERĐ. Đş Araçlarının Đnsana Uyumu. Tutma yeri konstrüksiyonlarında şu hususlara dikkat etmek gerekir

ERGONOMĐK ĐŞ ARAÇLARI ve ALETLERĐ. Đş Araçlarının Đnsana Uyumu. Tutma yeri konstrüksiyonlarında şu hususlara dikkat etmek gerekir ERGONOMĐK ĐŞ ARAÇLARI ve ALETLERĐ MAK4091 Ergonomi 1 Đş Araçlarının Đnsana Uyumu 1. El ile yönetilen iş aletleri 1.1 Kas kuvveti ile çalıştırılanlar 1.1.1 Tek bacaklılar: Bıçak, çekiç, tornavida v.b. 1.1.2

Detaylı

YAPILARDA DERZLER VE SIZDIRMAZLIK MALZEMELERİ

YAPILARDA DERZLER VE SIZDIRMAZLIK MALZEMELERİ YAPILARDA DERZLER VE SIZDIRMAZLIK MALZEMELERİ Genel: Derz sözcüğü bir sistemi oluşturan parçaların birleştirildiği, yapıştırıldığı çizgi şeklindeki bölümleri tanımlar. Derzler dar ya da geniş, yatay ya

Detaylı

Şekil 5.12 Eski beton yüzeydeki kırıntıların su jetiyle uzaklaştırılması

Şekil 5.12 Eski beton yüzeydeki kırıntıların su jetiyle uzaklaştırılması Şekil 5.12 Eski beton yüzeydeki kırıntıların su jetiyle uzaklaştırılması 5.6.4 Yapıştırılmamış Aşınma Tabakası (Yüzen Şap) Döşeme ile aşınma tabakası arasında aderans yoktur, aksine aderansı önlemek için

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birinci Bölüm Soru Kitapçığı Türü DENEME-7 Bu sınav iki bölümden

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler,

Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler, Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler, Bu araştırmada Fen Bilgisi sorularını anlama düzeyinizi belirlemek amaçlanmıştır. Bunun için hazırlanmış bu testte SBS de sorulmuş bazı sorular

Detaylı

BİLGİSAYAR PROGRAMLARI YARDIMIYLA ŞEV DURAYLILIK ANALİZLERİ * Software Aided Slope Stability Analysis*

BİLGİSAYAR PROGRAMLARI YARDIMIYLA ŞEV DURAYLILIK ANALİZLERİ * Software Aided Slope Stability Analysis* BİLGİSAYAR PROGRAMLARI YARDIMIYLA ŞEV DURAYLILIK ANALİZLERİ * Software Aided Slope Stability Analysis* Mustafa Özgür KESKİN Maden Mühendisliği Anabilim Dalı Ahmet M. KILIÇ Maden Mühendisliği Anabilim Dalı

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST)

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST) DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST) 1. AMAÇ: Bu deney, üç eksenli sıkışmaya maruz kalan silindirik kayaç örneklerinin makaslama dayanımı parametrelerinin saptanması

Detaylı

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA A. DENEYİN AMACI : Protoboard kullanımını öğrenmek ve protoboard üzerinde basit direnç devreleri kurmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. DC güç kaynağı, 2. Multimetre, 3. Protoboard, 4. Değişik

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ i AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ TRAKTÖR AKS MİLİNİN YORULMA ANALİZİ MUSTAFA PERÇİN 120712010 YALÇIN DEMİRER 120712021 DANIŞMAN PROF. DR. SÜLEYMAN TAŞGETİREN Afyon

Detaylı

B02.8 Bölüm Değerlendirmeleri ve Özet

B02.8 Bölüm Değerlendirmeleri ve Özet B02.8 Bölüm Değerlendirmeleri ve Özet 57 Yrd. Doç. Dr. Yakup EMÜL, Bilgisayar Programlama Ders Notları (B02) Şimdiye kadar C programlama dilinin, verileri ekrana yazdırma, kullanıcıdan verileri alma, işlemler

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_3 INM 308 Zemin Mekaniği Zeminlerde Kayma Direnci Kavramı, Yenilme Teorileri Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

MESLEKİ UYGULAMA ESASLARI YÖNETMELİĞİ DEĞİŞİKLİK KARŞILAŞTIRMA ÇİZELGESİ. Geçerli yönetmelik tarihi : 11.03.2006 MEVCUT MADDE ÖNERİLEN GEREKÇE

MESLEKİ UYGULAMA ESASLARI YÖNETMELİĞİ DEĞİŞİKLİK KARŞILAŞTIRMA ÇİZELGESİ. Geçerli yönetmelik tarihi : 11.03.2006 MEVCUT MADDE ÖNERİLEN GEREKÇE MEVCUT MADDE ÖNERİLEN GEREKÇE GENEL GENEL 17.02.2006 Tarih ve 26083 sayılı Resmi Gazete de yayınlanan Mevzuat Hazırlama Usül ve Esasları Hakkında Yönetmelik gereği yapılan düzenlemelerle, format, başlıklar

Detaylı

EK III POTANSİYELİN TANIMLANMASI

EK III POTANSİYELİN TANIMLANMASI EK III POTANSİYELİN TANIMLANMASI İki vektörün basamaklı (kademeli) çarpımı: Büyüklükte A ve B olan iki vektörünü ele alalım Bunların T= A.B cosθ çarpımı, tanımlama gereğince basamaklıdır. Bu vektörlerden

Detaylı

YIĞMA TİPİ YAPILARIN DEPREM ETKİSİ ALTINDA ALETSEL VERİ ve HESAPLAMALARA GÖRE DEĞERLENDİRİLMESİ

YIĞMA TİPİ YAPILARIN DEPREM ETKİSİ ALTINDA ALETSEL VERİ ve HESAPLAMALARA GÖRE DEĞERLENDİRİLMESİ YIĞMA TİPİ YAPILARIN DEPREM ETKİSİ ALTINDA ALETSEL VERİ ve HESAPLAMALARA GÖRE DEĞERLENDİRİLMESİ S.S. Yücel 1, M. Bikçe 2, M.C. Geneş 3, Ş. Bankir 4 1 Y.L. Öğrencisi, İnşaat Müh. Fakültesi, İskenderun Teknik

Detaylı