Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme"

Transkript

1 Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Doç. Dr. Bilge Karaçalı Biyomedikal Veri İşleme Laboratuvarı Elektrik-Elektronik Mühendisliği Bölümü İzmir Yüksek Teknoloji Enstitüsü

2 Sunum akışı Örüntü tanıma: Güdümlü öğrenme Yarı-güdümlü öğrenme problemi Hipotezlere ait sonsal olasılıkların parametresiz bir yaklaşımla veriden kestirimi Uygulamalar Amino asit dizilerindeki işlevsel veya yapısal olarak özellikli bölgeler Uyarana özgün EEG beyin dalgaları Histoloji kesitlerinde kanserle ilintili bölgeler Karışık MiniBooNE nötrino verisindeki elektron nötrinoları

3 Örüntü tanıma Problem tanımı: Üzerinde bir karar verilmek istenen olguyu ifade eden x vektörü gözlem x X, gözlem uzayı Olguya sebep olan olası hipotezler H 1, H 2,..., H M farklı hipotezler farklı sınıflar Mümkün olduğu kadar az hata yapan sınıflandırıcı: f: X H 1, H 2,, H M En iyi çözüm: f x = arg max j p H j x En büyük sonsal olasılık ideal Bayes sınıflandırıcısı

4 Örüntü tanıma Güdümlü öğrenme: Sonsal olasılık fonksiyonları genelde/asla mevcut değildir Onun yerine hipotezlere ait örnekler mevcut olabilir x i, y i, x i X, y i H 1, H 2,, H M, i = 1, 2,, l Seçenek 1: olasılık fonksiyonlarının kestirimi Olasılık kestirimi bilgi değerlendirme açısından zorlu bir problemdir Seçenek 2: olasılık fonksiyonu kestirimine girmeden sınıflandırıcı kurgulama Olasılık dağılımlarının kestirimi, sınıflandırıcı kurgulamanın ara çözümüdür Doğru kararlar veren bir sınıflandırıcıyı kurgulamak için olasılık dağılımlarını çözümlemek gerekmeyebilir Güdümlü öğrenme

5 Örüntü tanıma Güdümlü öğrenme (devam): Amaç: eldeki x i, y i verisini kullanarak gelecekteki veriyi en başarılı bir şekilde ilgili hipotezlere ayıran bir sınıflandırıcıyı kurgulamak En yakın komşuluk sınıflandırıcıları Yapay sinir ağları Destek vektör makineleri... Gözlemler: Kurgulanan sınıflandırıcının başarısı seçilen yönteme olduğu kadar eldeki veriye de bağlıdır Her uygulamada bu şekilde tasnif edilmiş bir veri kümesi elde etmek mümkün olmayabilir Elle işaretlemenin zor olduğu durumlar otomatik görüntü bölütleme problemleri Çalışılan problem gereği sadece bir hipotezin/sınıfın örneklerinin derlenmiş olması protein dizilerindeki işlevsel bölgelerin bulunması Yarı-güdümlü öğrenme

6 Yarı-güdümlü öğrenme problemi Yarı-güdümlü öğrenme: Amaç: dağılımları örtüşen veri kümelerindeki örneklerden hangilerinin ilgili kümeye özgün olduğunun otomatik olarak belirlenmesi Yaklaşım: Her örnek için veri kümelerine ait sonsal olasılıkların parametresiz bir yöntemle kestirimi Bu sonsal olasılık değerlerine göre veri kümelerinin dağılımlarının örtüştüğü ve ayrıştığı bölgelerdeki örneklerin belirlenmesi

7 Yarı-güdümlü öğrenme problemi Problem tanımı: C 0 ve C 1 kümelerinde gruplanmış olarak verilen örnek kümesi {x i }, i = 1, 2,, l İlgili olasılık dağılımları p x C 0 = λ 0 p r x + 1 λ 0 p C0 x p x C 1 = λ 1 p r x + 1 λ 1 p C1 x p r x : her iki kümede de bulunan örneklerin geldiği ortak dağılım p C0 x : örnekleri sadece C 0 kümesinde bulunan dağılım p C1 x : örnekleri sadece C 1 kümesinde bulunan dağılım Veriler öyle bir şekilde ayrıştırılsın ki: Örtüşen örnekler: x i x i p r x =? C 0 kümesine özgün örnekler: x i x i p C0 x =? C 1 kümesine özgün örnekler: x i x i p C1 x =?

8 Yarı-güdümlü öğrenme problemi p C1 x C 0 p r x C 1 p C0 x

9 Yarı-güdümlü öğrenme problemi C 0 C 1 x i x i p r x =? x i x i p C0 x =? x i x i p C1 x =?

10 Yarı-güdümlü öğrenme problemi Sonsal olasılık kestirimi: Yarı-güdümlü öğrenme, {x i } veri kümesindeki her örnek için p C 0 x i ve p C 1 x i sonsal olasılıklarının eldeki veri kullanılarak kestirilmesine dayanır Bu kestirim en-yakın komşuluk sınıflandırıcısının sonuşurdaki davranışından faydalanarak herhangi bir parametrik dağılım modeli kullanılmadan ölçeklenebilir bir yöntemle yapılır

11 Yarı-güdümlü öğrenme problemi Sonsal olasılık tahmini (devam): En yakın komşuluk sınıflandırıcısı f X 0,1 f x; R n = y i, x i = arg min x j R n d x, x j d: X X II, gözlem uzayı üzerinde tanımlanmış olan metrik R n x i, y i, x i X, y i 0,1, i = 1,2,, l, içinde C 0 ve C 1 hipotezlerinden çekilmiş n er örnek içeren rastlantısal küme En-yakın komşuluk sınıflandırıcısının referans olarak kullandığı küme n yeterince büyük olduğunda: p C 1 x f x; R n = f x; R n p Rn R n dr n R n

12 Yarı-güdümlü öğrenme problemi Sonsal olasılık tahmini (devam): p Rn R n dağılımı eldeki veriyle örneklendiğinde p C 1 x 1 Z f x; R n Bu ifadede, Bir başka deyişle, R n x i,y i Z = l 0 l 1 n n l 0 = 1 y i = 0 i l 1 = 1 y i = 1 i en-yakın komşuluk sınıflandırıcısı eldeki veriden çıkarılabilen Z farklı R n ile tekrar tekrar işletilerek elde edilen sonuçların ortalaması ile p C 1 x kestirilebilir

13 Yarı-güdümlü öğrenme problemi Sonsal olasılık tahmini (devam): Bu sürecin sonucunda elde edilecek ortalama, çabuk ve pratik bir yöntemle bulunabilir Sıralı mesafeler ve ilgili örnekler belirlenmiş ise: d i = d x, x i d 1 < d 2 < < d l d i x i, y i, öyle ki d i = d x, x i Pr y = 1 = Pr f x; R n çözümlenebilir = 1 R n x i, y i olasılığı x 1 R n şartına göre Pr y = 1 = Pr y = 1 x 1 R n Pr x 1 R n + Pr y = 1 x 1 R n Pr x 1 R n = 1 y 1 = 1 Pr x 1 R n + Pr y = 1 x 1 R n Pr x 1 R n Pr x 1 R n olasılığı l, l 0, l 1 ve n cinsinden hesaplanabilir y 1 in değerine bağlı olacak şekilde

14 Yarı-güdümlü öğrenme problemi Sonsal olasılık tahmini (devam): Aynı çözümleme x 2 R n şartına göre Pr y = 1 x 1 R n olasılığı için tekrarlanabilir Bu işlemin ileriki olasılıklar için de sürdürülmesiyle Pr y = 1 ve Pr y = 0 için pratik bir hesaplama yöntemi ortaya çıkmış olur Pr y = 0 = 1 Pr y = 1 Bu işlem her bir x i örneği için x j, y j j i kümesi kullanılarak tekrarlandığında ve P C 1 x i Pr f x i ; R n = 1 R n x j, y j j i P C 0 x i = 1 P C 1 x i Pr f x i ; R n = 0 R n x j, y j j i sonsal olasılıkları hesaplanmış olur Böylelikle, x i, y i kümesi üzerinde statistiksel tanıma, P C 1 x i ve P C 0 x i olasılıkları üzerinden gerçekleştirilebilir Yarı-güdümlü öğrenme

15 Yarı-güdümlü öğrenme problemi Yarı-güdümlü öğrenme: Farklı gruplar halinde gözlenen veri kümesi Normal grup x karışık grup (anormallik tespit senaryosu) Test verileri x gözlenen veriler Zaman içerisinde tekrar edilen gözlemlere ait veriler... Her örnek üzerinde farklı grupların sonsal olasılıklarının kestirimi n parametresinin otomatik olarak belirlenmesi Her bir gruptaki örneklerden ilgili grubun sonsal olasılığının yüksek olduğu örneklerin tespiti C k grubuna özgün olan örnekler kümesi: x i x i C k, p C k x i > 1 α, α 1

16 Uygulamalar Amino asit dizilerindeki işlevsel veya yapısal olarak özellikli bölgelerin tespiti: Amaç: belirli bir yapısal/işlevsel özelliği taşıyan proteinlerin amino asit dizilerinde bu özellikle bağlantılı bölgelerin belirlenmesi Gözlemler: Açık veri tabanlarında bilinen proteinlerin amino asit dizilerinde bilinen birtakım yapısal/işlevsel özelliklere sahip bölgeler işaretlenmiş durumdadır Ancak veri tabanlarında, bilinen istatistiksel öğrenme yöntemlerinin uygulanabilmesi için gereken, ilgili özelliğe sahip olmadığı deneysel olarak kanıtlanmış bölgeler mevcut değildir Konuyla ilgili araştırmalarda bu tip özelliklerin tespiti çalışılmaktadır Veritabanlarına sadece olumlu anlamda bulgulanan özellikler sunulmaktadır Bulgulanamayan özellikler ise veritabanlarında yer almamaktadır Bu sorunun çözümlenebilmesi için örneklenebilmiş olan tek bir sınıfın varlığında ayrım yapabilecek bir yönteme ihtiyaç vardır

17 Uygulamalar Amino asit dizilerindeki işlevsel veya yapısal olarak özellikli bölgelerin tespiti (devam): Yaklaşım: UniProtKB veritabanından elde edilen bütün insan proteinlerine ait amino asit dizileri üzerinde insan proteini her bir amino asit bölgesinin fiziksel ve kimyasal özelliklerini yansıtan çok boyutlu profiller oluşturulup amino asitlerine paralel sayısal diziler oluşturup dalgacık dönüşümü uygulanması yoluyla ilgilenilen özelliğe sahip olduğu deneysel olarak belirlenmiş olan grup diğer grupla kıyaslanarak hem çalışılan özelliğin ortaya çıkışıyla bağlantılı bölgeler hem de diğer grup içerisinde ilgili yapısal/işlevsel özelliğe sahip olması en muhtemel proteinler belirlenebilir

18 Uygulamalar Amino asit dizilerindeki işlevsel veya yapısal olarak özellikli bölgelerin tespiti (devam): Sonuçlar: N-glikosilasyon bölgeleri N-glikosilasyon bölgesine ait 1944 boyutlu profil verisi 1939 doğrulanmış N-glikosilasyon bölgesi bilinmeyen bölge Olası yeni N-glikosilasyon bölgeleri tespit edildi DNA ya bağlanan proteinlere özgü bölgeler toplam amino asit bölgesine ait 380 boyutlu profil verisi DNA ya bağlanan proteinlerdeki bölge Kalan proteinlerden gelen bölge DNA ya bağlanan proteinlere özgü amino asit bölgeleri belirlendi Bu bölgelerin varlığına dayanarak DNA ya bağlanan proteinleri tespit yöntemi oluşturuldu ADA_HUMAN proteininin hidrofobisite endeksinin dalgacık dönüşümü ile elde edilen profil dizisi

19 Uygulamalar Uyarana özgün EEG beyin dalgalarının tespiti: Amaç: akan beyin dalgaları arasında farklı uyaranlarla bağlantılı örüntülerin belirlenmesi Gözlemler: Beyin-bilgisayar arayüzü uygulamalarında beyin dalgalarındaki değişimleri birtakım uyaranlarla ya da hareketlerle ilişkilendirmek amaçlanır Başarılı bir uygulama için sistemlerin uzun soluklu eğitim süreçlerinden geçirilmeleri gerekir Yüksek miktarda eğitim verisi toplanıp hangi anda gözlenen beyin dalgalarının hangi durumla ilişkilendirileceği çoklukla elle yapılan ayrıştırmalarla belirlenir Ancak farklı durumlarda gözlenen beyin dalgaları üzerinde tam bir ayrıştırma yapmaksızın, sadece ilgili durumlarda ortaya çıkan beyin dalgalarını otomatik olarak saptamak mümkündür

20 Uygulamalar Uyarana özgün EEG beyin dalgalarının tespiti (devam): Yaklaşım: Her kanaldan gelen akar sinyale dalgacık dönüşümüuygulanıp birleştirilerek çok-boyutlu anlık beyin dalgası verisi oluşturuldu Toplanan beyin dalgası verisine bağımsız bileşen analizi uygulanarak boyut azaltılması sağlandı Farklı görsel uyaranlar altında gözlenmiş olan beyin dalga verileri yarı-güdümlü öğrenmeyle karşılaştırılarak ilgili uyaranlara özgün beyin dalgaları tespit edildi EEG kanallarından birine uygulanan dalgacık dönüşümü ile farklı frekans aralığındaki bileşenlerin birbirinden ayrılması

21 Uygulamalar Histoloji kesitlerinde kanserle ilintili bölgelerin belirlenmesi: Amaç: içerisinde kanserli oluşumlar içeren doku kesitlerinde kanserle ilintili bölgelerin otomatik olarak işaretlenmesi Gözlemler: Uzman patologlar, doku kesitlerini görsel olarak inceleyerek doku kesitinde kanserli oluşumlar bulunup bulunmadığını saptamaktadırlar Aynı işi klasik istatistiksel öğrenme yöntemleriyle yapabilmek için kanserli bölgelerin birçok örnek kesitte elle işaretlenmesi gerekmektedir Elle işaretleme zordur (zaman, farklı uzmanların işaretlemelerindeki farklılıklar,...) Sonuç olarak kurgulanacak sistem farklı kanser türlerinde işe yaramamaktadır Kanserli oluşumlarla ilintili bölgeleri, sadece doku kesitlerinin temiz mi yoksa kanserli mi oldukları bilgisine dayanarak işaretlemek mümkündür

22 Uygulamalar Histoloji kesitlerinde kanserle ilintili bölgelerin belirlenmesi (devam): Yaklaşım: Çok sayıda kolon doku kesit örneği dijital mikroskoplar altında görüntülenerek bir görüntü veri tabanı oluşturuldu Her doku ketisi görüntüsü sıralı olarak örtüşen bölgelere ayrıldı ve her bölge için görünümü yansıtan vektör değerli profiller hesaplandı Kanserli kesit görüntülerinden gelen profiller diğerleriyle yarı-güdümlü öğrenme algoritmasıyla karşılaştırılarak kanserle ilintili bölgeler saptandı Kolon doku kesiti görüntülerinde kanserle ilintili bölgelerin işaretlenmesi

23 Uygulamalar Karma MiniBooNE nötrino verisindeki elektron nötrinolarının ayrıştırılması: Amaç: Sadece müon nötrinolarından oluşan bir veri seti kullanarak müon ve elektron nötrinolarından oluşan karma bir kümedeki elektron nötrinolarının otomatik olarak saptanması Gözlemler: Parçacık fiziği deneylerinde toplanan veriler bir takım olasılıksal etkilerle şekillenmektedir Altta yatan olasılık dağılımları, ölçmedeki belirsizlikler,... İstatistiksel yöntemler, bu olasılıksal etkiler altında çarpışma deneylerinde ortaya çıkan parçacıkların belirlenmesinde fayda sağlayabilir Her parçacık için birçok özelliğin toplantığı sayısal profiller üzerinde istatistiksel öğrenme yöntemleriyle ayrıştırma

24 Uygulamalar Karışık MiniBooNE nötrino verisindeki elektron nötrinolarının ayrıştırılması (devam): Yaklaşım: Veri kümesi: Toplam adet müon ve elektron nötrinolarına ait özniteliklerle oluşturulmuş 50 boyutlu vektör değerli profil verisi müon nötrinosuna karşılık elektron nötrinosu Toplanan öznitelikler arasında olay vuruş çokluğu, enerji, hesaplanan radyal konumu... Yarı-güdümlü öğrenme problemi adet müon nötrinosudan oluşan profil kümesi kullanılarak, Kalan nötrino arasından elektron nötrinolarının ayrıştırılması Karma küme %56 elektron nötrinosu, %44 müon nötrinosu Yüksek miktarlı veri için uyarlanan yarıgüdümlü öğrenme algoritması ile karma verideki elektron nötrinolar ayrıştırıldı Yarı-güdümlü öğrenme algoritmasının karma kümedeki elekton nötrinolarını ayrıştırma başarı eğrileri

25 Tartışma Yarı-güdümlü öğrenme veri kümelerini kıyaslayarak ilgili kümelere özgün olan verileri ayrıştırmaktadır Problemin kurgusuna bağlı olarak kendi kümelerine özgün olan ve olmayan örnekler üzerinden altta yatan probleme ait istatistiksel çıkarım yapmayı sağlamaktadır Ayrıştırılmak istenen verileri örnekleyen homojen kümelerin elde edilemediği durumlarda zahmetsiz ve başarılı tanıma sağlamaktadır Eldeki kümelerin ağırlıklı olarak farklı hipotezlere ait örneklerden oluşması yeterlidir Homojen veri kümeleri gerektirmemesi, klasik istatistiksel öğrenme yöntemlerinin uygulanamadığı örüntü tanıma problemlerini çözülebilir yapmaktadır Bu özellikleriyle yarı-güdümlü öğrenme, yüksek enerji fiziği deneylerinde karşılaşılan istatistiksel parça tanıma problemlerinde fayda sağlayabilir Yarı-güdümlü öğrenme algoritmasının Matlab (c) kodu için:

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması

KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması Türkay TOKLU 1, Bahar DİRİCAN 2, Necdet ASLAN 1 1 Yeditepe Üniversitesi, Fizik Bölümü 2 Gülhane Askeri Tıp Akademisi,

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait. verileri tamamlayan jeolojik dataları sağlayabilir.

Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait. verileri tamamlayan jeolojik dataları sağlayabilir. Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait verileri tamamlayan jeolojik dataları sağlayabilir. Sismik tehlike değerlendirmeleri için veri tabanı oluşturur.

Detaylı

MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA)

MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA) MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA) Tunç Emre TOPTAŞ Teknik Hizmetler ve Eğitim Müdürü, Netcad Yazılım A.Ş. Bilkent, Ankara, Öğretim Görevlisi, Gazi Üniversitesi,

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS)

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) Herhangi iki bireyin DNA dizisi %99.9 aynıdır. %0.1 = ~3x10 6 nükleotid farklılığı sağlar. Genetik materyalde varyasyon : Polimorfizm

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ Umut FIRAT ufirat@yahoo.com Öz: Depremler yeryüzünde en çok yıkıma neden olan doğal afetlerdir. Bu durum, depremlerin önceden tahmin edilmesi fikrini

Detaylı

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ)

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ) 2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları (Doç.Dr. M. Kemal GÜLLÜ) 1. Ses temelli malzeme tanıma Malzemelerin çarpma etkisi ile çıkarttıkları seslerin mikrofon ile bir PC ye alınması ve işaretten

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ . Amaçlar: EEM DENEY ALERNAİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKRİSİK ÖZELLİKLERİ Fonksiyon (işaret) jeneratörü kullanılarak sinüsoidal dalganın oluşturulması. Frekans (f), eriyot () ve açısal frekans

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Uygulama 6. Transkripsiyon yönü. Ekzonlar (kodlama bölgeleri) Transkripsiyon. Sonlandırıcı kodon başlangıcı

Uygulama 6. Transkripsiyon yönü. Ekzonlar (kodlama bölgeleri) Transkripsiyon. Sonlandırıcı kodon başlangıcı Uygulama 6 DNA Dizilerinde Bazı Đstatistiksel Analizler DNA molekülleri nükleotidlerin uzun birer dizileridir. Dizilenmiş bir DNA molekülüne A,C,G,T harflerinin oluşturduğu bir kelimelik uzun bir yazı

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1 ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...

Detaylı

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı - 2007 Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi Hakan Doğan 1,Erdal Panayırcı 2, Hakan Ali

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

GALATASARAY ÜNİVERSİTESİ

GALATASARAY ÜNİVERSİTESİ 1 MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI DERS PROGRAMI Not 1 : Fransızca Hazırlık sınıfından gelen ve Fransızca seviye tespit sınavında başarısız olan

Detaylı

İNM Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI. Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı

İNM Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI. Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı İNM 424112 Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI Yapıların Depreme

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

Biyomedical Enstrümantasyon. Bütün biyomedikal cihazlar, hastadan belli bir fiziksel büyüklüğün miktarını ölçer. Nicel sonuçlar verir.

Biyomedical Enstrümantasyon. Bütün biyomedikal cihazlar, hastadan belli bir fiziksel büyüklüğün miktarını ölçer. Nicel sonuçlar verir. ENSTRÜMANTASYON Enstrümantasyon Nicel (veya bazı zamanlar nitel) miktar ölçmek için kullanılan cihazlara Enstrümanlar (Instruments), işleme de Enstrümantasyon adı verilir. Biyomedical Enstrümantasyon Bütün

Detaylı

İSTANBUL MEDENİYET ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ(TÜRKÇE) 4 YILLIK DERS PLANI

İSTANBUL MEDENİYET ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ(TÜRKÇE) 4 YILLIK DERS PLANI İSTANBUL MEDENİYET ÜNİVERSİTESİ MÜHİSLİK FAKÜLTESİ 2017-2018 ELEKTRİK-ELEKTRONİK MÜHİSLİĞİ BÖLÜMÜ(TÜRKÇE) 4 YILLIK DERS PLANI (Eğitim planı toplamda 138 ve 240 den oluşmaktadır. Yarıyıllara göre alınması

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

GALATASARAY ÜNİVERSİTESİ

GALATASARAY ÜNİVERSİTESİ 1 MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2017/2018 ÖĞRETİM YILI DERS PROGRAMI Not 1 : Fransızca Hazırlık sınıfından gelen ve Fransızca seviye tespit sınavında başarısız olan

Detaylı

Hız, Seyir Süresi ve Gecikmeler. Prof.Dr.Mustafa KARAŞAHİN

Hız, Seyir Süresi ve Gecikmeler. Prof.Dr.Mustafa KARAŞAHİN Hız, Seyir Süresi ve Gecikmeler Prof.Dr.Mustafa KARAŞAHİN Hız, Seyir Süresi ve Gecikme Karayolu altyapısı ve trafik işletme modelinin performansının göstergesidir. Genellikle, sürücüler veya yolcular A

Detaylı

Zaman Ortamı Yapay Uçlaşma (Time Domain Induced Polarization) Yöntemi

Zaman Ortamı Yapay Uçlaşma (Time Domain Induced Polarization) Yöntemi Zaman Ortamı Yapay Uçlaşma (Time Domain Induced Polarization) Yöntemi Yöntemin Esasları ve Kullanım Alanları Yapay uçlaşma yöntemi, yer altına gönderilen akımın aniden kesilmesinden sonra ölçülen gerilim

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME / DERS GÜNCELLEME Dersin Kodu SHA 615 Dersin Adı İSTATİSTİKSEL SİNYAL İŞLEME Yarıyılı GÜZ Dersin İçeriği: Olasılık ve olasılıksal süreçlerin gözden geçirilmesi. Bayes kestirim kuramı. Büyük olabilirlik

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

1.2. Aktif Özellikli (Her An Deprem Üretebilir) Tektonik Bölge İçinde Yer Alıyor (Şekil 2).

1.2. Aktif Özellikli (Her An Deprem Üretebilir) Tektonik Bölge İçinde Yer Alıyor (Şekil 2). İzmir Metropol Alanı İçin de Yapılan Tübitak Destekli KAMAG 106G159 Nolu Proje Ve Diğer Çalışmalar Sonucunda Depreme Dayanıklı Yapı Tasarımı İçin Statik ve Dinamik Yükler Dikkate Alınarak Saptanan Zemin

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

III-Hayatın Oluşturan Kimyasal Birimler

III-Hayatın Oluşturan Kimyasal Birimler III-Hayatın Oluşturan Kimyasal Birimler MBG 111 BİYOLOJİ I 3.1.Karbon:Biyolojik Moleküllerin İskeleti *Karbon bütün biyolojik moleküllerin omurgasıdır, çünkü dört kovalent bağ yapabilir ve uzun zincirler

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri

KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri SUNUM YAPAN: Sinan Akkar (ODTÜ) Barajlarda sismik tehlike

Detaylı

KLİNİK LABORATUVARLARDA PRATİK YAKLAŞIM PROGRAMI MART 2016 DÖNEMİ REFERANS ARALIKLARI

KLİNİK LABORATUVARLARDA PRATİK YAKLAŞIM PROGRAMI MART 2016 DÖNEMİ REFERANS ARALIKLARI KLİNİK LABORATUVARLARDA PRATİK YAKLAŞIM PROGRAMI MART 2016 DÖNEMİ REFERANS ARALIKLARI Klinik laboratuvarlarda test çalışmalarından elde edilen sonuçlar genelde bir referans aralık verisi ile birlikte değerlendirilmektedir.

Detaylı

Doğukan Akçay¹, Fadime Akman², Zafer Karagüler², Kadir Akgüngör³. XIV. Ulusal Medikal Fizik Kongresi Antalya, 2013

Doğukan Akçay¹, Fadime Akman², Zafer Karagüler², Kadir Akgüngör³. XIV. Ulusal Medikal Fizik Kongresi Antalya, 2013 Alaşımlı protez malzemelerinin radyoterapide 6 MV X ışını dozlarına etkisinin Collapsed Cone ve GAMOS Monte Carlo algoritmaları ile hesaplanması, film dozimetri ile karşılaştırılması Doğukan Akçay¹, Fadime

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Su Mühendisliği Problemlerinde Belirsizliklerin İrdelenmesi. Prof. Dr. Melih Yanmaz ODTÜ, İnşaat Müh. Bölümü

Su Mühendisliği Problemlerinde Belirsizliklerin İrdelenmesi. Prof. Dr. Melih Yanmaz ODTÜ, İnşaat Müh. Bölümü Su Mühendisliği Problemlerinde Belirsizliklerin İrdelenmesi Prof. Dr. Melih Yanmaz ODTÜ, İnşaat Müh. Bölümü Belirsizliklerin Kaynağı Hid l jik (d ğ l t d l) Hidrolojik (doğal, parametre, model) Hidrolik

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

MADEN MÜHENDİSLİĞİ BÖLÜMÜ 0321 CEVHER HAZIRLAMA LAB. I SERBESTLEŞME TANE BOYU SAPTANMASI DENEYİ

MADEN MÜHENDİSLİĞİ BÖLÜMÜ 0321 CEVHER HAZIRLAMA LAB. I SERBESTLEŞME TANE BOYU SAPTANMASI DENEYİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ 0321 CEVHER HAZIRLAMA LAB. I SERBESTLEŞME TANE BOYU SAPTANMASI DENEYİ 1. AMAÇ Zenginleştirme işlem(ler)inin seçimine ışık tutacak biçimde bir cevherdeki değerli ve değersiz minerallerin

Detaylı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ İsmail Serkan Üncü, İsmail Taşcı To The Sources Of Light s Color Tempature With Image Processing Techniques

Detaylı

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar Ön Koşul Dersin Dili. Zorunlu

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar Ön Koşul Dersin Dili. Zorunlu DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar 3+0 3 5 Ön Koşul Dersin Dili Türkçe Dersin Seviyesi Lisans Dersin Türü Dersi Veren Öğretim Elemanı Dersin Yardımcıları

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: ÖRÜNTÜ TANIMAYA GİRİŞ Dersin Orjinal Adı: INTRODUCTION TO PATTERN RECOGNITION Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı:

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı: Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama Giriş ve Projenin Amacı: Bu projenin amacı; matrisler ile diskriminant analizi yaparak, bir düzlem üzerine el ile yazılan bir sayının

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

MADEN MÜHENDİSLİĞİ BÖLÜMÜ 0321 CEVHER HAZIRLAMA LAB. I SERBESTLEŞME TANE BOYU SAPTANMASI DENEYİ

MADEN MÜHENDİSLİĞİ BÖLÜMÜ 0321 CEVHER HAZIRLAMA LAB. I SERBESTLEŞME TANE BOYU SAPTANMASI DENEYİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ 0321 CEVHER HAZIRLAMA LAB. I SERBESTLEŞME TANE BOYU SAPTANMASI DENEYİ 1. DENEYİN AMACI Zenginleştirme işlem(ler)inin seçimine ışık tutacak biçimde bir cevherdeki değerli ve değersiz

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

PSİKOFİZYOLOJİ DENEYLERİNDE TASARIM

PSİKOFİZYOLOJİ DENEYLERİNDE TASARIM PSİKOFİZYOLOJİ DENEYLERİNDE TASARIM Sirel Karakaş Hacettepe Üniversitesi Deneysel Psikoloji Uzmanlık Alanı Bilişsel Psikofizyoloji Araştırma Birimi Psikofizyoloji ve Nöropsikoloji Derneği Başkanı Karıştırıcı

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

RÜZGAR ENERJİSİ KAYNAĞI VE BELİRSİZLİK

RÜZGAR ENERJİSİ KAYNAĞI VE BELİRSİZLİK 4. İzmir Rüzgâr Sempozyumu // 28-30 Eylül 2017 // İzmir RÜZGAR ENERJİSİ KAYNAĞI VE BELİRSİZLİK Prof. Dr. Barış Özerdem İzmir Ekonomi Üniversitesi Havacılık ve Uzay Mühendisliği Bölümü baris.ozerdem@ieu.edu.tr

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Final Harris ve Moravec Köşe Belirleme Metotları Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2016 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

YENİLİKÇİ METROLOJİ DİŞLİ KALİTENİZİ ARTIRIYOR. BU NEDENLE MARGEAR VAR

YENİLİKÇİ METROLOJİ DİŞLİ KALİTENİZİ ARTIRIYOR. BU NEDENLE MARGEAR VAR 2 M arg e a r. Di ş l i Ö l çme M a k i n e l e r i YENİLİKÇİ METROLOJİ DİŞLİ KALİTENİZİ ARTIRIYOR. BU NEDENLE MARGEAR VAR MARGEAR ürünleri ile ilgili en güncel bilgilere web sitemizden ulaşılabilir: www.mahr.com,

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

MEH535 Örüntü Tanıma. Karar Teorisi

MEH535 Örüntü Tanıma. Karar Teorisi MEH535 Örüntü Tanıma 2. Karar Teorisi Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Karar Teorisi

Detaylı

AKTİF KAYNAKLI YÜZEY DALGASI (MASW) YÖNTEMINDE FARKLI DOĞRUSAL DIZILIMLERIN SPEKTRAL ÇÖZÜNÜRLÜLÜĞÜ

AKTİF KAYNAKLI YÜZEY DALGASI (MASW) YÖNTEMINDE FARKLI DOĞRUSAL DIZILIMLERIN SPEKTRAL ÇÖZÜNÜRLÜLÜĞÜ AKTİF KAYNAKLI YÜZEY DALGASI (MASW) YÖNTEMINDE FARKLI DOĞRUSAL DIZILIMLERIN SPEKTRAL ÇÖZÜNÜRLÜLÜĞÜ M.Ö.Arısoy, İ.Akkaya ve Ü. Dikmen Ankara Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü,

Detaylı