2. YATAY KURBALAR Basit daire kurbaları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2. YATAY KURBALAR. 2.1.1 Basit daire kurbaları"

Transkript

1 2. YATAY KURBALAR Yatay kurbalar genel olarak daire yaylarından ibarettir. Ancak, kurbaya ait dairenin yarıçapı küçük ise süratin fazla olduğu durumlarda alinyimandan kurbaya geçiş noktasında ortaya çıkan merkezkaç kuvvetin ani etkisi taşıt dengesini bozar ve yolcuyu fazla derecede rahatsız eder. Bu yüzden alinyiman ile dairesel kurbalar arasında geçiş eğrisi ya da rakortman eğrisi adı verilen özel eğriler yerleştirilir. 2.1 Kurba çeşitleri ve karakteristikleri Dairesel yatay kurbalar üç kısma ayrılır. Basit daire kurbaları İki alinyimanı birbirine bağlayan daire yaylarıdır. Bileşik daire kurbaları Farklı yarıçaplı fakat ortak bir teğeti bulunan ve bu ortak teğetin aynı yanında olan dairesel kurbalardan oluşur. Ters daire kurbaları Ortak bir teğetin iki yanında bulunan iki dairesel kurbadan oluşur. Dairesel kurbalar genellikle ( R) yarıçapları veya daha seyrek olmak üzere belirli bir çevre uzunluğuna karşılık gelen (D) merkez açıları ile belirlenir. Bu belirli çevre uzunluğu 100 m. olarak alınırsa (2 R).D /360 = /2 R =D /360 R=5729,58/D Basit daire kurbaları İki aliyinmanı birbirine bağlayan bu kurbalarda aliyinmanların (S) kesişme noktasına some noktası, bunlar arasında kalan ( ) dış açısına sapma açısı, some noktası ile kurba orta noktası arasındaki mesafeye bisektris uzunluğu, kurbanın başlangıç TO ve bitiş TF noktaları arasındaki yay uzunluğuna açınım veya devolopman adı verilir ve bunların uzunlukları şöyle hesaplanır: Teğet uzunluğu => t=r*tg ( /2) Bisektris uz. => b=r(sec /2 1) Devolopman => d= 2 R. /360 Kiriş uzunluğu => 2R.Sin / Bileşik Kurbalar Bir ortak teğetin aynı tarafında bulunan ve genellikle farklı yarıçaplı iki dairesel yaydan oluşan bileşik kurbalar çok zorunlu haller dışında tavsiye edilmez. Ayrıca, büyük kurba yarıçapının, küçük kurbanınkinin en çok 1,5 katı olması istenir. İki basit kurbadan oluşan bileşik kurbaların, 1, 2,R1,R2,t1 ve t2 olmak üzere yedi karakteristiği vardır. Bu şekilde bir kurbanın çizimi ve ya piketajı için ikisi uzunluk olmak üzere en az dört karakteristiğinin bilinmesi gerekir ve diğerleri bunların yardımı ile hesaplanır Ters Kurbalar Ortak bir teğetin iki yanında bulunan iki dairesel kurbadan oluşan ters kurbalara uygulamada daha çok düşük standartlı yollarda rastlanır. Bir kurbadan diğerine geçişin güvenli olabilmesi için araya geçiş eğrisinin yerleştirilmesi zorunludur. Bu yapılamıyorsa, birinci kurbanın bitiş noktası ile ikinci kurbanın başlangıç noktası arasında düşük standartlı yollarda, her iki kurba için en az dever uygulamasına yeterli olacak kadar düz kısım bulunması istenir. Bu mesafe en az 60 m dir. Ters kurbalarda da verilen karakteristiklere göre değişik kombinezonlar vardır.

2 KURP ÇEŞİTLERİ VE KARAKTERİSTİKLERİ Dairesel yatay kurplar üç kısıma ayrılır. 100 Basit daire kurpları --- iki alinymanı birbirine bağlayan daire yaylarıdır. 101 Bileşik daire kurpları --- farklı yarıçaplı fakat ortak bir teğeti bulunan ve bu ortak teğetin aynı yanında olan dairesel kurplardan oluşur. 102 Ters daire kurpları --- ortak bir teğetin iki yanında bulunan iki dairesel kurptan oluşur. Basit Daire Kurpları İki alinymanı birbirine bağlayan bu kurplarda alinymanların (S) kesişme noktasına some noktası, bunlar arasında kalan ( ) dış açısına sapma açısı, some noktası ile kurp orta noktası arasındaki mesafeye bisektris uzunluğu, kurpun başlangıç PC ve bitiş PT noktaları arasındaki yay uzunluğuna açının developman adı verilir ve

3 bunların uzunlukları aşağıdaki trigonometrik bağıntılarla hesaplanabilir. Developmanın B orta noktasına bisektris noktası denir. Teğet uzunluğu T= R*tan( /2) Bisektris uzunluğu b= R*(sec( /2)-1) Kurp uzunluğu (developman) L= п*r* /180 Kiriş uzunluğu AB = 2*R*sin( /2) Kurpun herhangi bir noktasından çizilen kiriş ile bu noktadaki teğetin arasındaki sapma açısının (α) değeri ise ; α=1/2*β α= 1/2*(360/2 пr*yay) α= /R*yay Bileşik Kurplar Bir ortak teğetin aynı tarafında bulunan ve genellikle yarıçaplı iki dairesel yaydan oluşan bileşik kurplar çok zorunlu haller dışında tavsiye olunmazlar. Ayrıca, büyük kurba ait yarıçapın, küçük kurba ait yarıçapın en çok 1.5 katı olması istenir. İki basit kurptan oluşan bileşik kurpların, 1, 2, R 1, R 2, T 1, T 2, olmak üzere yedi karakteristiği vardır. Bu şekildeki bir kurbun çizimi veya piketajı için ikisi uzunluk olmak üzere en az dört karakteristiğin bilinmesi gerekir ve diğerleri bunların yardımıyla hesaplanır. Ters Kurplar Ortak bir teğetin iki yanında bulunan iki dairesel kurptan oluşan ters kurplara uygulamada daha çok düşük standartlı yollarda rastlanır. Bir kurptan diğerine geçişin güvenli olabilmesi için araya geçiş eğrisinin yerleştirilmesi zorunludur. Bu yapılamıyorsa, birinci kurbun bitiş noktası ile ikinci kurbun başlangıç noktası arasındaki düşük standartlı yollarda, her iki kurp için en az dever uygulamasına yeterli olacak kadar üst kısım bulunması istenir. Bu mesafe en az 60 m dir. Yüksek standartlı yollarda bu mesafe en az iki kurp için geçiş eğrileri uygulayabilmeye yeterli uzunlukta olmalıdır. YATAY KURPLARDA UYGULANAN KRİTERLER Dever:Taşıta kurp içinde etkiyen merkezkaç kuvvetinin savurma ve devirme tesirlerine kısmen karşı koymak için yol en kesitine verilen enine yöndeki yükseltme dever olarak tanımlanır. Taşıtın ağırlık merkezine etkiyen merkezkaç kuvveti (mv 2 /R) Taşıtın ağırlığı ( W ) Dever ( e tanα ) Yolun kesitteki eğimi ( α ) Kurp yarıçapı ( R ) Taşıtın kütlesi ( m ) Sürtünme kuvveti (f) N=W*cosα + m*v 2 /R*sinα

4 Fx=0 m*v 2 /R*cosα - W*sinα f*n =0 m*v 2 /R*cosα - W*sinα f*(w*cosα + m*v 2 /R*sinα) =0 m*v 2 /R*cosα -mg*sinα f*(mg*cosα + m*v 2 /R*sinα) =0 V 2 /R g*tanα f*(g+v 2 /R* tanα) =0 V 2 /R g*e f*g f*v 2 /r*e =0 V 2 /R(1 e*f) = g*(e + f) V=0.75V alınarak sürtünme kuvvetinin hızın %25 ini karşıladığı kabul edilir.(türkiye için) e =V 2 /gr e =(0.75V) 2 /(3.6 2 *9.81*R) e = *V 2 /R Deveri etkileyen bir kaç faktör vardır. Bunlar; - Kar ve buzun miktarı ve sıklığı - Alanın tipi (şehir içi veya dışı) - Ağır taşıt sıklığı Kar ve buzun olmadığı şehirlerarası yollarda dever(e) değeri maksimum %10 a kadar varır. Kar ve buzun egemen olduğu yerlerde dever değeri %8 ile %10 arasındadır. Pratikte uygun olmamasına rağmen daha yüksek dever değerleri özel yerler için istenilebilir (tek yönlü yol ve iniş rampalarda). En yaygın dever değeri %8 dir. Tüm karayolları sınıflarında şehiriçi yollarda genellikle dever kullanılmaz. Diğer ülkelerde dever maksimum değeri yaygın olarak %7 dir. Deverin uygulanacağı uzunluk Ls =V 3 /(P*R) bağıntısı ile hesaplanır. P=0.605 m/sec 2 /sec (Türkiye için) Ls =V 3 /(3.6 3 *0.605*R) Ls =0.0354*V 3 /R Verilen bağıntı ile hesaplanan dever, kurbun başlangıç noktasından 2/3Ls kadar önce alınan bir nokta ile, 1/3Ls kadar sonra alınan bir nokta arasına lineer bir artış gösterecek şekilde uygulanır. Minimum Ls değeri 45 m dir. Kurp genişletmesi: (R W) 2 + L 2 = R 2 W = R - (R 2 L 2 ) W = Kurp genişletme miktarı (m) R = Kurp yarıçapı (m) L = Taşıtın ön ve arka dingilleri arasındaki mesafe Kurp genişletmesi kurbun iç tarafında dever uygulaması ile aynı, Ls uzunluğu boyunca yapılır. Türkiye de 200 m den büyük yarıçaplı kurplarda genişletme yapılmamaktadır. Daha küçük yarıçaplı kurplar için uygulanan genişletme miktarları aşağıdaki gibidir. R (m) W (m) Geçiş eğrileri V hızı ile hareket eden bir taşıtın alinymandan kurba girişinde veya bir kurptan eğrilik yarıçapı farklı bir diğer kurba girişte ani bir merkezkaç kuvveti doğar. Taşıtı

5 kurbun dışına doğru savurma ve devirme etkisi gösteren bu kuvveti dengelemek için kurba girişte daha önce belirtildiği gibi dever uygulaması yanında alinyman ile kurp arasına bir geçiş eğrisi yerleştirilir. Bu eğri sayesinde merkezkaç kuvvetinden dolayı oluşan etkileri belirli bir uzunluk boyunca dağıtılmış, alinymandan kurba giriş noktasındaki ani etki ortadan kaldırılmış olur. Geçiş eğrisinin bir ucu alinymana, bir ucuda dairesel kurba teğettir. Geçiş eğrisinin uzunluğu saptanırken hareket dinamiği ile ilgili olmak üzere, kurba geçişte taşıtın maruz kaldığı açısal ivmenin belirli bir değeri aşmaması kabul edilir. Taşıtın birleştirme eğrisine girişte maruz kaldığı ivme değeri sıfırken birleştirme eğrisinin bitiminde yani esas kurba girişte V 2 /R değerine ulaşmaktadır. İvmedeki bu değişme t = L/V süresi içnde olduğuna göre, ivmenin zamana göre değişimi, P=(V 2 /R)/(L/V) Bağıntıdaki hız proje hızı olarak ve km/sa cinsinden alındığında geçiş eğrisinin uzunluğu için, Ls = V 3 /(46.7*R*P) genel bağıntısı bulunur. Bu bağıntıdaki P değeri hızlara göre aşağıdaki değerleri alır; V (km/sa) P < < 0.30 Başlıca üç değişik eğri tipi vardır. Bunlar klotoid, kübik parabol ve lemniskatdır. YATAY KURPLARDA GÖRÜŞ: Yatay kurplarda güvenli ve konforlu bir geçiş için kurp yarıçapı ile deverin ve genişletmenin başta proje hızı olmak üzere çeşitli faktörlere bağlı olarak doğru şekilde hesaplanıp uygulanması zorunlu fakat yeterli değildir. Güvenli bir geçiş için bunların yanında kurpta yeterli bir görüş uzunluğunun sağlanması da gereklidir. Minimum duruş ve geçiş uzunluklarının temini bazı durumlarda kurp içine düşen bir bina, yarma şevi veya benzeri bir engel sebebiyle mümkün olmayabilir. Görüşe mani olan fakat geriye çekilmesi kolaylıkla mümkün olmayan engel bina veya benzeri sabit bir tesis ise bu durumda yapılacak olan, geçişi bu kesimde kaydırıp kurp yarıçapını büyütmektir. Kurbun yarma içinde olması yani görüşün yarma şevi tarafından kapatılması durumunda ise yarma şevinin kazılıp şev eğiminin düşürülmesi söz konusu olabilir. Yatay kurpta öngörülen görüş uzunluğunun sağlanabilmesi için görüşe mani engel ile yol ekseni arasında bulunması gereken serbest yanal açıklık kolaylıkla hesaplanabilir. Bu hesaplar sırasında kurp uzunluğunun sağlanması istenen görüş uzunluğundan büyük ve küçük olmasına göre iki durum vardır.

6 1.Durum S L ACB = S (gerekli görüş uzunluğu) R 2 = x 2 + (R M) x 2 = (S/2) 2 + M ve 2 numaralı denklemlerden M = S 2 /8R 2.Durum S>L (S/2) 2 = x 2 + M L + 2*l = S l = (S L)/2 x 2 = d 2 (R M) d 2 = ((S L)/2) 2 + R , 2 ve 3 numaralı denklemlerden M = L*(2S L)/8R Yatay alinyman için genel kontroller 1- Arazi ile birbirine uyan alinymanlar olabildiğince doğru olmalı. 2- Maksimum eğrilikten olabildiğince kaçınılmalı. 3- Birbirine uyan alinymanlar elde edilmeye çalışılmalı. Uzun teğetlerin sonunda ve uzun düz kurpların sonunda yapılacak keskin kurplardan kaçınılmalı. 4- Uzunluğu kısa olan kurplardan hatta sapma açısı küçük olan kurplardan kaçınılmalı. 5- Düz kurplar uzun dolgular sağlamalı. 6- Yarıçapları farkı çok büyük olan bileşik dairesel kurplardan kaçınılmalı. 7- Doğrudan ters kurplardan kaçınılmalı.aralarında gerekli teğet uzunluğu kullanılmalı. 8- Kırık kurplardan (kısa teğet ve büyük yarıçapları olan aynı yöndeki iki kurp) kaçınılmalı.

BÖLÜM-7 DÜŞEY KURPLAR

BÖLÜM-7 DÜŞEY KURPLAR BÖLÜM-7 DÜŞEY KURPLAR DÜŞEY KURBA HESAPLARI Y (m) KIRMIZI KOT SİYAH KOT KESİT NO ARA MESAFE BAŞLANGICA UZAKLIK HEKTOMETRE KİLOMETRE BOYUNA EĞİM PLAN 74.4 82.5 77.76 80.0 70.92 75.0 68.28 70.0 65.82 65.0

Detaylı

BÖLÜM 5: YATAY KURPLAR

BÖLÜM 5: YATAY KURPLAR BÖLÜM 5: YATAY KURPLAR 5.1 GİRİŞ Kurplar belirli bir doğrultuda giden aliymanların doğrultularının değişmesi gerektiği yerlerde kullanılır. Geçkinin doğrultu değiştirmesinin çeşitli sebepleri vardır. Bunlardan

Detaylı

ORMAN YOLLARINDA KURPLAR

ORMAN YOLLARINDA KURPLAR ORMAN YOLLARINDA KURPLAR Orman yollarının planlanmasında açık bir poligondan ibaret olan doğrultulmuş sıfır hattının açıları içine, arazi şartlarına, yapılacak yolun önem ve iktisadiliğine uygun olarak,

Detaylı

Ulaştırma II. GEÇİŞ EĞRİLERİ YATAY KURBALARDA GENİŞLETME GEÇİŞ EĞRİLİ YATAY KURPLARDA DEVER Prof.Dr.Mustafa ILICALI

Ulaştırma II. GEÇİŞ EĞRİLERİ YATAY KURBALARDA GENİŞLETME GEÇİŞ EĞRİLİ YATAY KURPLARDA DEVER Prof.Dr.Mustafa ILICALI Ulaştırma II GEÇİŞ EĞRİLERİ YATAY KURBALARDA GENİŞLETME GEÇİŞ EĞRİLİ YATAY KURPLARDA DEVER Prof.Dr.Mustafa ILICALI GEÇİŞ (BİRLEŞTİRME) EĞRİLERİ GEÇİŞ EĞRİLERİ Merkezkaç kuvvetinin ani etkilerini ortadan

Detaylı

PROJE AŞAMALARI : Karayolu Geçkisi (Güzergahı Araştırması, Plan ve Boykesit):

PROJE AŞAMALARI : Karayolu Geçkisi (Güzergahı Araştırması, Plan ve Boykesit): Bartın Üniversitesi Ad Soyad : Mühendislik Fakültesi Numara : İnşaat Mühendisliği Bölümü Pafta No : KONU : INS36 ULAŞTIRMA II (PROJE) DERSİ P R O J E V E R İ L E R İ /2000 ölçekli tesviye (eşyükselti)

Detaylı

DGM = Vt + (2.2) 2. KARAYOLU TASARIM MÜHENDİSLİĞİNE GİRİŞ

DGM = Vt + (2.2) 2. KARAYOLU TASARIM MÜHENDİSLİĞİNE GİRİŞ . KARAYOLU TASARIM MÜHENDİSLİĞİNE GİRİŞ Bir karayolu güzergahını (yada geçki veya eksen) oluştururken Görüş Mesafesi Yatay ve Düşey Kurblar Dever Diğer (Eğim, karar görüş mesafesi, eğim, enkesit, düşey

Detaylı

3. KARAYOLU GEOMETRİK ELEMANLARININ TASARIMI

3. KARAYOLU GEOMETRİK ELEMANLARININ TASARIMI KARAYOLU TASARIM EL KİTABI 4 3. KARAYOLU GEOMETRİK ELEMANLARININ TASARIMI Karayolu geometrik elemanları kapsamında görüş mesafesi, dever, yatay eksen, düşey eksen ve yatay - düşey eksen kombinasyonu ve/veya

Detaylı

INSA361 Ulaştırma Mühendisliği

INSA361 Ulaştırma Mühendisliği INSA361 Ulaştırma Mühendisliği Yatay Spiral Kurblar 5Kasım 2013 Yatay Kurb Türleri Basit Kurb Basit Kurb Basit Birleşik Ters Kurb Birleşik Kurb Ters Kurb 3 AZİMUT VE KERTERIZ Azimut ve Kerteriz Azimuth-Azimut

Detaylı

Ulaştırma II BOYKESİT TASARIMI DÜŞEY KURBALAR. Prof.Dr.Mustafa ILICALI

Ulaştırma II BOYKESİT TASARIMI DÜŞEY KURBALAR. Prof.Dr.Mustafa ILICALI Ulaştırma II BOYKESİT TASARIMI DÜŞEY KURBALAR Prof.Dr.Mustafa ILICALI BOYKESİT BOYKESİT Yolun ekseni boyunca alınan kesite boykesit adı verilir. Plandaki yol ekseni (Yolun izdüşümü), Plandaki yol ekseni

Detaylı

Karayolu İnşaatı Çözümlü Örnek Problemler

Karayolu İnşaatı Çözümlü Örnek Problemler Karayolu İnşaatı Çözümlü Örnek Problemler 1. 70 km/sa hızla giden bir aracın emniyetle durabileceği mesafeyi bulunuz. Sürücünün intikal-reaksiyon süresi 2,0 saniye ve kayma-sürtünme katsayısı 0,45 alınacaktır.

Detaylı

KARAYOLU (0423412 (4203410)) YILİÇİ ÖDEVİ

KARAYOLU (0423412 (4203410)) YILİÇİ ÖDEVİ YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ - İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ULAŞTIRMA ANABİLİM DALI KARAYOLU (423412 (42341)) YILİÇİ ÖDEVİ AD-SOYAD : NUMARA : GRUP : PAFTA NO : KONU 1/2. ölçekteki eşyükselti

Detaylı

INSA361 Ulaştırma Mühendisliği

INSA361 Ulaştırma Mühendisliği INSA361 Ulaştırma Mühendisliği Geometrik Tasarım Dr. Mehmet M. Kunt 21 Ekim 2013 Geometrik Tasarım Amaç Geometrik Enkesit Proje düşey hattı Proje yatay hattı Dever Yatay ve düşey kurb koordinasyonu Dr.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

YOL PROJELERİNDE YATAY KURPTA YAPILACAK KÜBAJ HESABININ YENİDEN DÜZENLENMESİ

YOL PROJELERİNDE YATAY KURPTA YAPILACAK KÜBAJ HESABININ YENİDEN DÜZENLENMESİ YOL PROJELERİNDE YATAY KURPTA YAPILACAK KÜBAJ HESABININ YENİDEN DÜZENLENMESİ Yrd.Doc.Dr. Hüseyin İNCE ÖZET Yol projelerinde yatay kurpta enkesitler arasında yapılacak kübaj hesabında, kurbun eğrilik durumu

Detaylı

BÖLÜM 4: GEÇKİ (GÜZERGAH) ARAŞTIRMASI

BÖLÜM 4: GEÇKİ (GÜZERGAH) ARAŞTIRMASI BÖLÜM 4: GEÇKİ (GÜZERGAH) ARAŞTIRMASI 4.1 GİRİŞ Geçki (güzergâh) bir yolun arazi üzerinde takip ettiği doğrultudur. İki noktayı bağlamak için farklı alternatifler bulunabilir. Bunlardan en uygununu seçme

Detaylı

KARAYOLU GEÇKİ ARAŞTIRMASI KENT PLANLAMADA ULAŞIM

KARAYOLU GEÇKİ ARAŞTIRMASI KENT PLANLAMADA ULAŞIM KARAYOLU GEÇKİ ARAŞTIRMASI KENT PLANLAMADA ULAŞIM Geçki - Güzergah Geçki (Güzergâh) bir yolun arazi üzerinde (yeryüzünde) takip ettiği doğrultudur. İki noktayı bağlamak için aslında çok seçenek vardır.

Detaylı

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ ULAŞTIRMA ÇALIŞMA GRUBU 2015-2016 EĞİTİM-ÖĞRETİM DÖNEMİ KARAYOLU MÜHENDİSLİĞİ

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ ULAŞTIRMA ÇALIŞMA GRUBU 2015-2016 EĞİTİM-ÖĞRETİM DÖNEMİ KARAYOLU MÜHENDİSLİĞİ SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ ULAŞTIRMA ÇALIŞMA GRUBU 2015-2016 EĞİTİM-ÖĞRETİM DÖNEMİ KARAYOLU MÜHENDİSLİĞİ YOL PROJESİ TASARIM KİTAPÇIĞI PROJE 1. Projenin Tanımı ve İstenenler

Detaylı

7. ORMAN YOLLARI TEMEL BİLGİLERİ

7. ORMAN YOLLARI TEMEL BİLGİLERİ 7. ORMAN YOLLARI TEMEL BİLGİLERİ 7.1. ORMAN YOLLARININ PROJELENDİRİLMESİNDE TEMEL ESASLAR Orman yollarında araç sayısı ve yoğunluğu bir yandan iletmeye açma olanının büyüklüğüne ve yerine, diğer yandan

Detaylı

KLOTOİD EĞRİSİNDE YOL DİNAMİĞİNİN İNCELENMESİ

KLOTOİD EĞRİSİNDE YOL DİNAMİĞİNİN İNCELENMESİ TMMOB Harita ve Kadastro Mühendisleri Odası 10. Türkiye Harita Bilimsel ve Teknik Kurultayı Mart 005, Ankara KLOTOİD EĞRİSİNDE YOL DİNAMİĞİNİN İNCELENMESİ B. Bostancı 1 1 Afyon Kocatepe Üniversitesi, Emirdağ

Detaylı

KARAYOLLARININ SINIFLANDIRILMASI KENT PLANLAMADA ULAŞIM

KARAYOLLARININ SINIFLANDIRILMASI KENT PLANLAMADA ULAŞIM KARAYOLLARININ SINIFLANDIRILMASI KENT PLANLAMADA ULAŞIM Karayollarının Sınıflandırılması Karayolları çeşitli kriterlere göre sınıflandırılmış; her yol sınıfının kendine has bazı geometrik özellikleri belirlenmiştir.

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

1D 14.50 110 ----- 2D 14.20 140 290 3D 15.10 320

1D 14.50 110 ----- 2D 14.20 140 290 3D 15.10 320 ORMAN YOLLARININ ARAZİYE APLİKASYONU Planı yapılan yolların kullanılabilmesi için araziye aplike edilmesi gerekmektedir. Araziye gidildiği zaman, plan üzerinde gösterilen yolun başlangıç ve bitiş noktaları

Detaylı

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği varsayılan eksen çizgilerinin topoğrafik harita ya da arazi üzerindeki

Detaylı

Bahar. Su Yapıları II Hava Payı. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1

Bahar. Su Yapıları II Hava Payı. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1 Su Yapıları II Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Yozgat Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1 Hava

Detaylı

Ölçme Bilgisi DERS 9-10. Hacim Hesapları. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ )

Ölçme Bilgisi DERS 9-10. Hacim Hesapları. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Ölçme Bilgisi DERS 9-10 Hacim Hesapları Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Büyük inşaatlarda, yol ve kanal çalışmalarında kazılacak toprak miktarının hesaplanması, maden işletmelerinde

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BURKULMA HESABI Doç.Dr. Ali Rıza YILDIZ MAK 305 Makine Elemanları-Doç. Dr. Ali Rıza YILDIZ 1 BU SLAYTTAN EDİNİLMESİ BEKLENEN BİLGİLER Burkulmanın tanımı Burkulmanın hangi durumlarda

Detaylı

Hidroloji Uygulaması-7

Hidroloji Uygulaması-7 Hidroloji Uygulaması-7 1-) Bir akım gözlem istasyonunda anahtar eğrisinin bulunması için aşağıda verilmiş olan ölçümler yapılmıştır: Anahtar eğrisini çiziniz Su seviyesi (cm) 3 4 5 6 8 1 15 5 Debi (m 3

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Hazırlayan Prof. Dr. Mustafa Cavcar Aerodinamik Kuvvet Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın havayagörehızının () karesi, havanın yoğunluğu

Detaylı

DİK KOORDİNAT SİSTEMİ VE

DİK KOORDİNAT SİSTEMİ VE Ölçme Bilgisi DERS 6 DİK KOORDİNAT SİSTEMİ VE TEMEL ÖDEVLER Kaynak: İ.ASRİ (Gümüşhane Ü) M. Zeki COŞKUN ( İTÜ ) TEODOLİT Teodolitler, yatay ve düşey açıları yeteri incelikte ölçmeye yarayan optik aletlerdir.

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: a) I. tip hareketli yük: Sistemin tümünü veya bir bölümünü kaplayan, boyu değişken düzgün yayılı hareketli yüklerdir (insan,

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

12. KARAYOLU YILİÇİ ÖDEVİ BİLGİLERİ

12. KARAYOLU YILİÇİ ÖDEVİ BİLGİLERİ 12. KARAYOLU YILİÇİ ÖDEVİ BİLGİLERİ 12.1. Ödev Konusu 1/2.000 ölçekteki eşyükselti eğrili harita üzerinde işaretlenen iki zorunlu nokta arasında, aşağıda proje kriterleri verilen karayolunun, projelendirilmesine

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

TEKNİK RESİM. Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi. Geometrik Çizimler-2

TEKNİK RESİM. Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi. Geometrik Çizimler-2 TEKNİK RESİM 4 2014 Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi Geometrik Çizimler-2 2/21 Geometrik Çizimler - 2 Bir doğru ile bir noktayı teğet yayla birleştirmek Bir nokta ile doğru

Detaylı

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ MALZEME LABORATUARI I DERSĠ BURULMA DENEY FÖYÜ BURULMA DENEYĠ Metalik malzemelerin burma deneyi, iki ucundan sıkıştırılırmış

Detaylı

Hız, Seyir Süresi ve Gecikmeler. Prof.Dr.Mustafa KARAŞAHİN

Hız, Seyir Süresi ve Gecikmeler. Prof.Dr.Mustafa KARAŞAHİN Hız, Seyir Süresi ve Gecikmeler Prof.Dr.Mustafa KARAŞAHİN Hız, Seyir Süresi ve Gecikme Karayolu altyapısı ve trafik işletme modelinin performansının göstergesidir. Genellikle, sürücüler veya yolcular A

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

KARAYOLU ÖDEV PROJESİNİN HAZIRLANMASI

KARAYOLU ÖDEV PROJESİNİN HAZIRLANMASI KARAYOLU ÖDEV PROJESİNİN HAZIRLANMASI 1. PLÂN Ödev Karayolu Projesinde plân, karayolu geçkisinin yeryüzünde takip ettiği doğrultunun kâğıt düzleminde, belli kurallara uyularak, resmedilmesidir. Geçki,

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

YEREL KAYIPLAR. Borudaki yerel fiziki şekil değişimleri akımın yapısını mansaba doğru uzunca bir mesafe etkileyebilir.

YEREL KAYIPLAR. Borudaki yerel fiziki şekil değişimleri akımın yapısını mansaba doğru uzunca bir mesafe etkileyebilir. YEREL KAYIPLAR Bir boru hattı üzerinde akımı rahatsız edebilecek her çeşit yerel değişim bir miktar enerjinin kaybolmasına sebep olur. Örneğin boru birleşimleri, düğüm noktaları, çap değiştiren parçalar,

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

AVRASYA ÜNİVERSİTESİ

AVRASYA ÜNİVERSİTESİ Ders Tanıtım Formu Dersin Adı Öğretim Dili Ulaştırma Türkçe Dersin Verildiği Düzey Ön Lisans (X) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan Öğretim( ) Diğer

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Prof. Dr. İrfan KAYMAZ

Prof. Dr. İrfan KAYMAZ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Kayış-kasnak mekanizmalarının türü Kayış türleri Meydana gelen kuvvetler Geometrik

Detaylı

1. TEMEL ÇİZİMLER. Pergel Yardımıyla Dik Doğru Çizmek. 1. Doğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla D ve G noktaları işaretlenir.

1. TEMEL ÇİZİMLER. Pergel Yardımıyla Dik Doğru Çizmek. 1. Doğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla D ve G noktaları işaretlenir. 1. TEMEL ÇİZİMLER Pergel Yardımıyla ik oğru Çizmek 1. oğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla ve G noktaları işaretlenir. 2. ve G merkez olmak üzere doğru dışında kesişecek şekilde

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Geometrik Çizimler-1 2/32 Geometrik Çizimler - 1 Geometrik Çizimler-1 T-cetveli ve Gönye kullanımı Bir doğrunun orta noktasını bulma

Detaylı

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır.

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim İzometrik Perspektifler Küpün iz düşüm düzlemi üzerindeki döndürülme açısı eşit ise kenar uzunluklarındaki kısalma miktarı da aynı olur. Bu iz düşüme, izometrik

Detaylı

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir.

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. 1 TEMEL HESABI Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. Uygulanacak olan standart sürekli temel kesiti aşağıda görülmektedir. 2 Burada temel kirişi

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

BÖLÜM 3: TAŞIT HAREKETLERİ

BÖLÜM 3: TAŞIT HAREKETLERİ BÖLÜM 3: TAŞIT HAREKETLERİ 3.1 TAŞIT HAREKETİNE KARŞI KOYAN DİRENÇLER Bir taşıtın harekete geçebilmesi için çekiş kuvvetine ihtiyacı vardır. Taşıtlar çekiş kuvvetini cinslerine göre insan, hayvan veya

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum DOĞRUSAL ve BAĞIL HAREKET Hareket Maddelerin zamanla yer değiştirmesine hareket denir. Fakat cisimlerin nereye göre yer değiştirdiği ve nereye göre hareket ettiği belirtilmelidir. Örneğin at üstünde giden

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

KALINLIK VE DERİNLİK HESAPLAMALARI

KALINLIK VE DERİNLİK HESAPLAMALARI KALINLIK VE DERİNLİK HESAPLAMALARI Herhangi bir düzlem üzerinde doğrultuya dik olmayan düşey bir düzlem üzerinde ölçülen açıdır Görünür eğim açısı her zaman gerçek eğim açısından küçüktür Görünür eğim

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Konik Dişli Çarklar DİŞLİ ÇARKLAR İçerik Giriş Konik dişli çark mekanizması Konik dişli çark mukavemet hesabı Konik dişli ark mekanizmalarında oluşan kuvvetler

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

DEMİRYOLU I Demiryolu Mühendisliği

DEMİRYOLU I Demiryolu Mühendisliği DEMİRYOLU I Demiryolu Mühendisliği 6. HAFTA (2012-2013) 1. DEMİRYOLU GÜZERGAHI Belirli bölgeleri birleştiren, ara noktalardaki uzaklıkları bilinen, yönü belli olan ve arazi üzerinde inşaa edilen yapıya

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI

İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI Mustafa Cavcar Anadolu Üniversitesi Havacılık ve Uzay Bilimleri Fakültesi 26470 Eskişehir Yatay uçuş sabit uçuş irtifaında yeryüzüne paralel olarak yapılan uçuştur.

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT: Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

5. BORU HATLARI VE BORU BOYUTLARI

5. BORU HATLARI VE BORU BOYUTLARI h 1 h f h 2 1 5. BORU HATLARI VE BORU BOYUTLARI (Ref. e_makaleleri) Sıvılar Bernoulli teoremine göre, bir akışkanın bir borudan akabilmesi için, aşağıdaki şekilde şematik olarak gösterildiği gibi, 1 noktasındaki

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün

Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Fizik 203 Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: 0392-630-1379 ali.ovgun@emu.edu.tr www.aovgun.com Kepler Yasaları Güneş sistemindeki

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ. Prof. Dr. Mustafa Cavcar 8 Mayıs 2013

ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ. Prof. Dr. Mustafa Cavcar 8 Mayıs 2013 ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ TIRMANMA PERFORMANSI Tırmanma Açısı ve Tırmanma Gradyanı Prof. Dr. Mustafa Cavcar 8 Mayıs 2013 Bu belgede jet motorlu uçakların tırmanma performansı

Detaylı

MAKİNE ELEMANLARI - (8.Hafta) VİDALAR -1

MAKİNE ELEMANLARI - (8.Hafta) VİDALAR -1 A. TEMEL KAVRAMLAR MAKİNE ELEMANLARI - (8.Hafta) VİDALAR -1 B. VİDA TÜRLERİ a) Vida Profil Tipleri Mil üzerine açılan diş ile lineer hareket elde edilmek istendiğinde kullanılır. Üçgen Vida Profili: Parçaları

Detaylı

KAYIŞ-KASNAK MEKANİZMALARI

KAYIŞ-KASNAK MEKANİZMALARI KAYIŞ-KASNAK MEKANİZMALARI Müh.Böl. Makina Tasarımı II Burada verilen bilgiler değişik kaynaklardan derlemedir. Bir milden diğerine güç ve hareket iletmek için kullanılan mekanizmalardır. Döndürülen Eleman

Detaylı

DEMİRYOLU I Demiryolu Mühendisliği 3.HAFTA ( )

DEMİRYOLU I Demiryolu Mühendisliği 3.HAFTA ( ) DEMİRYOLU I Demiryolu Mühendisliği 3.HAFTA (2012-2013) 1. TEKERLEK-RAY DENGESİ Demiryolu taşıtları, demir tekerleklerinin demir raylar üzerinde yuvarlanmaları ile hareket ederler. Bu hareketin gerçekleşmesi

Detaylı

T.C AHİ EVRAN ÜNİVERSİTESİ KAMAN MESLEK YÜKSEK OKULU ÖĞRENCİ NO: 116723072,116723072 ADI SOYADI: CELAL TUĞRUL, KADİR TUNCEL

T.C AHİ EVRAN ÜNİVERSİTESİ KAMAN MESLEK YÜKSEK OKULU ÖĞRENCİ NO: 116723072,116723072 ADI SOYADI: CELAL TUĞRUL, KADİR TUNCEL T.C AHİ EVRAN ÜNİVERSİTESİ KAMAN MESLEK YÜKSEK OKULU ÖĞRENCİ NO: 116723072,116723072 ADI SOYADI: CELAL TUĞRUL, KADİR TUNCEL HRT-213 ARAŞTIRMA TEKNİKLERİ VE SEMİNERİ KONU ADI: YOL APLİKASYONU KASIM, 2012

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı