13. DERS ELEKTROMETAL KAPLAMA TEKNİĞİ ELEKTROLİZE KAPLAMA, VAKUM VE BUHARLA KAPLAMA, YALITKAN KAPLAMA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "13. DERS ELEKTROMETAL KAPLAMA TEKNİĞİ ELEKTROLİZE KAPLAMA, VAKUM VE BUHARLA KAPLAMA, YALITKAN KAPLAMA"

Transkript

1 13. DERS ELEKTROMETAL KAPLAMA TEKNİĞİ ELEKTROLİZE KAPLAMA, VAKUM VE BUHARLA KAPLAMA, YALITKAN KAPLAMA

2

3 ELEKTROMETAL KAPLAMA TEKNİĞİ II DERS 13 ELEKTROLİZE KAPLAMA, VAKUM VE BUHARLA KAPLAMA, YALITKAN KAPLAMA İÇİNDEKİLER KONU SAYFA NO: YALITKANLARI KAPLAMA,YALITKANLAR NEDEN KAPLANIR? 1-6 KARŞILAŞILAN EN BÜYÜK SORUN 2 ADEZYON VE KOHEZYON 2 İLK METAL TABAKASI 6 GAZ HALDEN METAL ÇÖKELTME 7-15 VAKUM KAPLAMA 7-12 SPUTTERING (ATOM SÖKME) YÖNTEMİ İLE KAPLAMA BUHARLA KAPLAMA ELEKTROLİZE KAPLAMA METAL ATOMLARININ ÇÖKELTİLMESİ KATALİZ 17 ELEKTROLİZE KAPLAMADA KATALİZ 17 HOMOJEN KRİSTALLEŞME 18 HETEROJEN KRİSTALLEŞME OTO-KATALİZÖR BİR ELEKTROLİZ BANYOSUNDA NELER BULUNUR ELEKTROLİZE KAPLAMA SÜRECİ NE GEREKTİRİR? 23 ELEKTROLİZE NİKEL 23 ASİDİK ELEKTROLİZE NİKEL 23 ALKALİ ELEKTROLİZE NİKEL ELEKTROLİZE NİKEL BANYOSUNUN KİMYASAL KONTROLÜ İMALAT TAVSİYELERİ ELEKTROLİZE NİKEL KAPLAMADA HATA GİDERME ELEKTROLİZE BAKIR BANYOSU ELEKTROLİZE BAKIR REÇETELERİ ÇALIŞTIRMA TAVSİYELERİ ELEKTROLİZE GÜMÜŞ ELEKTROLİZE GÜMÜŞ REÇETELERİ SPREY/AEROSOL KAPLAMA PÜSKÜRTME METAL KAPLAMALAR PLASTİK ÜZERİNE KAPLAMA ABS PLASTİK ÜZERİNE KAPLAMA SÜRECİN ÇALIŞTIRILMASI 46-47

4 ELEKTROMETAL KAPLAMA TEKNİĞİ II DERS 13 ELEKTROLİZE KAPLAMA, VAKUM VE BUHARLA KAPLAMA, YALITKAN KAPLAMA İÇİNDEKİLER KONU SAYFA NO: KÜÇÜK PLASTİK PARÇALARIN KAPLANMASI ALTERNATİF YÖNTEMLER PARÇACIK ŞEKLİ 53 PARÇACIK İLETKENLİĞİ BEBEK AYAKKABILARINI METALİZE ETME İLETKEN KAPLAMA TEKNİKLERİ ÇİÇEK VE YAPRAKLARIN METALİZE EDİLMESİ YÜZEY HAZIRLAMA TEKNİKLERİ YALITKAN KAPLAMA TEKNİKLERİ HAYVANSAL MADDELERİ METALİZE ETME 69 ÇEŞİTLİ MALZEMELERİ METALİZE ETME KAYNAKÇA DERS 13 SINAV 75

5 EKT-13-1 YALITKANLARI KAPLAMA Umarım 12. dersteki sınavı çok zor bulmamışsınızdır! Şimdi, metal kaplamanın başka bir alanı olan yalıtkanların kaplanması konusunu ele alacağız. Bu konuyla bağlantılı olarak, yalıtkan yüzeyler üzerine iletken metalik filmler kaplanması hakkında bazı ilgi çekici teknikler üzerinde de duracağız. Bu tekniklerin bazıları o kadar geniş içerikli ve iyi geliştirilmiştir ki, başlı başına özel bir ilgi alanıdır. Bu alanları daha detaylı olarak incelemek isterseniz ders sonunda verilen kaynakçalardan yararlanabilirsiniz. Burada asıl amacımız verilen filmleri başarılı biçimde, gerektiği zaman, gerektiği yerlerde üretebilmenizi sağlayacak teknikler hakkında yeterli altyapı bilgisini vermektir. YALITKANLAR NEDEN KAPLANIR? Derse bu soru ile başlıyoruz çünkü plastik maddeleri kaplamanın ne gibi yararları olduğunu merak etmiş olabilirsiniz. Bir takım avantajları vardır: 1. METALİ KORUMAYA YARDIMCI OLUR. Bugün malzemelerin, özellikle de metallerin, korunması çok önemlidir ve zaman geçtikçe bu konu daha da önem kazanacaktır. Ne yazık ki doğal kaynaklar tükenmektedir. Doğal kaynakları koruyan ve aynı zamanda fiyatları aşağıda tutan her şey çok değerlidir. 2. YUMUŞAK MALZEMENİN ÜZERİNDE SERT BİR YÜZEY OLUŞTURUR. Çoğu durumda plastiğin hafif bir madde oluşu büyük bir avantaj sağlar. Yeni çeşitleri daha güçlü, ve bazıları diğerlerine nazaran ısıya daha dayanıklıdır, ama hepsinin de ortak özelliği sert olmayışlarıdır. Dolayısıyla plastik yüzeylerin kaplanması iyi bir fikir gibi görünmektedir ve pek çok durumda öyledir. 3. GÜZEL,METALİK BİR GÖRÜNTÜ SAĞLAR Pek çok kereler gösterilmiştir ki parlak ya da satine görünümlü metalik yüzeyler ürünün satılabilirliğini oldukca arttırmaktadır.

6 EKT-13-2 İnsanlar metalin parlaklığından hoşlanırlar. Bir şekilde parlaklık ürünü daha sağlam, daha güvenilir göstermektedir. Bu üçü, plastik üzerine kaplama yapmak istenmesinin temel gerekçeleridir. Tabii ki bunlardan başka sebepler de olabilir ancak hepsi de sonuçta bu üçü ile ilişkilidir. KARŞILAŞILAN EN BÜYÜK SORUN Yalıtkanları kaplarken asıl meselenin ilk yapışkan metal kaplama tabakasının elde edilmesi olduğunu anlamak için âlim olmanıza gerek yoktur. Eğer yalıtkan yüzey üzerinde iyi bir yapışkan metal tabakası ya da filmi elde ettiyseniz gerisi gelir. Bir kere bu şekilde bir kaplama elde ettiğinizde cismi o metalle veya gerekli olan başka bir metalle kaplayabilirsiniz. Dikkat ettiyseniz yapışma kelimesini vurguladım. Bu nokta önemli olup aşağıda açıklanacaktır. ADEZYON VE KOHEZYON Ders 1 deki BAĞ YAPMA konusunu hatırlıyor musunuz? Hafızanızı tazelerseniz şunu hatırlayacaksınız: Metal atomlarını (iyonlarını) bir arada tutan bir tutkal görevi gören elektron bulutu, bir metal parçasını oluşturan metal atomlarının birbirleri ile bağ yapmasını sağlar. Pozitif yüklü metal atomlarının negatif yüklü serbest metal atomlarını çekmesi metalleri bir arada tutan KOHEZYON kuvveti olarak adlandırılır. Metalin içindeki her atom uniform bir elektron bulutu ile çevrelenmiştir. Ama yüzeyde bu böyle değildir (Bkz: şekil 1). Burada metale farklı özellikler veren, bağ yapma kapasitesine sahip metal atomları bulunmaktadır. Daha önceden öğrenmiş olduğumuz enerji terimiyle ifade edecek olursak, metal yüzeyindeki atomlar diğerlerine nazaran daha yüksek serbest enerjiye sahiptir. Her zaman olduğu gibi doğa bu enerjiyi düşürmeye çalışacaktır.

7 EKT 13 3 Bunu yapmanın bir yolu, yüzey alanının hacme oranını düşürmektir. Sıvı moleküllerinin hareket kaabiliyeti daha yüksek olduğu için ve kolaylıkla akış oluşabildiğinden, sıvı en küçük yüzey alanına sahip olacak şekli kendiliğinden alır. Ders 4 te de ele aldığımız üzere, sıvı damlacıkları küre şeklini alırlar ve belli bir miktardaki madde en küçük yüzey alanına sahip olur. Ancak metal atomları bu hareket kaabiliyetine sahip değildirler ve bu yüzden onlar ne olursa olsun dış şekillerini korumak zorunda kalırlar. Bu serbest enerjiyi azaltmanın bir diğer yolu da yüzeye bağlanacak başka atomlar ya da moleküller bulmaktır. Örneğin, eğer çevrede bulunan gaz molekülleri, mesela oksijen molekülleri yüzeydeki bağ yapmamış metal atomları tarafından çekilirse, serbest yüzey enerjisini oldukça azaltan OKSİTLENME olayı meydana gelir. Ya da başka tip moleküller zayıf bağlar yapacak ve yüzeye yapışacaklardır (Van Der Waals bağları) ki bu da serbest yüzey enerjisini düşürecektir. Eğer metalin yüzeyi temizse ve aynı tür metal atomları ile kaplanırsa, yüzey atomlarının bağ yapma istekleri giderilir ve yapışkan görevini gören elektron bulutu kaplanmış tabakanın içinde serbestçe hareket edebilir. Kaplama tabakasının yüzeye yapışma kuvveti ancak metalin kendisine bağlanma kuvveti kadar olacaktır. Aslında teorik olarak, yeni bağlanan metal atomları ve metal arasındaki bağ metalin herhangi bir yerindeki bağ kadar sağlamdır. Bağ kuvveti orijinal metalin KOHEZYON kuvvetine eşittir diyebiliriz. Eğer yüzeye başka bir metal kaplanırsa aynı atomik kuvvetler yine iş başındadır ve kaplama esas metale, en az esas metal atomlarının arasındaki bağ kuvveti kadar bir kuvvetle bağlanır. Artık burada bahsedilen esas metal ile kaplama atomları arasındaki KOHEZYON kuvveti değil, esas metal atomları arasındaki ADEZYON kuvvetidir.

8 EKT 13-4 BENZER ATOMLAR ARASINDAKİ ÇEKİM KUVVETLERİ KOHEZYON KUVVETLERİ OLARAK ADLANDIRILIR. FARKLI ATOMLAR ARASINDA ÇEKİM KUVVETLERİ İSE ADEZYON KUVVETLERİ OLARAK ADLANDIRILIR. Şimdi bir plastiğin yüzeyini ele alalım (biz burada yalıtkan olarak plastikleri alacağız, burada öne sürülen düşünceler ufak düzeltmelerle tüm yalıtkanlar için uygulanabilir). Bildiğiniz gibi plastikler organik moleküllerin (monomerlerin) bir araya gelerek oluşturduğu uzun molekül zincirlerinden (polimerlerden) meydana gelir. Bu tek molekül zincirleri güçlü KOVALENT BAĞLAR # tarafından bir arada tutulurlar. Ayrıca zincirler birbirlerine iyonik bağlarla ya da daha zayıf olan VAN DER WAALS BAĞLARI ile çapraz bağlanmış olabilirler. Burada akılda tutulması gereken şey, eğer serbest elektronlar mevcut ise çok az sayıda olacağıdır. Başka bir ifadeyle, tüm elektronlar kovalent ya da iyonik bağlarla bağlanmışlardır. Şimdi plastik bir malzemenin yüzeyine ince bir metal tabakası kaplamayı denediğinizde neler olacağını göreceksiniz. İlk oluşan metal atomları tabakası kesinlikle yapışmayacaktır çünkü onların yapışmasını sağlayacak elektron bulutu yoktur. Metal atomları elektronlarını paylaşacak farklı atomlar ya da moleküller aramaya başlarlar. Plastiğin normal yüzey atomları veya moleküllerinin paylaşacakları ya da ayıracakları elektronları yoktur, çünkü hepsi kovalent ya da iyonik bağlarla bağlanmışlardır. Bu durumda yüzeye yapışma olmaz. Neyse ki pek iyi bir yöntem olmasa da- bu problemi çözmenin bir yolu vardır. VAN DER WAALS BAĞ KUVVETLERİ. Yüzey elektronlarının bağlı olup olmaması önemli değildir, bu bağ kuvvetleri yüzeyde her zaman mevcuttur ve böylece temiz bir plastik yüzeye zayıf ve ince bir metal tabakası kaplamak mümkün olacaktır. Burada altı çizilmesi gereken temiz kelimesidir, çünkü Van Der Waals kuvvetleri bağ yapmaya başlamak için nispeten zayıftır. Bu nedenle plastik yüzey üzerinde çok ince bir yağ, gres tabakası ya da küf bırakan bir mekanizma varsa hiç yapışma olmaz. # Bu konuyu ele alırken 1. Ders teki Bağ Yapma konusuna göz atmanızda fayda vardır.

9 EKT 13 5 Metalik bağ ile elde edilen bir yapışma gücünü Van Der Waals bağı ile elde edilenle kıyaslamak ilginç olacaktır. Metalik bağ: psi. Van Der Waals bağı: 50 psi! Bu karşılaştırma doğal olarak yaklaşık değerler üzerindendir ama yine de size durum hakkında bir fikir verecektir. Van Der Waals bağı metalik bir bağ ile karşılaştırıldığında gerçekten çok düşük bir güce sahiptir, ama yine de pek çok plastik kaplama uygulamasında bu güç yeterli olacaktır. Bazılarında ise fayda sağlamaz ve bu nedenle o ilk metal tabakasını daha güçlü biçimde yapıştırmanın yollarını aramamız gerekir. Bunu şu üç şekilde yapmak mümkündür: 1. Bir şekilde yüzeydeki kovalent bağları kopararak onları elektronlarını paylaşmaya ya da vermeye istekli hale getirin. Buna KİMYASAL BAĞ YAKLAŞIMI denir. 2. Plastik yüzeyi olabildiğince temiz hale getirin ve Van Der Waals bağlarının etkili olmasını bekleyin. Yukarıda genel olarak, pek çok örnekte görülen 50 psi değeri verilmiştir ama şartlara bağlı olarak bazı durumlarda bu değer 500 psi ye kadar yükselebilmektedir. Buna FİZİKSEL (ya da FİZİKO-KİMYASAL) BAĞ YAKLAŞIMI denir. (Şekil 2 ye bakınız). 3. Plastiğin yüzeyini pürüzlü hale getirin ve kalitesini düşürün. Böylece ilk birkaç tabakadaki metal atomları ve arkadan gelenler yüzeye mekanik olarak tutunurlar, bu tıpkı bir dişe dolgu yapmaya benzer. Buna MEKANİK BAĞ YAKLAŞIMI denir. Çoğu durumda bağ oluşumunun başlaması, bu üç yoldan iki ya da üçünün birlikte kullanılması halinde olur. Kaplamanın kimyasal bağların oluşumu ile başladığı bazı durumlar olmakla birlikte, esasında çoğu durumda fiziksel ve mekanik bağların kaplamayı başlattığı ve iyi yapışma sağlayan, daha iyi kaplama yöntemleri olduğu görülmüştür. Örneğin, elektron mikroskobu ile yapılan incelemelerde kalitenin düşürülmesi ile oluşturulan mikro-oyukların, ilk metal kaplama tabakasını oluşturmada faydalı olduğu görülmüştür #. # G. Woldt, Trans. Inst. Metal Finishing, 47, 236 (1969)

10 EKT 13 6 Şekil 2. Fiziko-Kimyasal Bağ Yalıtkanları kaplamadaki en temel problemin ne olduğunu anladığınıza göre yalıtkanları kaplamanın nedenlerini, nerede plastik yüzeylerin kullanıldığını ve plastik yüzeylerin nasıl daha iyi kaplanacağını göreceksiniz artık satıcıların iddialarını anlayabilecek bilgi birikimine sahipsiniz. Bu noktada yalıtkan bir yüzeye ilk metal tabakasının nasıl çökeltilebileceğini konuşacağız ve gerekli yüzey hazırlama tekniklerini sonraya bırakacağız. İLK METAL TABAKASI Çok önemli olan ilk tabaka metal atomları farklı yollarla yüzeye çökeltilebilir. 1. Metal atomlarını GAZ HALDEN çökeltebilirsiniz. Bunu yapabilmek için farklı birkaç yol vardır: (a) METAL BUHARLAŞTIRMA (VAKUM KAPLAMA) # (b) METAL PÜSKÜRTME (İYON KAPLAMA) (c) TERMAL VE KATALİTİK ÇÖZÜNDÜRME 2. Metal atomlarını SIVI HALDEN çökeltebilirsiniz. Bunu yapabilmek için sadece bir yol vardır: (a) ELEKTROLİZ KAPLAMA 3. Metal atomlarını KATI HALDEN çökeltebilirsiniz. Bu üç değişik yolla yapılabilir: + (a) İnce-düzgün bölünmüş metal fırça ile kaplanabilir (b) daldırılarak (c) püskürtülerek # Vakum kaplama aslında biraz yanlış bir adlandırmadır. Bir şeyi hiçbir şeyle kaplayamazsınız (ya da hiçbir şeyi bir şeyle kaplayamazsınız)! + Aynı zamanda yayarak da kaplayabilirsiniz (ısıtma işlemi) ancak bu konu burada ele alınmayacaktır.

11 EKT-13-7 Gördüğünüz gibi fazlaca seçenek vardır. Bazı yöntemler diğerlerinden daha iyidir ve bazı metotlar elektro kaplama için başlangıç niteliğinde değildir. Konuya GAZ HALDEN çökeltme yöntemleri ile başlayacağız. GAZ HALDEN METAL ÇÖKELTME VAKUM KAPLAMA Vakum kaplamanın arkasındaki fikir oldukça basittir. İçinde su kaynayan bir çaydanlık düşünün. İçerde buharlaşan su, su buharı halinde çaydanlığın ucundan sabit şekilde çıkmaktadır. Kısa bir süreliğine çaydanlığın ucunu kapatarak içerdeki su buharının basıncı ölçerseniz, suyun kaynama noktasına ulaştığında içerideki basıncın tam olarak 14,7 PSI (pound/inç 2 ), 1 atmosfer (atm) ya da 760 mm-cıva olduğu görülür ki, bu da dışarıdaki havanın basıncıyla tam olarak aynıdır. Sıvı haldeki suyu terk eden su molekülleri tıpkı gaz gibi davranırlar ve sıradan bir gazın yaptığı gibi çaydanlığın iç çeperine bir basınç uygularlar. Yarattıkları bu basınç sıvının BUHAR BASINCI olarak adlandırılır (bu durumda suyun buhar basıncı). Aynı zamanda SIVININ KISMÎ BASINCI olarak da adlandırılır. Burada unutulmaması gereken şey şudur: Su kaynama noktasına kadar ısıtılırken, herhangi bir bir sıcaklıkta, suyu terk eden belli sayıda su molekülü birbirlerine ya da kabın duvarlarına çarparak suya geri dönerler ve tekrar sıvı su molekülleri halini alırlar. Herhangi bir sıcaklıkta, (kapalı bir kapta) buharlaşarak sudan ayrılan su molekülü sayısı ile yoğunlaşıp tekrar sıvı haline dönen buhar molekülü sayısı arasında bir denge vardır. Bizim ölçtüğümüz buhar basıncı bu denge noktasında ölçtüğümüz basınçtır.

12 EKT 13 8 Sıvıdan ayrılan moleküller ortalama olarak sıvıda kalan moleküllerden daha fazla enerjiye sahiptir. Aksi halde onları sıvı halde tutan kuvvetleri yenerek sıvıdan ayrılmaları mümkün olmazdı! Doğal olarak, suya ne kadar ısı enerjisi verilirse su molekülleri o kadar enerjik hale gelirler. Bu da sıcaklık arttıkça daha fazla su molekülünün su yüzeyinden ayrılarak su buharı haline geleceği anlamına gelmektedir (buhar ve gaz eş anlamlıdır), ve gittikçe daha az sayıda buhar molekülü su haline geri döner. Kolayca görülebileceği gibi, suyun sıcaklığı arttıkça kabın içindeki BUHAR BASINCI da yükselir. KABIN İÇİNDEKİ BUHAR BASINCI DIŞARDAKİ HAVANIN BASINCIYLA TAM OLARAK AYNI NOKTAYA GELDİĞİNDE, SU KAYNAMA NOKTASINA ULAŞMIŞ DEMEKTİR. Bu herhangi bir sıvının kaynama noktasının tanımıdır. Suyun kaynama noktası atmosfer basıncında (1 atmosfer = 14,7 PSI = 760 mm-cıva) C dir (212 F). Daha düşük sıcaklıklarda buhar basıncı da daha düşük olur. HER SIVININ BELLİ BİR SICAKLIKTA BELLİ BUHAR BASINCI VARDIR. Belki şaşırtıcı gibi görünebilir, her KATININ belli bir sıcaklıkta belli bir buhar basıncı vardır. Bir katının kaynama noktasında, örnek olarak bakırı ele alalım, bakır atomları gaz hale dönüşmek için sıvı bakırı terk ederler. Ve o sıcaklıkta ( C) bakırın buhar basıncı 1 atmosferdir (14,7 psi). Sıcaklık C den aşağı düşerse daha az bakır atomu sıvı yüzeyini terk edecek böylece bakırın buhar basıncı düşecektir.

13 EKT-13-9 Katılaşma sıcaklığına düştüğünde ( C) bakırın buhar basıncı çok düşer ama yine de belli bir değeri vardır. Sıcaklık oda sıcaklığına doğru düştükçe basınç neredeyse yok olacaktır. Aslında basınç o kadar azalacaktır ki 1 gram ağırlığında bir bakır damlasının buharlaşması için 1 milyar yıl gerecektir. Bunu bir gram su ile karşılaştırırsak, bu miktarda su oda sıcaklığında 4 saat ya da daha az bir sürede buharlaşacaktır. İçinde su olan bir kap cam fanusun altına yerleştirilip basınç bir vakum pompası ile düşürülürse, oda sıcaklığında (20 0 C) olmasına rağmen kaptaki suyun kaynadığı gözlenecektir. Fanusun içindeki basınç 17,5 mm-cıvaya (Bu değer psi ve atmosfer cinsinden kaçtır?) düştüğü anda suda kabarcıklar oluşur ve kaynar. Bu durum önceden yapmış olduğumuz kaynama noktası tanımını destekler niteliktedir, bir sıvının kaynama noktası sıvı basıncının dış (çevre ya da ortam) basınca eşitlendiği sıcaklık seviyesidir. Şimdi aşağıda saf aluminyum için verilmiş buhar basıncı şekillerini göz önüne alalım. Saf aluminyumun kaynama noktası 2056 o C dir bu sıcaklıkta buhar basıncı 14,7 psi ya da 760 mm-cıvaya eşittir o C sıcaklıkta sıvı aluminyum artık kaynamamaktadır ve buhar basıncı 1 mm-cıvaya eşittir. Aluminyumun erime ısısı olan 660 o C sıcaklıkta buhar basıncı 0,00001 mm-cıvaya kadar düşer. Aluminyum bir şekilde erime noktasındaki veya daha yüksek sıcaklığa getirilirse ya da bir vakumlu kaba konarak basınç 0,00001 mm-cıvaya düşürülebilirse, tıpkı 20 o C sıcaklıkta ve 17,5 mm-cıva basınçtaki cam fanustaki su gibi, aluminyum da kaynamaya ve buharlaşmaya başlayacaktır. Buharlaşan aluminyum atomları (tek tip atomlu moleküller) gaz molekülleri gibi davranacaklardır. HER DOĞRULTUDA DÜZ HATLARDA HAREKET EDECEKLERDİR. Dahası bir başka açıdan da tıpkı su molekülleri gibi davranacaklardır. Aluminyum molekülleri kendilerinden daha soğuk olan herhangi bir yüzeye temas ederlerse yoğunlaşacaklardır (çökeceklerdir). (Burada enerjinin hangi ilkesi söz konusudur?)

14 EKT Vakumla metali buharlaştırarak kaplamanın temel prensibi budur. Burada dikkat edilmesi gereken başka bir nokta da vakum şudur: Vakum, aluminyumu buharlaştırma işinde yardımcı olmakla birlikte başka bir amaca daha hizmet etmektedir. Vakumun içindeki havada bulunan oksijen miktarını azaltarak oksitlenme ihtimalini de en aza indirmiş olur. Böylece aluminyum için 2Al + 3O 2 = Al 2 O 3 tepkimesi engellenmiş olur. Yüksek vakum aluminyum atomlarının oksijen atomları ile birleşmesini engeller, böylece ortaya değersiz ametalik aluminyum oksit çıkmasının önüne geçilmiş olur. Buharlaştırma metodunda akılda tutulması gereken bir diğer nokta METAL ATOMLARININ TAM OLARAK DÜZ ÇİZGİLER HALİNDE İLERLEMELERİ yani çökelmenin görüş alanında oluştuğudur. Şekil 4 te gösterildiği gibi ton yapılamaz, atomların önüne bir engel konursa arkadaki kısım kaplanmamış olacaktır. Doğru bir vakumla metal kaplama sürecinde buharlaştırılacak metal genellikle özel bir tungsten sargı metal eritme krozesine konur, bu düzenek cam fanusun içindedir (vakumlu kap). Doğru vakum basıncına ulaşıldığında elektrik akımı verilerek metal eritme kabı ısıtılır ve aluminyumun, altının, gümüşün ya da kullanılan diğer metalin erime noktasına ulaşılır, böylece işlem süreci başlar. Buharlaştırılan metalin buhar basıncı düşük olsa bile şaşırtıcı derecede çok sayıda metal atomu çıkar ve birkaç dakika içinde ince bir kaplama tabakası oluşur. Metal kaplanan tabaka kalınlığını kontrol etmek için bazı yollar vardır ancak bunlar buradaki konumuza dahil değildir. Kayıt cihazları hazırlamak gibi özel durumlar haricinde vakum kaplama toplu halde metalik olmayan nesnelerin kaplanmasında çok sık tercih edilen bir yol değildir.

15 EKT Bunun ardındaki sebep, daha sonra yapılacak bir kaplama için aluminyum gibi ucuz bir metal temel kaplama maddesi olamaz, çünkü üzerine kaplama yapılacak ince aluminyum filmi fazla aktiftir (ders 17 de öğreneceğimiz gibi aluminyum üzerine kaplama pek çok problem yaratmaktadır). Altın ve gümüş ise temel metaller olarak çok pahalıdırlar ve bunun yanı sıra gölgelenme gibi göz önünde tutulması gereken bir başka muhtemel problem vardır. Yine de ucuz plastik maddelerin özellikle ıvır zıvır malzemelerin kaplanmasında VAKUM KAPLAMA büyük rağbet görmektedir. (BU YOLLA YALITKAN MADDELER KADAR METALLER DE BİR BAŞKA METALLE KAPLANABİLMEKTEDİR.) Plastik maddeler kaplanırken laklanmış ince bir tabaka, buharlaşmış metal kaplama için astar kaplama olarak önem kazanmaktadır (genellikle aluminyum kaplamada). Seri üretimde ustaca hazırlanmış askı ve tutacaklara yerleştirilen malzemeler döndürülmek suretiyle kaplanacak yüzeyin her tarafının hareket eden atomlara maruz kalması ve kaplanması sağlanabilir. Vakumlu kaplar çok büyük (bir oturma odası boyutunda) veya çok küçük (bir cam fanus boyutunda) olabilirler. Kontrollü yapılan kaplama işlemi ile parçalara ince bir metal tabaka kaplanmıştır, parçalar çıkarılır ve üzerleri bu çok ince metal tabakasını koruyucu amaçlı, şeffaf lak tabakası ile kaplanır. Bu işlemin nasıl yapıldığını anladığınızı düşünerek bu tür metal kaplama işleminin ayrıntısına girmeyeceğim. Daha önce de söylediğim gibi, bu başlı başına bir alandır, daha fazla detaya girmek istiyorsanız dersin sonunda verilmiş olan kaynaklardan yararlanabilirsiniz. Konuyu bitirmeden önce bu tekniğin temel zorluklarından bahsedeceğim. 1. KULLANILAN VAKUM YETERİNCE DÜŞÜK DEĞİL başka bir deyişle sistemde bir sızma vardır ya da su buharı mevcuttur bu yüzden metal kaplama koyu ya da siyah olur. Bu genelde karşılaşılan bir zorluktur. 2. PARÇALARIN ASKIYA YANLIŞ ASILMASI YA DA KROZELERİN YANLIŞ YERLEŞTİRİLMESİ NEDENİYLE GÖLGELER OLUŞUR.

16 EKT VAKUMLU KABA KİRLİ PARÇALAR KOYULURSA VEYA LAK ASTAR YANLIŞ KAPLANMIŞSA YAPILAN KAPLAMA YAPIŞMAYACAKTIR. Şimdi başka bir konuya geçiyoruz. SPUTTERING (ATOM SÖKME) YÖNTEMİ İLE KAPLAMA Bu yöntemde de yüksek vakum kullanılmaktadır. Ancak bu teknikte sıvı haldeki metalden metal atomları buharlaştırılmamaktadır. Bunun yerine yüksek elektrik gerilimi uygulanarak katı metalden kopartılmaktadır. Çok yüksek vakumda, kaplama malzemesi olarak kullanılacak metal katot olarak kullanılır, anot olarak ise tungsten ya da başka bir iletken malzeme kullanılır. Bunların arasında uygulanan yüksek bir gerilim ile işleyecek aşağıda verilmiş olan mekanizma yordamıyla metal atomları katottan koparılmaktadır. Ortamda mevcut olan göreceli olarak az sayıdaki gaz molekülleri yüksek ölçüde iyonlaşırlar. Bahsettiğimiz bu gazlar, ortamda hava mevcut olmasından dolayı bulunan oksijen ya da azot gazları değildir, burada bahsedilen gazlar asal (soy) gazlar olarak da adlandırılan argon ve neon gibi gazlardır. Bu özel gazların kullanılmasındaki maksat oksijen moleküllerinin metal atomlarını oksitleyecek olmasıdır (genellikle kullanılan vakum basıncı metal buharlaştırma yöntemindekinden çok daha yüksektir), ancak asal gazların böyle bir etkisi yoktur. Pozitif yüklü argon iyonları büyük bir hızla katoda doğru hareket etmekte, onu bombardıman ederek üzerinden metal atomları koparmaktadırlar. Yüzeyden koparılan metal atomlarının net bir elektriksel yükü yoktur (iyonlanmış değillerdir) ve gaz atomları gibi karışık düz hatlarda hareket eder ve çarptıkları herhangi bir yüzeye çökelerek kaplanırlar. * Eğer kaplamak istediğiniz yüzey vakumlu kabın içinde uygun biçimde yerleştirilmişse, ince bir metal tabakası ile kaplanmış hale gelecektir. Metal buharlaştırmanın bir diğer özelliği de hiçbir şekilde ısının kullanılmamasıdır. Metal atomlarını yüzeyden koparmak için gereken enerji ısı ile değil, metalik yüzeye uygulanan yüksek hızlı iyon bombardımanı yani KİNETİK ENERJİ ile elde edilir. Şekil 5 bu olayın nasıl olduğunu göstermektedir. * İYON KAPLAMA işleminde (şekil 5B) kaplanacak cisim, kaplama metaline göre negatif yüklüdür (filaman, vb). Artı (pozitif) yüklü metal iyonları katoda doğru hareket eder ve artık kaplama yapmak için cismin görüş alanında olması gerekmez.

17 EKT İki çeşit sputtering (atom sökme) düzeneği hazırlama yolu vardır. Bunlardan biri doğru akım (D.C.) ile çalışır. Diğeri ise Megahertzlik (MHz) radyo frekanslarındaki (R.F.), yani saniyede milyon devir sayısındaki alternatif akım ile çalışır. Maksimum voltaj yaklaşık 4000 volttur. R.F. yöntemi bir cismin, örneğin aluminyum oksit gibi bir yalıtkan ile kaplanması istendiğinde tercih edilir. Bu teknik bir tek istisna haricinde, elektrikli kaplama öncesi hazırlık adımı olarak sıkça kullanılan bir teknik değildir. Bu teknik gomalak kaplama, balmumu kaplama veya kayıt bantlarına elektrikli şekil verme öncesi kullanılır, aynı zamanda elektrometrelerde kullanılmak üzere kuvars fiberlerin kaplanmasında da sınırlı bir kullanımı vardır. Eskiden plastik levhaları rulolar üzerinde devamlı kaplayarak metalik selofan ve bu tür maddeler üretme süreçleri vardı. Birkaç istisna dışında bu uygulamaların büyük çoğunluğu yerlerini buharlaştırma yöntemiyle kaplama tekniklerine bırakmışlardır. Çünkü buharlaştırma daha ucuzdur ve yüksek elektrik gerilimi olmadığı için daha güvenlidir. Yine de her zaman yeni fikirler ve uygulamalar olacaktır. Elektronik kullanım amacıyla metal alaşım filmleri oluşturmak için son zamanlarda başlamış bir uygulama mevcuttur. Dersin sonunda bu konuyla alakalı daha fazla bilgi bulabilirsiniz. BUHARLA KAPLAMA Bu teknik birkaç basit ilkeye dayanmaktadır. 1. Kaplama tabakasını üretmekte kullanılacak olan metal nispeten yüksek buhar basıncına sahip bir bileşiğe dönüştürülür başka bir deyişle uçucu bir hale getirilir.

18 EKT Yardımcı olması için, metal bileşik ısıtılarak buhar basıncı yükseltilir (aynı şekilde çaydanlıktaki su da buhar basıncını arttırmak için ısıtılmıştı). İşleme yardımcı olması amacıyla uygun bir vakum da sürece dâhil edilir. DİKKAT: Burada metal atomları, vakum kaplamadaki gibi kendi kendilerine buharlaşmamaktadırlar. Metal atomları molekül olarak buharlaşmaktadır bu başka bir şeyle birleşmeleri ile sağlanmaktadır, örneğin nikel klorür (NiCl 2 ). 3. Şimdi bu uçucu moleküller kaplamanın olacağı tarafa yönlendirilirler. Bu genellikle bir gaz pompası ile pompalayarak ya da başka bir şekilde yapılır. Yönlendirilen bölge kaplamanın yapılacağı bölge ya da kaplanacak cisimdir. Dış ısıtma ile (örneğin ışın ile radyan- ısıtma) sıcak hale getirilen bu cismin yüzeyine çarpan buhar molekülleri yüzeye # çökelir, çarpma sırasında metal atomlarını bırakırlar ve pompanın etkisiyle buhar molekülleri, genellikle gaz halinde, hareketlerine devam eder ve uzaklaşırlar. Muhtemelen itiraz edeceğiniz bir nokta olacaktır, yalıtkanları kaplarken ısıtmanın plastiği kaplama olasılığını kaldırdığını, hatta teflon ve o türden birkaç madde haricinde neredeyse tüm yalıtkanları kaplamayı imkânsız kıldığını düşüneceksiniz. Çoğu plastik nispeten yüksek sıcaklıkta erir, deforme olur ya da çözünür. Aslında son derece haklısınız! Bu süreç genellikle seramik gibi ametalleri ya da ısıya dayanıklı diğer metalleri kaplamak için kullanılmaktadır. Yine de, gaz hale gelebilen metalik bileşikler değişken tarafta olduğu için, bir katalizör oturtarak ya da yüzeye kaplayarak çözünmeyi sağlamak mümkündür. Ancak yine de bu yöntemin plastiklerin kaplanmasında kullanılmasının bir mahzuru vardır, uçucu metal bileşikleri zehirli, korozyona sebep olan gazlar içerirler. Örneğin demir ve nikel, karbon monoksit(co) ile kolaylıkla birleşerek yaparak karboniller olarak adlandırılan uçucu bileşikler oluştururlar. # Isınma ile neden çözünme meydana geldiğini biliyor musunuz? Uçucu metal bileşikleri çok yüksek serbest enerjiye sahiptirler. Molekülün metalik kısmı metal olarak kalmayı, gaz olan kısmı ise gaz olarak kalmayı tercih eder. Isı çözünmeyi başlatacak gerekli aktivasyon enerjisini sağlar.

19 EKT Bileşik çözündüğünde yeniden karbon monoksit açığa çıkar. Bildiğiniz gibi karbon monoksit araba egzozlarında az miktarda bulunan çok zehirli, renksiz, kokusuz bir gazdır. Bu nedenle sistem sızıntıya karşı %100 korumalı olmalıdır. CO her ne kadar daha çok karbonil elde etmek için geri dönüştürülebilse de, yalıtkan bir madde üzerinde ilk kaplama tabakasını elde etmek için çok çekici bir madde değildir. İyi uçuculuğa sahip diğer bileşikler florür ve klorür içeren bileşiklerdir, metal kaplandıktan sonra geride florin gazı, hidroflorik asit ya da hidroklorik asit kalır. Tüm bunlar, kimyasal anlamda kötü aktörlerdir. Kirlilik hakkında bunca bağrışmadan sonra, eğer geri dönüştürülemiyorlarsa, bunlardan kurtulmak problem yaratır. Yine de söylemek gerekir ki daha zararsız uçucu metalik bileşikler elde etmek ve bu süreçte kullanmak mümkündür. Örneğin alkol molekülü uçucu bir molekül oluşturmak üzere bir metal molekülü ile birleştirilebilseydi, plastik maddeleri bakırla kaplayabilir ve ortaya çıkan çözünme ürünüyle kafayı bulabilirdiniz! Şaka bir yana, bu alanda pek çok araştırma yapılmaktadır ve ortalama bir kaplayıcı için uygun yöntemler elde edilebilir. Üzerinde düşünmeye değer bir alandır. Şimdi sıvı halden kaplama işlemine geçiyoruz, genellikle pratik elektro-kaplayıcılarla kullanılmaktadır. ELEKTROLİZE KAPLAMA Belki 1. Ders ten hatırlarsınız, bir gümüş bileşiğinden gümüş kaplama işi kimyasal indirgenme ile yapılıyordu. Bunun bir örneği gümüş ayna imalatıdır. Aynalar yüz yıllardır bu şekilde elde edilmektedir. Orada ele alınan görüşleri hatırlarsanız gümüş film elde etmek için, çözünmüş gümüş bileşiğine indirgeme kimyasalı olarak adlandırılan bir kimyasal ekleniyordu. İndirgeme kimyasalı hiçbir şey almadan en yakınındaki komşusuna elektron verme yeteneğine sahiptir. Bu şekilde elektron vererek kendi serbest enerjisini azaltır ve daha az enerjili bir kimyasal bileşiğe dönüşür (bakınız ders 1, enerjinin 4 no.lu niteliği). Çözeltinin her tarafında dolaşan gümüş iyonları (Ag + ) bu elektronları alarak nötrleşirler ve gümüş atomları olarak çökelirler. Tüm süreç sembollerle basit bir şekilde şu şekilde özetlenebilir: Ag + + e - = Ag o = Ag (çökelmiş)

20 EKT Sözlü olarak ifade edersek: Gümüş iyonu bir vericiden elektron alır ve nötr gümüş atomu şeklinde çökelir. Herkes durumundan mutludur, elektron bulunduran bileşik bu işlemle kendi serbest enerjisini düşürerek daha az aktif hale gelmiştir, aynı zamanda gümüş iyonu da elektron alarak kendi serbest enerjisini düşürmüş ve normal bir gümüş atomu haline gelmiştir. Kişileştirecek olursak, bir dilenciye bozuk para veren adam durumundan memnundur çünkü kendine olan saygısı artmıştır, dilenci de iyi hissetmektedir çünkü bir bardak kahve içebilecektir. Özetle elektrolize kaplamanın temeli budur. Bir gümüş kaplama banyosunda katotta olan elektronik reaksiyon tam olarak aynı olsa da bu durumda ne anot ne katot ne de dışarıdan bir elektrik gücü kullanılmadığı için bu metoda elektrolize kaplama denilmektedir. Doğal olarak daha dikkatli baktığınızda sürece elektriğin etkisi olduğunu göreceksiniz (elektronların hareket etmesi bir elektrik akımı yaratır) ve her bir gümüş iyonu kendi başına katot olarak davranmaktadır ve her azalan iyon bir anot işlevi görmektedir. Yine de ortadaki büyük farklılıktan dolayı ismi elektrolize kaplama olarak alınmıştır. Bu işlem gümüşe olduğu gibi pek çok sayıda metale de uygulanabilir. Örneğin bakır, altın, nikel, kobalt gibi metallerin iyonik çözeltilerine uygun indirgeme çözeltileri katılır ve uygun şartlar sağlanırsa çökeltilebilirler. METAL ATOMLARININ ÇÖKELTİLMESİ Ders 1 de görmüş olduğunuz konuları biraz daha iyi düşünürseniz, böyle bir gümüş çözeltisinden kaplanan gümüşün rasgele çökeldiğini, çözeltinin içinde bulunduğu kabın tüm duvarlarına da gümüş kaplandığını hatırlayacaksınız. Ancak daha önce de altını çizerek belirttiğimiz gibi, gümüş elektrokaplamanın en büyük avantajı YÖNLENDİRİLMİŞ BİR KAPLAMA şeklinde yapılmasıdır, gümüşü yüzeyin (katot) istediğiniz yerlerine kaplar ve başka yerlere kaplamazsınız.

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ Gelişen teknoloji ile beraber birçok endüstri alanında kullanılabilecek

Detaylı

Akımsız Nikel. Çözeltideki tuzları kullanarak herhangi bir elektrik akım kaynağı kullanılmadan nikel alaşımı kaplayabilen bir prosestir"

Akımsız Nikel. Çözeltideki tuzları kullanarak herhangi bir elektrik akım kaynağı kullanılmadan nikel alaşımı kaplayabilen bir prosestir Akımsız Nikel Eğitimi Akımsız Nikel Çözeltideki tuzları kullanarak herhangi bir elektrik akım kaynağı kullanılmadan nikel alaşımı kaplayabilen bir prosestir" Akımsız Nikel Anahtar Özellikler Brenner &

Detaylı

AtılımKimyasalları AK 5120 E/N PARLAK AKIMSIZ NİKEL KAPLAMA ÜRÜN TANIMI

AtılımKimyasalları AK 5120 E/N PARLAK AKIMSIZ NİKEL KAPLAMA ÜRÜN TANIMI SAYFA NO: 1/5 AtılımKimyasalları AK 5120 E/N PARLAK AKIMSIZ NİKEL KAPLAMA ÜRÜN TANIMI AK 5120 : Birçok değişik metaller, alaşımlar, ve iletken olmayan malzemeler üzerine, orta fosforlu ve mütecanis akımsız

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

Metal Yüzey Hazırlama ve Temizleme Fosfatlama (Metal Surface Preparation and Cleaning)

Metal Yüzey Hazırlama ve Temizleme Fosfatlama (Metal Surface Preparation and Cleaning) Boya sisteminden beklenilen yüksek direnç,uzun ömür, mükemmel görünüş özelliklerini öteki yüzey temizleme yöntemlerinden daha etkin bir biçimde karşılamak üzere geliştirilen boya öncesi yüzey temizleme

Detaylı

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Atomlar Arası Bağlar 1 İyonik Bağ 2 Kovalent

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

BİLEŞİKLER VE FORMÜLLERİ

BİLEŞİKLER VE FORMÜLLERİ BİLEŞİKLER VE FORMÜLLERİ Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur). Bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

KOROZYONDAN KORUNMA YÖNTEMLERİ

KOROZYONDAN KORUNMA YÖNTEMLERİ KOROZYONDAN KORUNMA YÖNTEMLERİ Belli bir ortam içinde bulunan metalik yapının korozyonunu önlemek veya korozyon hızını azaltmak üzere alınacak önlemleri üç ana grup altında toplanabilir. Korozyondan Korunma

Detaylı

Örnek : 3- Bileşiklerin Özellikleri :

Örnek : 3- Bileşiklerin Özellikleri : Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

Su ve çevrenin canlılar için uygunluğu

Su ve çevrenin canlılar için uygunluğu Su ve çevrenin canlılar için uygunluğu Su ve çevrenin canlılar için uygunluğu Yeryüzündeki yaşam su içinde ortaya çıkmış ve canlıların karalar üzerine yayılışından önceki 3 milyar yıl boyunca su içinde

Detaylı

Elektrot Potansiyeli. (k) (k) (k) Tepkime vermez

Elektrot Potansiyeli. (k) (k) (k) Tepkime vermez Elektrot Potansiyeli Uzun metal parçası, M, elektrokimyasal çalışmalarda kullanıldığında elektrot adını alır. M n+ metal iyonları içeren bir çözeltiye daldırılan bir elektrot bir yarı-hücre oluşturur.

Detaylı

SEM İncelemeleri için Numune Hazırlama

SEM İncelemeleri için Numune Hazırlama SEM İncelemeleri için Numune Hazırlama Giriş Taramalı elektron mikroskobunda kullanılacak numuneleri, öncelikle, Vakuma dayanıklı (buharlaşmamalı) Katı halde temiz yüzeyli İletken yüzeyli olmalıdır. Günümüzde

Detaylı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani madde yani bileşik

Detaylı

BÖLÜM I YÜZEY TEKNİKLERİ

BÖLÜM I YÜZEY TEKNİKLERİ BÖLÜM I YÜZEY TEKNİKLERİ Yüzey Teknikleri Hakkında Genel Bilgiler Gelişen teknoloji ile beraber birçok endüstri alanında kullanılabilecek malzemelerden istenen ve beklenen özellikler de her geçen gün artmaktadır.

Detaylı

ACICUP ASİTLİ BAKIR KAPLAMA BANYOSU ARIZA TABLOSU

ACICUP ASİTLİ BAKIR KAPLAMA BANYOSU ARIZA TABLOSU Kadıköy Sicil Ticaret : 20707 ACICUP ASİTLİ BAKIR KAPLAMA BANYOSU ARIZA TABLOSU 1. Kaplama Pürüzlü a) Kaplama çözeltisinde anod partiküllerinin mevcudiyeti. b) Çözelti içerisinde çözünmeyen magnetik partiküllerin

Detaylı

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ KİMYASAL TÜR 1. İYONİK BAĞ - - Ametal.- Kök Kök Kök (+) ve (-) yüklü iyonların çekim kuvvetidir..halde

Detaylı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 WEBSİTE www2.aku.edu.tr/~hitit Dersler İÇERİK Metalik Malzemelerin Genel Karakteristiklerİ Denge diyagramları Ergitme ve döküm Dökme demir ve çelikler

Detaylı

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

ATOM HAREKETLERİ ve ATOMSAL YAYINIM ATOM HAREKETLERİ ve ATOMSAL YAYINIM 1. Giriş Malzemelerde üretim ve uygulama sırasında görülen katılaşma, çökelme, yeniden kristalleşme, tane büyümesi gibi olaylar ile kaynak, lehim, sementasyon gibi işlemler

Detaylı

ELEKTROLİTİK TOZ ÜRETİM TEKNİKLERİ. Prof.Dr.Muzaffer ZEREN

ELEKTROLİTİK TOZ ÜRETİM TEKNİKLERİ. Prof.Dr.Muzaffer ZEREN Prof.Dr.Muzaffer ZEREN Bir çok metal (yaklaşık 60) elektroliz ile toz haline getirilebilir. Elektroliz kapalı devre çalışan ve çevre kirliliğine duyarlı bir yöntemdir. Kurulum maliyeti ve uygulama maliyeti

Detaylı

DENEY 2 GRĐGNARD REAKSĐYONU ile TRĐFENĐLMETHANOL SENTEZĐ. Genel Bilgiler

DENEY 2 GRĐGNARD REAKSĐYONU ile TRĐFENĐLMETHANOL SENTEZĐ. Genel Bilgiler DENEY 2 GRĐGNARD REAKSĐYONU ile TRĐFENĐLMETHANOL SENTEZĐ Genel Bilgiler 1900 yılında Fransız kimyacı Victor Grignard organomagnezyum halojenürleri keşfetti. Grignard 1912 yılında Nobel ödülü aldı ve bu

Detaylı

CYACUP SİYANÜRLÜ BAKIR KAPLAMA BANYOSU ARIZA TABLOSU

CYACUP SİYANÜRLÜ BAKIR KAPLAMA BANYOSU ARIZA TABLOSU Kadıköy Sicil Ticaret : 20707 CYACUP SİYANÜRLÜ BAKIR KAPLAMA BANYOSU ARIZA TABLOSU 1. Kaplama Pürüzlü ve Koyu Kırmızı - Kahve Renkli Kaplama a) Çözeltide Karbonat konsantrasyonunun aşırı miktarda oluşu.

Detaylı

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri DENEY 3 MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri AMAÇ: Maddelerin üç halinin nitel ve nicel gözlemlerle incelenerek maddenin sıcaklık ile davranımını incelemek. TEORİ Hal değişimi,

Detaylı

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği. DENEY NO: 6 DENEYİN ADI: DOYMUŞ NaCl ÇÖZELTİSİNİN ELEKTROLİZİ

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği. DENEY NO: 6 DENEYİN ADI: DOYMUŞ NaCl ÇÖZELTİSİNİN ELEKTROLİZİ HAZIRLAYAN Mutlu ŞAHİN Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 6 DENEYİN ADI: DOYMUŞ NaCl ÇÖZELTİSİNİN ELEKTROLİZİ DENEYİN AMACI: Doymuş NaCl çözeltisinin elektroliz sonucu elementlerine ayrışmasının

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

ÜRÜN PROSPEKTÜSÜ. ALKALİ ÇİNKO AK 16 HI-Z : Çok kalın kaplamalarda bile esnek kaplamlara imkan verir.

ÜRÜN PROSPEKTÜSÜ. ALKALİ ÇİNKO AK 16 HI-Z : Çok kalın kaplamalarda bile esnek kaplamlara imkan verir. SAYFA NO: 1/5 AtılımKimyasalları ALKALİ ÇİNKO KAPLAMA PROSESİ AK 16 HI-Z ÜRÜN TANIMI ALKALİ ÇİNKO AK 16 HI-Z : Düzgün çinko kaplamalar elde etmek için kullanılan, çoklu poliamid özel katkı maddeleri içeren

Detaylı

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır.

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır. KİMYASAL BAĞLAR Kimyasal bağ, moleküllerde atomları birarada tutan kuvvettir. Bir bağın oluşabilmesi için atomlar tek başına bulundukları zamankinden daha kararlı (az enerjiye sahip) olmalıdırlar. Genelleme

Detaylı

ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ

ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ AY EKİM 06-07 EĞİTİM - ÖĞRETİM YILI. SINIF VE MEZUN GRUP KİMYA HAFTA DERS SAATİ. Kimya nedir?. Kimya ne işe yarar?. Kimyanın sembolik dili Element-sembol Bileşik-formül. Güvenliğimiz ve Kimya KONU ADI

Detaylı

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir.

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. Her maddenin bir kütlesi vardır ve bu tartılarak bulunur. Ayrıca her

Detaylı

İLERİ SOL JEL PROSESLERİ

İLERİ SOL JEL PROSESLERİ İLERİ SOL JEL PROSESLERİ Yrd. Doç. Dr. Atilla EVCİN Kaplama ve İnce Filmler Sol-jel kaplamalar birçok fonksiyona sahiptir. Bunlardan en belli başlı olanı, görünür ışık dalga boyunda transparan oksitlerin

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir. TEMEL ELEKTRONİK Elektronik: Maddelerde bulunan atomların son yörüngelerinde dolaşan eksi yüklü elektronların hareketleriyle çeşitli işlemleri yapma bilimine elektronik adı verilir. KISA ATOM BİLGİSİ Maddenin

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI HAZIRLAYAN Mutlu ŞAHİN Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI DENEYİN AMACI: ELEKTRİK ENERJİSİNİ KULLANARAK SUYU KENDİSİNİ OLUŞTURAN SAF MADDELERİNE

Detaylı

ÖĞRENME ALANI : MADDE VE DEĞİŞİM ÜNİTE 4 : MADDENİN YAPISI VE ÖZELLİKLERİ

ÖĞRENME ALANI : MADDE VE DEĞİŞİM ÜNİTE 4 : MADDENİN YAPISI VE ÖZELLİKLERİ ÖĞRENME ALANI : MADDE VE DEĞİŞİM ÜNİTE 4 : MADDENİN YAPISI VE ÖZELLİKLERİ E BİLEŞİKLER VE FRMÜLLERİ (4 SAAT) 1 Bileşikler 2 Bileşiklerin luşması 3 Bileşiklerin Özellikleri 4 Bileşik Çeşitleri 5 Bileşik

Detaylı

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR Her tarafında aynı özelliği gösteren, tek bir madde

Detaylı

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR KARIŞIMLAR İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR Her tarafında aynı özelliği gösteren, tek

Detaylı

SU VE HÜCRE İLİŞKİSİ

SU VE HÜCRE İLİŞKİSİ SU VE HÜCRE İLİŞKİSİ Oluşturacağı her 1 g organik madde için bitkinin 500 g kadar suyu kökleriyle alması ve tepe (uç) noktasına kadar taşıyarak atmosfere aktarması gerekir. Normal su düzeyinde hayvan hücrelerinin

Detaylı

Şekil 1. Elektrolitik parlatma işleminin şematik gösterimi

Şekil 1. Elektrolitik parlatma işleminin şematik gösterimi ELEKTROLİTİK PARLATMA VE DAĞLAMA DENEYİN ADI: Elektrolitik Parlatma ve Dağlama DENEYİN AMACI: Elektrolit banyosu içinde bir metalde anodik çözünme yolu ile düzgün ve parlatılmış bir yüzey oluşturmak ve

Detaylı

Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen maddelere karışım denir.

Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen maddelere karışım denir. Anahtar Kavramlar Çözelti çözücü çözünen homojen hetorojen derişik seyreltik Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen maddelere karışım denir. Solduğumuz hava;

Detaylı

Normal derişimler için: PE- HD, PTFE Nitrik asit (ρ 1,42 g/ml) ile ph 1-2 olacak şekilde asitlendirilmelidir. Düşük derişimler için: PFA, FEP

Normal derişimler için: PE- HD, PTFE Nitrik asit (ρ 1,42 g/ml) ile ph 1-2 olacak şekilde asitlendirilmelidir. Düşük derişimler için: PFA, FEP Ek-1 Nnumunelerin Muhafazası İçin Uygun Olan Teknikler Yapılacak Tayin Kabın Tipi Muhafaza Tekniği En uzun Muhafaza Süresi Yüksek derişimde çözünmüş gaz içeren numuneler için, alındıkları yerde analiz

Detaylı

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir.

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir. GENEL KİMYA 1 LABORATUARI ÇALIŞMA NOTLARI DENEY: 8 ÇÖZELTİLER Dr. Bahadır KESKİN, 2011 @ YTÜ Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman

Detaylı

AtılımKimyasalları AK 3252 H SUNKROM SERT KROM KATALİZÖRÜ (SIVI) ÜRÜN TANIMI EKİPMANLAR

AtılımKimyasalları AK 3252 H SUNKROM SERT KROM KATALİZÖRÜ (SIVI) ÜRÜN TANIMI EKİPMANLAR SAYFA NO: 1/6 AtılımKimyasalları AK 3252 H SUNKROM SERT KROM KATALİZÖRÜ (SIVI) ÜRÜN TANIMI AK 3252 H SUNKROM sert krom kaplama banyolarında kullanılan sıvı katalist sistemidir. Klasik sülfatlı sistemlere

Detaylı

Her madde atomlardan oluşur

Her madde atomlardan oluşur 2 Yaşamın kimyası Figure 2.1 Helyum Atomu Çekirdek Her madde atomlardan oluşur 2.1 Atom yapısı - madde özelliği Elektron göz ardı edilebilir kütle; eksi yük Çekirdek: Protonlar kütlesi var; artı yük Nötronlar

Detaylı

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla kendinden farklı atomlara dönüşemezler. Atomda (+) yüklü

Detaylı

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ Atomlar bağ yaparken, elektron dizilişlerini soy gazlara benzetmeye çalışırlar. Bir atomun yapabileceği bağ sayısı, sahip

Detaylı

ÇÖZÜNME ve ÇÖZÜNÜRLÜK

ÇÖZÜNME ve ÇÖZÜNÜRLÜK ÇÖZÜNME ve ÇÖZÜNÜRLÜK Prof. Dr. Mustafa DEMİR M.DEMİR 05-ÇÖZÜNME VE ÇÖZÜNÜRLÜK 1 Çözünme Olayı Analitik kimyada çözücü olarak genellikle su kullanılır. Su molekülleri, bir oksijen atomuna bağlı iki hidrojen

Detaylı

Suyun Fizikokimyasal Özellikleri

Suyun Fizikokimyasal Özellikleri Suyun Fizikokimyasal Özellikleri Su bitkinin yaşamında yaşamsal bir rol oynar. Bitki tarafından yapılan her gram başına organik madde için kökler tarafından 500 gr su alınır. Bu su, bitkinin bir ucundan

Detaylı

ASİTLER, BAZLAR ve TUZLAR

ASİTLER, BAZLAR ve TUZLAR ASİTLER, BAZLAR ve TUZLAR 1. ASİTLER Sulu çözeltilerine Hidrojen İyonu veren maddelere asit denir. Ör 1 HCl : Hidroklorik asit HCl H + + Cl - Ör 2 H 2 SO 4 : Sülfürik asit H 2 SO 4 2H + + SO 4-2 Ör 3 Nitrik

Detaylı

PERİYODİK CETVEL

PERİYODİK CETVEL BÖLÜM4 W Periyodik cetvel, elementlerin atom numaraları esas alınarak düzenlenmiştir. Bu düzenlemede, kimyasal özellikleri benzer olan (değerlik elektron sayıları aynı) elementler aynı düşey sütunda yer

Detaylı

MALZEME BİLGİSİ DERS 4 DR. FATİH AY.

MALZEME BİLGİSİ DERS 4 DR. FATİH AY. MALZEME BİLGİSİ DERS 4 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR ATOMLARDA ELEKTRONLAR PERİYODİK TABLO BÖLÜM II ATOM YAPISI VE ATOMLARARASı BAĞLAR BAĞ KUVVETLERİ VE ENERJİLERİ

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA MOLEKÜLLER ARASI KUVVETLER Moleküller Arası Kuvvetler Yüksek basınç ve düşük sıcaklıklarda moleküller arası kuvvetler gazları ideallikten saptırır. Moleküller arası kuvvetler molekülde kalıcı

Detaylı

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg PERİYODİK CETVEL Periyodik cetvel elementleri sınıflandırmak için hazırlanmıştır. İlkperiyodik cetvel Mendeleev tarafından yapılmıştır. Mendeleev elementleri artan kütle numaralarına göre sıralamış ve

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

ELEMENTLER VE BİLEŞİKLER

ELEMENTLER VE BİLEŞİKLER ELEMENTLER VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri a) ELEMENTLER Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

Element ve Bileşikler

Element ve Bileşikler Element ve Bileşikler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Bir elementi oluşturan bütün atomların

Detaylı

ELEKTRONLARIN DĠZĠLĠMĠ

ELEKTRONLARIN DĠZĠLĠMĠ ELEKTRONLARIN DĠZĠLĠMĠ Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı. Çünkü her üçünün de en dıştaki katmanları tamamen dolu durumdadır. 1.Katmanda en çok 2

Detaylı

Element ve Bileşikler

Element ve Bileşikler Element ve Bileşikler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Bir elementi oluşturan bütün atomların

Detaylı

MOL KAVRAMI I. ÖRNEK 2

MOL KAVRAMI I.  ÖRNEK 2 MOL KAVRAMI I Maddelerin taneciklerden oluştuğunu biliyoruz. Bu taneciklere atom, molekül ya da iyon denir. Atom : Kimyasal yöntemlerle daha basit taneciklere ayrılmayan ve elementlerin yapıtaşı olan taneciklere

Detaylı

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği Başlık KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği Tanım İki veya daha fazla malzemenin, iyi özelliklerini bir araya toplamak ya da ortaya yeni bir özellik çıkarmak için, mikro veya makro seviyede

Detaylı

Örneğin; İki hidrojen (H) uyla, bir oksijen (O) u birleşerek hidrojen ve oksijenden tamamen farklı olan su (H 2

Örneğin; İki hidrojen (H) uyla, bir oksijen (O) u birleşerek hidrojen ve oksijenden tamamen farklı olan su (H 2 On5yirmi5.com Madde ve özellikleri Kütlesi, hacmi ve eylemsizliği olan herşey maddedir. Yayın Tarihi : 21 Ocak 2014 Salı (oluşturma : 2/9/2016) Kütle hacim ve eylemsizlik maddenin ortak özelliklerindendir.çevremizde

Detaylı

BÖLÜM 3 DİFÜZYON (YAYINIM)

BÖLÜM 3 DİFÜZYON (YAYINIM) BÖLÜM 3 DİFÜZYON (YAYINIM) 1 Mürekkebin suda yayılması veya kolonyanın havada yayılması difüzyona örnektir. En hızlı difüzyon gazlarda görülür. Katılarda atom hareketleri daha yavaş olduğu için katılarda

Detaylı

AtılımKimyasalları AK 3151 D SUNKROM DEKORATİF KROM KATALİZÖRÜ (SIVI) ÜRÜN TANIMI EKİPMANLAR

AtılımKimyasalları AK 3151 D SUNKROM DEKORATİF KROM KATALİZÖRÜ (SIVI) ÜRÜN TANIMI EKİPMANLAR SAYFA NO: 1/5 AtılımKimyasalları AK 3151 D SUNKROM DEKORATİF KROM KATALİZÖRÜ (SIVI) ÜRÜN TANIMI AK 3151 D SUNKROM dekoratif krom kaplama banyolarında kullanılan sıvı katalist sistemidir. Klasik sülfatlı

Detaylı

ÜRÜN PROSPEKTÜSÜ. : Askı kaplamada yatay katod hareketi gereklidir. Katod hızı dakikada 3 4 metre olmalıdır.

ÜRÜN PROSPEKTÜSÜ. : Askı kaplamada yatay katod hareketi gereklidir. Katod hızı dakikada 3 4 metre olmalıdır. SAYFA NO: 1/5 AtılımKimyasalları AK 5410 KF ANTİK NİKEL KAPLAMA ÇÖZELTİSİ ÜRÜN TANIMI Bakır, pirinç, nikel, gümüş,çinko v.b. gibi malzemelerin üzerine, askı veya dolapla, antrasit renkli kaplamalar yapmayı

Detaylı

AKM-F-193 / 10.04.2014 / Rev:00

AKM-F-193 / 10.04.2014 / Rev:00 AKM-F-193 / 10.04.2014 / Rev:00 YANMA NEDİR? Maddenin ısı ( sıcaklık ) ve oksijenle birleşmesi sonucu oluşan kimyasal bir olaydır. Bir yangının başlayabilmesi için gerekenler : 1- OKSİJEN ( HAVA ) 2- SICAKLIK

Detaylı

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir.

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir. ELEKTROKİMYA A. AKTİFLİK B. PİLLER C. ELEKTROLİZ A. AKTİFLİK Metallerin elektron verme, ametallerin elektron alma yatkınlıklarına aktiflik denir. Yani bir metal ne kadar kolay elektron veriyorsa bir ametal

Detaylı

ÜRÜN PROSPEKTÜSÜ. : 1.5 2.5 m/dak katod hareketi gerekir. Büyük yüzeyli parçalar için iki boyutlu hareket önerilir.

ÜRÜN PROSPEKTÜSÜ. : 1.5 2.5 m/dak katod hareketi gerekir. Büyük yüzeyli parçalar için iki boyutlu hareket önerilir. SAYFA NO: 1/5 AtılımKimyasalları SATINE NİKEL KAPLAMA AK 5000 ÜRÜN TANIMI Satine Nikel AK 5000 prosesi, ince taneli ve mat görünümlü dekoratif nikel kaplamalar için kullanılmaktadır. Genel olarak parlak

Detaylı

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN Elektron ışını ile şekil verme Prof. Dr. Akgün ALSARAN Elektron ışını Elektron ışını, bir ışın kaynağından yaklaşık aynı hızla aynı doğrultuda hareket eden elektronların akımıdır. Yüksek vakum içinde katod

Detaylı

HOŞGELDİNİZ MIG-MAG GAZALTI KAYNAKNAĞINDA ARK TÜRLERİ. K ayna K. Sakarya Üniversitesi Teknik Eğitim Fakültesi. Teknolojisi.

HOŞGELDİNİZ MIG-MAG GAZALTI KAYNAKNAĞINDA ARK TÜRLERİ. K ayna K. Sakarya Üniversitesi Teknik Eğitim Fakültesi. Teknolojisi. MIG-MAG GAZALTI KAYNAKNAĞINDA ARK TÜRLERİ K ayna K K ayna K Teknolojisi Teknolojisi HOŞGELDİNİZ Doç. Dr. Hüseyin UZUN Kaynak Eğitimi Ana Bilim Dalı Başkanı 1 /47 ELEKTRİK ARKI NASIL OLUŞUR MIG-MAG gazaltı

Detaylı

BÖLÜM III METAL KAPLAMACILIĞINDA KULLANILAN ÖRNEK PROBLEM ÇÖZÜMLERİ

BÖLÜM III METAL KAPLAMACILIĞINDA KULLANILAN ÖRNEK PROBLEM ÇÖZÜMLERİ BÖLÜM III METAL KAPLAMACILIĞINDA KULLANILAN ÖRNEK PROBLEM ÇÖZÜMLERİ Faraday Kanunları Elektroliz olayı ile ilgili Michael Faraday iki kanun ortaya konulmuştur. Birinci Faraday kanunu, elektroliz sırasında

Detaylı

SATEN NİKEL BANYOSU ARIZA TABLOSU

SATEN NİKEL BANYOSU ARIZA TABLOSU Kadıköy Sicil Ticaret : 20707 SATEN NİKEL BANYOSU ARIZA TABLOSU 1. Kaplama Pürüzlü a) Kaplama çözeltisinde anod partiküllerinin mevcudiyeti. b) Çözelti içerisinde çözünmeyen magnetik partiküllerin mevcudiyeti.

Detaylı

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER»

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER» FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER» Uygun bir çözücü içerisinde bir ya da birden fazla maddenin çözündüğü veya moleküler düzeyde disperse olduğu tektür (homojen: her tarafta aynı oranda çözünmüş veya dağılmış

Detaylı

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ ELEMENTLER VE SEMBOLLERİ Elementler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Elementler çok sayıda

Detaylı

Kaplama dekoratif görünüşü çekici kılarlar 2

Kaplama dekoratif görünüşü çekici kılarlar 2 METALĠK KAPLAMALAR Uygulamada metalik kaplamalar yalnız korozyondan korunma amacı ile dahi yapılmış olsalar bile diğer önemli bazı amaçlara da hizmet ederler: Dekoratif görünüşü çekici kılarlar. 1 Kaplama

Detaylı

KİMYA II DERS NOTLARI

KİMYA II DERS NOTLARI KİMYA II DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Genel anlamda elektrokimya elektrik enerjisi üreten veya harcayan redoks reaksiyonlarını inceler. Elektrokimya pratikte büyük öneme sahip bir konudur. Piller,

Detaylı

MİKRO ARK OKSİDASYON TEKNİĞİ

MİKRO ARK OKSİDASYON TEKNİĞİ MİKRO ARK OKSİDASYON TEKNİĞİ 1 MİKRO ARK OKSİDASYON İŞLEMİ Mikro Ark Oksidasyon İşleminin Tarihçesi Mikro ark oksidasyon (MAO) işlemi, yaklaşık 40 yıl önce Sovyetler Birliği'nde, önceleri akademik, sonraki

Detaylı

Elektronların Dağılımı ve Kimyasal Özellikleri

Elektronların Dağılımı ve Kimyasal Özellikleri Elektronların Dağılımı ve Kimyasal Özellikleri Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı.

Detaylı

İLK ANYONLAR , PO 4. Cl -, SO 4 , CO 3 , NO 3

İLK ANYONLAR , PO 4. Cl -, SO 4 , CO 3 , NO 3 İLK ANYONLAR Cl -, SO -, CO -, PO -, NO - İLK ANYONLAR Anyonlar negatif yüklü iyonlardır. Kalitatif analitik kimya analizlerine ilk anyonlar olarak adlandırılan Cl -, SO -, CO -, PO -, NO - analizi ile

Detaylı

AtılımKimyasalları ALKALİ ÇİNKO DEMİR ALAŞIM KAPLAMA AK 25 ÜRÜN TANIMI

AtılımKimyasalları ALKALİ ÇİNKO DEMİR ALAŞIM KAPLAMA AK 25 ÜRÜN TANIMI SAYFA NO: 1/5 AtılımKimyasalları ALKALİ ÇİNKO DEMİR ALAŞIM KAPLAMA AK 25 ÜRÜN TANIMI % 0.2-0.8 demir içeren, alçak, yüksek ve orta akım bölgelerinde eşit dağılım sağlayan, parlak, esnek Çinko- alaşımı

Detaylı

ÜRÜN PROSPEKTÜSÜ. : PE, PP, PVC veya bu malzemelerden birisi ile kaplı çelik tanklar kullanılmalıdır.

ÜRÜN PROSPEKTÜSÜ. : PE, PP, PVC veya bu malzemelerden birisi ile kaplı çelik tanklar kullanılmalıdır. SAYFA NO: 1/5 Atılım Kimyasalları AK 5252 RACKSTAR PARLAK NİKEL KAPLAMA PROSES TANIMI AK 5252 RACKSTAR, yüksek akım sahalarında hızlı ve yüksek parlaklık sağlamak üzere ATILIM KİMYA tarafından geliştirilmiş

Detaylı

7. Sınıf Fen ve Teknoloji Dersi 4. Ünite: Madde ve Yapısı Konu: Elementler ve Sembolleri

7. Sınıf Fen ve Teknoloji Dersi 4. Ünite: Madde ve Yapısı Konu: Elementler ve Sembolleri ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞĐMĐ 7. Sınıf Fen ve Teknoloji Dersi 4. Ünite: Madde ve Yapısı Konu: Elementler ve Sembolleri Çalışma Yaprağı Konu Anlatımı-Değerlendirme çalışma Yaprağı- Çözümlü

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ 1 NİÇİN KORUYUCU GAZ KULLANILIR? 1- Ergimiş kaynak banyosunu, havada mevcut olan gazların zararlı etkilerinden

Detaylı

Metal yüzeyinde farklı korozyon türleri

Metal yüzeyinde farklı korozyon türleri Metal yüzeyinde farklı korozyon türleri + - + 2 2 - - 2 2 Borunun dış ve iç görünümü ile erozyon korozyon Çatlak korozyonunun görünüm Metalde çatlak korozyonun oluşumu ve çatlak Oyuk korozyonu ve oluşumu

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

Özellikler: Vakum tüpü ve ısıtma borusunun mükemmel bileşimi.

Özellikler: Vakum tüpü ve ısıtma borusunun mükemmel bileşimi. Özellikler: Vakum tüpü ve ısıtma borusunun mükemmel bileşimi. 1) Daha yüksek ısı verimliliği: Isı borusunun ileri ısı iletme tarzı, mükemmel seçici, emici kaplama ve yüksek vakumlu ısı korunması ile eksiksiz

Detaylı

ELEMENT Aynı tür atomlardan oluşmuş saf maddelere element denir. ELEMENTLERİN ÖZELLİKLERİ 1. Aynı tür atomlardan oluşurlar. 2. Saf ve homojendirler.

ELEMENT Aynı tür atomlardan oluşmuş saf maddelere element denir. ELEMENTLERİN ÖZELLİKLERİ 1. Aynı tür atomlardan oluşurlar. 2. Saf ve homojendirler. SAF MADDE: Aynı cins atom ya da moleküllerden oluşmuş maddelere, saf medde ÖR. Elementler saf maddelerdir. Çünkü; hepsi aynı cins atomlardan oluşmuşlardır. Bileşikler saf maddelerdir. Çünkü; hepsi aynı

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-2 KİMYA TESTİ 17 HAZİRAN 2017 CUMARTESİ Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

GAZALTI TIG KAYNAĞI A. GİRİŞ

GAZALTI TIG KAYNAĞI A. GİRİŞ A. GİRİŞ Soy gaz koruması altında ergimeyen tungsten elektrot ile yapılan ark kaynak yöntemi ( TIG veya GTAW olarak adlandırılır ) kaynak için gerekli ergime ısısının ana malzeme ile ergimeyen elektrot

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

Çeşitli ortamlarda değişik etkilerle ve mekanizmalarla oluşan korozyon olayları birbirinden farklıdır. Pratik olarak birbirinden ayırt edilebilen 15

Çeşitli ortamlarda değişik etkilerle ve mekanizmalarla oluşan korozyon olayları birbirinden farklıdır. Pratik olarak birbirinden ayırt edilebilen 15 Çeşitli ortamlarda değişik etkilerle ve mekanizmalarla oluşan korozyon olayları birbirinden farklıdır. Pratik olarak birbirinden ayırt edilebilen 15 ayrı korozyon çeşidi bilinmektedir. Bu korozyon çeşitlerinin

Detaylı

Toz Metalürjisi. Prof. Dr. Akgün ALSARAN. Notların bir bölümü Dr. Rahmi Ünal ın web sayfasından alınmıştır.

Toz Metalürjisi. Prof. Dr. Akgün ALSARAN. Notların bir bölümü Dr. Rahmi Ünal ın web sayfasından alınmıştır. Toz Metalürjisi Prof. Dr. Akgün ALSARAN Notların bir bölümü Dr. Rahmi Ünal ın web sayfasından alınmıştır. Toz metalürjisi İmali zor parçaların (küçük, fonksiyonel, birbiri ile uyumsuz, kompozit vb.) ekonomik,

Detaylı

MADDENiN HÂLLERi ve ISI ALISVERiSi

MADDENiN HÂLLERi ve ISI ALISVERiSi MADDENiN HÂLLERi ve ISI ALISVERiSi Maddenin en küçük yapı taşının atom olduğunu biliyoruz. Maddeler, atomlardan ya da atomların bir araya gelmesiyle oluşan moleküllerden meydana gelmiştir. Şimdiye kadar

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

KARIŞIMLAR. Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen mad-delere karışım denir.

KARIŞIMLAR. Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen mad-delere karışım denir. KARIŞIMLAR Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen mad-delere karışım denir. 1-HETEROJEN KARIŞIMLAR (ADİ KARIŞIMLAR) Karışımı oluşturan maddeler karışımın her

Detaylı

6. Aşağıdaki tablodan yararlanarak X maddesinin ne olduğunu (A, B,C? ) ön görünüz.

6. Aşağıdaki tablodan yararlanarak X maddesinin ne olduğunu (A, B,C? ) ön görünüz. 1. Lavosier yasası nedir, açıklayınız. 2. C 2 H 4 + 3O 2 2CO 2 + 2 H 2 O tepkimesine göre 2,0 g etilenin yeterli miktarda oksijenle yanması sonucu oluşan ürünlerin toplam kütlesi nedir, hesaplayınız. 3.

Detaylı