Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?"

Transkript

1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup olmadığı,kitle parametreleri (ortalama,varyans,..) üzerine kurulmuş hipotezlerin test edilmesi ile yapılır. 2 Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? Günde en az yarım saat düzenli egzersiz yapan 5 yaş üstü yetişkinlerde yüksek tansiyon görülme sıklığı. dan düşüktür. Kan ve kan ürünleri ile çalışan hastane personelinde hepatit B görülme sıklığı.5 den büyüktür. Ayakta ya da oturarak çalışma varis oluşumunu etkiler. Kolestrol ortalaması 9, standart sapması 45 olan kişilik bir örneklem, kolestrol yönünden normal kabul edilebilir mi? Bu örnekte eğer; kolestrolü normal kabul edilen kitlenin ortalaması 8, standart sapması 58 ise istatistiksel hipotez testi, yukarıdaki örneklemin böyle bir kitleden seçilme şansının incelenmesidir. 3 4

2 Kan ve kan ürünleri ile çalışan hastane personelinin yapılan test sonucu 23 ünde hepatit B pozitif bulunmuştur. Bu bilgilerle kan ve kan ürünleri ile çalışan hastane personelinde hepatit B pozitif olanların oranının %5 den büyük olduğu söylenebilir mi? Bu örnekteki soruya, incelenen örneklemin pozitif hepatit B görülme oranı.5 den büyük bir kitleden çekilme şansını inceleyen bir istatistiksel hipotez testi kullanılarak yanıt verilebilir. Çalışma pozisyonunun varis oluşumu ile ilişkisini incelemek üzere yapılan bir çalışma sonucu aşağıdaki gibidir. Varis Oluşumu Çalışma Poziyonu VAR YOK Toplam Sayı Yüzde Sayı Yüzde Ayakta 25,25 75,75 Oturarak,3 7,88 8 Toplam 35,9 45,8 8 Bu bilgilerle ayakta çalışanlarda varis oluşumu daha fazladır denebilir mi? Yukarıdaki soruya, iki grubun varis oluşumu sıklığı yönünden aynı kitleden çekilme şansını inceleyen bir istatistiksel hipotez testi sonucuna bakılarak yanıt verilebilir. 5 6 Verilen örneklerin tümünde incelenmek istenen, kitle ortalaması (ları) ya da kitle oranı(ları) üzerine kurulmuş hipotezlerdir. Hipotez testlerinde iki hipotez vardır. Birincisi, H ile gösterilen yokluk hipotezi, Đkincisi H ile gösterilen karşıt (seçenek) hipotezdir. Đstatistiksel hipotez testlerinin tümü H hipotezinin doğru olduğu varsayımı altında gerçekleştirilir. Đstatistiksel hipotez testlerinde iki tür yanılgı vardır. Test Sonucu H Doğru Gerçekte H Yanlış Kabul Doğru Karar II. Tür Yanılgı (β) Red I. Tür Yanılgı (α) Doğru Karar α : Anlamlılık Düzeyi - β : Testin Gücü 7 8 2

3 Đstatistiksel hipotez testlerinde I. tür yanılgı test sonucunda hesaplanır (p) ve önceden belirlenmiş α değeri ile karşılaştırılarak karar verilir. Bu durumda I. tür yanılgının gerçekleşen (hesaplanan) değeri, (p) ve öngörülen en büyük (sınır) değeri α dır. Eğer p < α ise H red edilir. Bunun anlamı, H ı red etmekle gerçekleşen yanılgı öngörülenden küçüktür. p > α ise H kabul edilir. Bunun anlamı gerçekleşen yanılgı öngörülenden küçük olmadığı için H reddedilemez. Parametrik Hipotez Testleri Kitle normal dağılmalıdır. Değişken sürekli olmalıdır. Denek sayısı dan büyük olmalıdır. Hipotez testleri Örneklem(ler) rasgele olmalıdır. Gruplar bağımsız olmalıdır Parametrik Olmayan Hipotez Testleri Kitlenin normal dağılması gerekmez. Değişken türü önemli değildir.. Denek sayısı kısıtlaması yoktur 9 Parametrik olmayan testler, parametrik testlere seçenek olarak kullanılır. Çoğunlukla da kitlenin normal dağılma koşulunu sağlamadığı durumlarda kullanılır. Kitle normal dağıldığı halde örneklemdeki denek sayısının az olması da parametrik olmayan testleri kullanma nedeni olabilir. Parametrik testler, kitle ortalaması, oranı, standart sapması üzerine kurulmuş hipotezleri test ederken; parametrik olmayan testler ortanca yada örneklem(ler) dağılımı(ları) üzerine kurulmuş hipotezlerin test edilmesi işlemlerini içerir. Hipotez Testi Aşamaları. I. Aşama. Ho Hipotezinin Belirlenmesi ve Formüle edilmesi H hipotezi, kitle parametrelerinin belirli bir değere eşitliği üzerine kurulmuştur. Örneğin, µ = 5 µ µ P =. 5 σ 2 = 5 Örnek = 2 Kolestrol ortalaması 9, standart sapması 45 olan kişilik bir örneklem, kolestrol yönünden normal kabul edilebilirmi? 2 3

4 Bu örnekte öncelikle kolestrolü normal kitlenin parametrelerinin bilinmesi ya da belirlenmesi gerekir. Kolestrolü normal kitlenin ortalaması 8 standart sapması 58 ise Örneklemin çekildiği kitlenin ortalamasının 8 olup olmadığını incelemek gerekir. Bu durumda, Biçiminde formüle edilir. H : µ = 8 3 II. Aşama. H Seçenek Hipotezinin Belirlenmesi ve Formüle edilmesi Ho hipotezi, örneklemin kolestrolü normal bir kitleden çekildiği olduğuna göre H seçenek hipotezi Ho a karşıt olarak örneklemin kolestrolü normal olmayan bir kitleden çekildiği biçiminde olacaktır. Bu durumda kolestrolü normal olmayan kitlenin tanımlanmasına gerek vardır. Örneklemin çekildiği kitlenin ortalamasının 8 olmaması bunun için yeterlidir. Seçenek hipotez, biçiminde formüle edilir. H : µ 8 4 Eğer kolestrolü normal olmayan kitle ortalaması 8 den büyük olarak tanımlansaydı hipotez takımı, H : µ = 8 H : µ > 8 biçiminde formüle edilmeliydi ya da Eğer kolestrolü normal olmayan kitle ortalaması 8 den küçük olarak tanımlansaydı hipotez takımı, H : µ = 8 H : µ < 8 biçiminde formüle edilecekti. 5 Araştırıcı amacına ya da tanımlamalarına uygun olarak yokluk hipotezine karşıt olarak üç farklı seçenek hipotez kullanabilir. H : µ 8 H : µ > 8 H : µ < 8 Đki Yönlü Tek Yönlü Tek Yönlü 6 4

5 H seçenek hipotezinin iki ya da çok yönlü olması test sonucu karar verilme koşullarında farklılık yaratır öyleki : H seçenek hipotezinin iki yönlü olması I. Tür hata α nın ikiye bölünmesini gerektirir. Bunun nedeni H hipotezinin iki yönlü seçilmesi yanılgının her iki yönde öngörülmesi demek olacağından toplam I. Tür yanılgı olasılığı olarak tanımlanan α nın heriki yönde α/2 olarak tanımlanmasını gerektirir. H hipotezi tek yönlü iken gerçekleşen I. Tür yanılgı p α ile karşılaştırılıken H hipotezi iki yönlü iken gerçekleşen I. Tür yanılgı p α/2 ile karşılaştırılır. 7 III. Aşama. Test ölçütünün belirlenmesi Test Ölçütü, Test Đstatistiğinin Belirlenmesi I. Tür Yanılgının miktar olarak (.5,, gibi) Belirlenmesi Belirlenen I. Tür Yanılgıya Bağlı Olarak H Hipotezi için Kabul ve Red Bölgelerinin Saptanması Đşlemlerinden oluşur. 8 Bu işlemler içinde Test Đstatistiği Ho hipotezinin red ya da kabul edilmesinde yararlanılacak bir rasgele değişkendir öyleki Ho hipotezinin doğru olduğu varsayımı altında o kitleden seçilecek olası tüm örneklemlerdeki ilgili parametre dağılımını temsil eden bir değişkendir. Örneğimizde H : µ 8 olduğundan = Ortalaması 8 olan kitleden n = olan olası tüm örneklemlerin ortalamalarına ilişkin dağılımı temsil eden değişkendir. 9 Örneğin ortalaması 8 olan ve normal dağıldığı bilinen bir kitleden n = olan olası tüm örneklemler çekildiğinde; bu örneklemlerin ortalamaları Kitle varyansı σ 2 bilindiğinde ortalaması µ=8 ve varyansı 2 σ σ = bir normal dağılım gösterir. Bu durumda önceki bilgilerimizden örneklem ortalamalarından hesaplanan xi µ z = σ / değişkeni standart normal dağılım gösterir. Z değişkeni örneğimizdeki test istatistiği dir. 2 5

6 I. Tür Yanılgının miktar olarak (.5,, gibi) Belirlenmesi I. Tür Yanılgı H ın doğru olması halinde H o ın red edilmesi olasılığı olduğuna göre oldukça küçük ; başlıkta belirtildiği üzere(.5,. gibi) seçilmelidir. I. Tür Yanılgı α nın en çok kullanılan değeri.5 dir. Belirlenen I. Tür Yanılgıya Bağlı Olarak H Hipotezi için Kabul ve Red Bölgelerinin Saptanması xi µ z = σ / test istatistiğinin dağılımı standart normal dağılım olduğundan grafiği, 2 α /2=.25 IV. Aşama Kabul Bölgesi Test Đstatistiğinin Hesaplanması Kolestrolü normal kitlenin standart sapması 58 olarak bilindiğinden 9 8 Test istatistiği z = = / α /2= V Aşama. Karar ve yorumlama α /2=.25 Belirlenen kabul ve red bölgelerine göre karar verilir. Karar için değişik yollar kullanılabilir a ) Grafiksel olarak -.96 Kabul Bölgesi α /2= b) Test istatistiğinin hesaplan ve kritik değerini karşılaştırarak Test istatistiğinin hesaplan değeri.72 Test istatistiğinin kritik değeri Koşulunu sağlayan Z α/2 değeridir. α z ) = α 2 2 P ( z / Bu değer önceki bigilerimizi kullanarak Z tablosundan bulunur Bu değer Z α/2 =.96 dır. Bu durumda karar, z < z z > z α / 2 α / 2 ise H ise H kabul red Biçiminde verilir. 24 6

7 c) I. Tür yanılgının gerçekleşen değerini α/2 ile karşılaştırark I. Tür yanılgının gerçekleşen değeri p. 5 P( z. 72 ) Bu durumda karar, P > α/2 ise H P < α/2 ise H kabul red Biçiminde z tablosundan bulunur.. Biçiminde verilir. P=.43 bulunduğundan H kabul edilir

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

Olasılık ve Normal Dağılım

Olasılık ve Normal Dağılım Olasılık ve Normal Dağılım P = 0 İmkansız P =.5 Yarı yarıya P = 1 Kesin Yazı-Tura 1.5 2 1.5 2.5.5.25 Para atışı 10 kere tekrarlandığında Yazı Sayısı f % 0 3 30 1 6 60 2 1 10 Toplam 10 100 Atış 1000 kere

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI İÇİN TEK ÖRNEKLEM T-TESTİ Tek örneklem t-testi, örneklemin çekildiği

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Güven Aralıkları 2 Güven Aralıkları

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Anlam Çıkartıcı (Kestirisel- Vardamsal) İstatistik

Anlam Çıkartıcı (Kestirisel- Vardamsal) İstatistik Anlam Çıkartıcı (Kestirisel- Vardamsal) İstatistik Dr. Seher Yalçın 27.12.2016 1 Anlam Çıkartıcı İstatistik: Hipotez Nedir? Null Hipotezi Alternatif Hipotez Hipotez Testi Adımları Karar verirken yapılan

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler IST

Parametrik Olmayan İstatistiksel Yöntemler IST Parametrik Olmayan İstatistiksel Yöntemler IST-435-5- DEÜ İstatistik Bölümü 8 Güz Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov test X test

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 Prof. Dr. Ali ŞEN 1 İki populasyon karşılaştırılırken her iki örneklemin hacmi n1 ve n2, 10 dan büyükse TA nın dağılışı ortalaması ve varyansı aşağıdaki gösterilen

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 9: Prof. Dr. İrfan KAYMAZ Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten

Detaylı

KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri)

KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri) KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri) Günümüzde yapılan birçok araştırmada nitel değişkenler kullanılmaktadır. Göz rengi, saç rengi gibi bazı değişkenler

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 10: Prof. Dr. İrfan KAYMAZ Tanım Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi ile yapılabilir. Ancak karşılaştırılacak

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır.

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır. Özellikle deneysel araştırmalarda, araştırmacının doğru olup olmadığını yapacağı bir deney ile test edeceği ve araştırma sonunda ortaya çıkan sonuçlarla doğru ya da yanlış olduğuna karar vereceği bir önermesi

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

İkiden Çok Grup Karşılaştırmaları

İkiden Çok Grup Karşılaştırmaları İkiden Çok Grup Karşılaştırmaları Bir onkoloji kliniğinde göğüs kanseri tanısı almış kadınlar arasından histolojik evrelerine göre 17 şer kadın seçilerek sağkalım süreleri (ay) alınmıştır. HİSTLOJİK EVRE

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Araştırma Planlaması ve Aşamaları

Araştırma Planlaması ve Aşamaları Araştırma Planlaması ve Aşamaları Sunum planı a) Araştırma konusunun belirlenmesi b) Araştırma amacının belirlenmesi c) Hipotezlerin belirlenmesi d) Literatür taraması e) Uygun istatistiksel yönteminin

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Kestirim Pratikte kitle parametrelerinin doğrudan hesaplamak olanaklı değildir. Bunun yerine

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

Ortalamaların karşılaştırılması

Ortalamaların karşılaştırılması Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis Testi BBY606 Araştırma Yöntemleri Güleda Doğan

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Telekom da çalışan bir operatör A ve B şehirleri arasında yapılan telefon görüşmelerinin ortalamasının 6 dakikadan daha fazla sürdüğünü iddia

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

BİYOİSTATİSTİK HİPOTEZ TESTLERİ

BİYOİSTATİSTİK HİPOTEZ TESTLERİ BİYOİSTATİSTİK HİPOTEZ TESTLERİ Doç. Dr. Mahmut AKBOLAT *Bir ana kütlenin herhangi bir özelliği hakkında karar vermek için ana kütledeki bütün elemanların ölçüme tabi tutulması en iyi yoldur. *Ana kütlenin

Detaylı

Hipotez Testi. gibi hususlar ayrıbirer hipotezin konusudur. () Kafkas Üniversitesi May 23, / 11

Hipotez Testi. gibi hususlar ayrıbirer hipotezin konusudur. () Kafkas Üniversitesi May 23, / 11 Hipotez Testi Bu dersde anakütle parametresinin varsayılan değeri ile başlayıp, örneklem kullanarak varsayılan değerin uygunluğunun kabul edilmesi ya da reddedilmesi sonucuna karar verilecektir. Ortaya

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2

İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 Notları Prof. Dr. Onur Özsoy Hipotez Testleri Yapılırken İzlenecek Aşamalar 1. H 0 ve H a nın belirlenmesi 2. Test İstatistiğinin belirlenmesi 3. Anlamlılık

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

BÖLÜM 10 PUAN DÖNÜŞÜMLERİ

BÖLÜM 10 PUAN DÖNÜŞÜMLERİ 1 BÖLÜM 10 PUAN DÖNÜŞÜMLERİ Bir gözlem sonucunda elde edilen ve üzerinde herhangi bir düzenleme yapılmamış ölçme sonuçları 'ham veri' ya da 'ham puan' olarak isimlendirilir. Genellikle ham verilerin anlaşılması

Detaylı

Doç.Dr.İstem Köymen KESER

Doç.Dr.İstem Köymen KESER Doç.Dr.İstem Köymen KESER Güven Aralıkları Ortalama yada iki ortalama farkı için biliniyor bilinmiyor n30 n

Detaylı

Kestirim (Tahmin) Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerinin kestirilmesidir.

Kestirim (Tahmin) Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerinin kestirilmesidir. Biyoistatistik 9 Kestirim (Tahmin) Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerinin kestirilmesidir. Evren parametrelerinin kestirilmesi (tahmini) için: 1. Hipotez testleri 2. Güven

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 ANAKÜTLE Anakütle kavramı insan, yer ve şeyler toplulugunu ifade etmek için kullanır. İlgi alanına gore, araştırmacı hangi topluluk üzerinde

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018

2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Hazırlayan. Ramazan ANĞAY Kİ-KARE TEST İSTATİSTİĞİ

Hazırlayan. Ramazan ANĞAY Kİ-KARE TEST İSTATİSTİĞİ Hazırlayan Ramazan ANĞAY Kİ-KAR TST İSTATİSTİĞİ 1.GİRİŞ İstatistikte değişkenler sayısal (nicel) değişkenler ve sayısal olmayan (nitel) değişkenler olmak üzere iki grupta sınıflandırılmaktadır. Günümüzde

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı

Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Ortalama veya korelasyon gibi istatistiklerin dağılımıdır Çıkarımsal istatistikte örneklem dağılımı temel fikirlerden biridir. Çıkarımsal istatistik

Detaylı

Araştırmada Evren ve Örnekleme

Araştırmada Evren ve Örnekleme 6. Bölüm Araştırmada Evren ve Örnekleme 1 İçerik Örnekleme Teorisinin Temel Kavramları Örnekleme Yapmayı Gerekli Kılan Nedenler Örnekleme Süreci Örnekleme Yöntemleri 2 1 Giriş Araştırma sonuçlarının geçerli,

Detaylı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı UYGUN HİPOTEZ TESTİNİN SEÇİMİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ÖNEMLİLİK (Hipotez) TESTLERİ ü Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da varılan

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Önemlilik Testleri. Prof.Dr.İhsan HALİFEOĞLU

Önemlilik Testleri. Prof.Dr.İhsan HALİFEOĞLU Önemlilik Testleri Prof.Dr.İhsan HALİFEOĞLU ÖNEMLİLİK TESTLERİ Önemlilik testleri elde edilen değerlerin ya da varılan sonuçların istatistiksel olarak önem taşıyıp taşımadığını ya da anlamlı olup olmadığını

Detaylı