9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2"

Transkript

1 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini ve beraberinde yapılması gereken analizleri anlamanıza yardımcı olacaktır. Kuyruk Sistemlerinin Simulasyonu Tek Kanallı Kuyruk Sistemi 4 Hizmet Service Sistemi System - number - Sunucu of servers sayısı - configuration - Konfigurasyon - service time distribution - süresinin dagılımı Potansiyel Populasyonu Hattı (Kuyruk) Sunucu Calling Populasyonu Population - finite - sonlu/sonsuz or infinite - different - farklı types müşteri of customers tipleri Geliş Arrival Process Süreci müşteriler customers Kuyruk Queue Service Bir kuyruk sistemi; müşteri populasyonu, gelişlerin doğası, servis mekanizması, sistem kapasitesi ve kuyruk disipliniyle tanımlanır. - interarrival - times (independent arası süreler or dependant) - balking - partiler Kendall Gösterimi --capacity kapasite -- discipline disiplin (FIFO, (FCFS, LIFO, LCFS, priority, oncelik, random selection,) rassal - reneging secim) geliş süreci/servis süreci/sunucu sayısı/sistem kapasitesi/populasyon büyüklügü/kuyruk disiplini Örnek: M/M/1 1

2 Tek Kanallı Kuyruk Durumları Tek Kanallı Kuyruk Durumları (devam) 5 6 Sonsuz Infinite müşteri Calling populasyon Population u Interarrival Gelisler arası times exponentially süre: Üstel distributed dagılım customers müşteriler Disiplin: FIFO Queue FIFO w/ Kapasite: Infinite Capacity Sonsuz M/M/1 1 server sunucu Service times exponentially distributed süresi: üstel dağılım Sonsuz Infinite musteri populasyon Calling Population u Interarrival arası times exponentially süre: Üstel distributed dağılım Kuyruk kapasitesi: 5 capacity of 5 customers FIFO Disiplin: Queue FIFO w/ Finite Kapasite: Capacity Sonlu 11 server sunucu Service times exponentially distributed süresi: üstel dağılım Sonsuz Infinite müşteri Calling populasyon Population u Interarrival arası times exponentially süre: Üstel distributed dağılım customers müşteriler Disiplin: FIFO Queue FIFO w/ Infinite Kapasite: Capacity Sonsuz M/M/ servers Service sunucu times exponentially distributed süresi: üstel dağılım Gelisler arası M/M/1/6 süre: Interarrival Üstel times dağılım exponentially distributed Sonsuz Infinite Calling müşteri populasyon Population u customers müşteriler customers müşteriler Disiplin: FIFO Queue FIFO w/ Disiplin: FIFO Queue FIFO w/ Kapasite: Infinite Capacity Sonlu Infinite Kapasite: Capacity Sonlu 1 server Service 1 sunucu times exponentially distributed süresi: üstel dağılım Tandem Queue Tandem Kuyruk 1 server Service 1 sunucu times exponentially distributed süresi: üstel dağılım Kuyruk Sisteminin Bileşenleri n Ayrılışı Sistem Durumu: ki müşteri sayısı ve sunucunun durumu (sunucu dolu/boş) Bir müşterinin servisi sunucuda tamamlandığı anda simulasyon aşağıdaki akış şemasına göre devam eder. Olay: Sistemin durumunda anlık değişmeye neden olan durum seti Ayrılış Olayı Tek sunuculu kuyruk sisteminde sistemin durumunu etkileyen sadece iki olası olay vardır: Geliş olayı boş kalma süresini başlat Hayır Bekleyen müşteri var mı? Evet n bekleyen müşteriyi çıkart Ayrılış olayı ye servisi başlat Simulasyon Saati: Simule edilen süreyi izlemek için kullanılır. tamamlandığı andaki akış diyagramı

3 Sisteme Gelişi Tanımlayıcı Değişkenler 10 Bir müşteri sisteme girdiğinde geliş olayı açığa çıkar. Gelen müşteri sunucuyu ya boş, yada dolu bulur: Sunucu boş ise: müşteri hemen servis almaya girer. Sunucu dolu ise: müşteri kuyruğa girer Tek bir kuyruk hattından gelen müşterilere vezne tarafından servis (hizmet) verilen bir banka şubesini ele alalım. Varsayalım ki banka saat 9.00 da açılsın (simulasyonda 0 anı olarak modelleyebiliriz). hizmet almaya girer Hayır Geliş Olayı Sunucu meşgul mü? Evet kuyruğa girer Banka veznelerle (meşgul yada bos olmalarıyla) ve kuyrukta bekleyen müşterilerle ilgilenmektedir. Sisteme Giren Akış Diyagramı Tanımlayıcı Değişkenler (devam) Zamanla Durum Değişkeninin Değişimi 11 1 i nci müşterinin geliş zamanı i nci müşterinin servis (hizmet görme) süresi i nci müşterinin ayrılış zamanı t anında kuyrukta bekleyen müşteri sayısı ki number in müşteri syst em sayısı X(t) t anında meşgul olan sunucu (vezne) sayısı t anında i nci sunucunun (veznenin) meşgul olup olmaması t anında sistemdeki (bankadaki) müşteri sayısı depart ayrılışlar ures t imt e gelişler arrivals 3

4 lerin Geliş & ler Customer Time Geliş of zamanı arrival Time between arası arrival süre Geliş e başlama zaman Customer 1. müşterinin 1's servis service süresi time 8 dakika 8 minutes Bu zaman aralığında her iki veznenin Notice de that meşgul during olduğuna this dikkat interval alın. both tellers are busy Customer 4 arrived at time 4. müşteri 15 anında geldi. İki 15. Since only one teller is vezneden biri boş olduğu için serving a customer, 4. müşteri dk lık servis customer 4 can begin its işlemine başlayabilir. service of minutes t, zaman time Customer. müşterinin 's service servisi starts 5. dk da at baslar time 5 ve and 7 lasts dk sürer. 7 minutes 3. Customer müşteri, 3's will 1. enter müşteri service ayrıldığında when customer servise 1 girer. 3. departs. müşterinin Customer servis 3's suresi service 9 dk dır. time is 8 minutes Notice 4. müşterinin, how customer 3. 4 müşteriden came and önce went before servisinin customer 3 nasıl tamamlandığına completed service. dikkat edin. t, zaman time Olaylar Simülasyonunun 3 Adımı Zaman Olay Açıklama 0 Banka açılır Geliş 1. müşteri gelir, 8 dakika için servise girer, vezne 1 meşgul hale gelir. 5 Geliş. müşteri gelir, 7 dakika için servise girer, vezne meşgul hale gelir. 7 Geliş 3. müşteri gelir, kuyrukta bekler. 10 tamamlanması 1. müşterinin vezne 1 deki servisi tamamlanır, 3. müşteri kuyruktan çıkar ve 9 dakika için servise girer. 1 tamamlanması. müşterinin vezne deki servisi tamamlanır, kuyrukta müşteri bulunmadığı için vezne boş hale gelir. 15 Geliş 4. müşteri gelir, dk için servise girer, vezne meşgul hale gelir. 17 tamamlanması 4. müşterinin vezne deki servisi tamamlanır, vezne boş hale gelir. 19 tamamlanması 3. müşterinin servisi tamamlanır. 1. müşteri Customer gelir 1 arrives. müşteri Customer gelir arrives müşteri Customer gelir 3 arrives 1.müşterinin Customer 1 servisi completes tamamlanır, service and Customer 3 3. müşterinin servisi baslar begins service.müşterinin Customer servisi completes tamamlanır service 4.müşteri Customer gelir 4 arrives and servise begins baslar service 4.müşterinin Customer 4 servisi end service tamamlanır 3.müşterinin Customer 3 servisi completes tamamlanır service 1. Simulasyonun her bir girdisinin özelliklerini belirle. Genellikle bu girdiler kesikli/sürekli olasılık dağılımları olarak modellenir.. Bir simulasyon tablosu oluştur. Simulasyon tabloları probleme göre geliştirilir. Her simulasyon tablosu birbirinden farklıdır. 3. Her tekrar için girdi değeri üret ve fonksiyonu değerlendirip her tekrar için bir çıktı değeri hesapla. (Girdi değerleri adım 1 de belirlenen dağılımlardan örneklem alınarak hesaplanabilir. ) 4

5 Simülasyon Tablosu Simulasyon tablosu, zamana bağlı olarak değişen sistem durumunu izlemek için sistematik bir metot sağlar. Tek Kanallı Kuyruk Sisteminde Rassallık arası Süre ve : Rassal Değişken Tekrarlar 1 n Girdiler Yanıt X i1 X i X ij X ip y i arası süreler ve servis süreleri, bu rassal değişkenlerin dağılımlarından rassal sayılar kullanılarak üretilir. Rassal sayılar, (0,1) aralığında bağımsız ve düzgün (uniform) dağılmış sayılardır. Örnek 1 Örnek 1 (Devam) Tek bir kasanın bulunduğu küçük bir marketi ele alalım. ler kasaya gelişleri birbirinden bağımsızdır ve 1-8 dk. arasında kesikli düzgün dağılıma uymaktadır. süreleri ise aşağıdaki tabloda verilen kesikli dağılıma uymaktadır. 0 müşteri için marketin kuyruk sistemini simüle ederek, analiz edin. X: gelişleri arasında geçen süre (dakika) X ~ Kesikli Düzgün (1,8) x P(X=x) Y: süresi (dakika) y P(Y=y)

6 Rassal Sayılar Tablosu Arası Sürenin Dağılımı x(dakika) f(x)=p(x=x) F(x)=P(X x) Rassal Sayı (RS) <RS <RS <RS <RS <RS <RS <RS <RS nin Dağılımı Arası Sürelerin Üretilmesi y(dakika) f(y)=p(y=y) F(y)=P(Y y) Rassal Sayı (RS) <RS <RS <RS <RS <RS <RS 1.00 Müsteri Rassal Sayı (RS) Arası Süre (dk) Rassal Sayı (RS) Arası Süre (dk)

7 Sürelerinin Üretilmesi Geliş & Süreleri Rassal Sayı (RS) (dakika) Rassal Sayı (RS) (dakika) Arası Süre x(dakika) F(x)=P(X x) Rassal Sayı (RS) y(dakika) f(y)=p(y=y) F(y)=P(Y y) Rassal Sayı (RS) <RS <RS <RS <RS <RS <RS <RS <RS <RS <RS <RS <RS <RS <RS Rassal Sayılar: Simulasyon Tablosu Simulasyon Tablosu (Tamamlanmış) Gelisler Arası Süre Geliş Bitiş Harcanan Süre boş kalma Arası Geliş (dk.) e

8 Ölçümleri Gelisler Arası Geliş Gelis Arası Süre Zamani (dk.) e Ölçümleri (Devam) Gelisler Arası Arası Süre Geliş Gelis Zamani (dk.) e 1. Ortalama =.8 dk ortalama bekleme süresi = müsterilerin kuyrukta geçirdigi toplam süre toplammüsteri sayısı. Olasılığı=0.65 olasılık (bekleme) = kuyrukta bekleyen müsteri sayısı = 13 toplammüsteri sayısı 0 = Olasılığı=0.1 = 56 =.8 (dk.) 0 sunucun toplam bos kalma süresi sunucunun bos kalma olasılıgı = simulasyonun toplam calısma süresi = = 0.1 Meşgul Olma Olasılığı= Ortalama =3.4 dk toplam servis süresi ortalama servis süresi = toplam müsteri sayısı = 68 = 3.4 (dk) 0 Teorik ortalama servis süresi, servis suresi dağılımı kullanılarak bulunabilir. å E(Y) = y.p(y = y) "y E(Y) =1(0.10)+(0.0)+ 3(0.30)+ 4(0.5)+5(1.10)+6(0.05) = 3. (dk.) Görüldügü üzere 0 müşteri için simulasyonun ortalama servis süresi, teorik ortalama servis süresinden farklıdır. Simulasyon uzatıldıkça, teorik ortalama bekleme süresi E(Y) ye yaklasılacaktır. Ölçümleri (Devam) Gelisler Arası Geliş Gelis Arası Süre Zamani (dk.) e Ölçümleri (Devam) Gelisler Arası Geliş Gelis Arası Süre Zamani (dk.) e 5. Ortalama Arası Süre=4.3 dk ortalama gelisler arası süre= toplam gelisler arası süre gelis sayısı -1 Teorik ortalama gelişler arası süre, gelişler arası süre dağılımı kullanılarak bulunabilir. Arasi Süre X, 1-8 arasında kesikli düzgün dagılıma uymaktaydı. E(X) = x.p(x = x) å x=0 = 8 = 4.3 (dk) 19 İlk musterinin 0 anında sistemde olduğu varsayildığı icin E(X) =1(0.15)+(0.15)+3(0.15)+4(0.15)+5(1.15)+6(0.15)+7(0.15)+8(0.15) = 4.5 (dk.) 6. Bekleyen Bir Ortalama =4.3 dk toplam kuyruk bekleme süresi bekleyen musterilerin ortalama beklemesüresi = kuyruktabekleyentoplammusteri sayısı = = 4.3 (dk.) yada E(X) = a+ b = 1+ 8 = 4.5 dk. Simulasyon uzatıldıkça, teorik ortalama gelişler arası süre E(X) e yaklaşılacaktır. 8

9 Ölçümleri (Devam) Gelisler Arası Geliş Gelis Arası Süre Zamani (dk.) e 7. Bir Geçirdigi Ortalama Süre=6. dk musterinin sistemde gecirdigi ortalama süre= S :Bir müşterinin sistemde geçirdiği süre S 1 : Bir muşterinin kuyrukta geçirdiği süre S : Bir müşterinin serviste geçirdiği süre müsterilerin sistemde gecirdigi toplam süre toplammusteri sayısı = 14 = 6. (dk.) 0 S= S 1 + S E[ S] = E[ S 1 + S ] = E[ S 1 ] + E[ S ] (Beklenen Deger Özelligi:Toplamın beklenen degeri, beklenen deger toplamına esittir. ) [ ] =.8 (dk.) ( ölçümü 1) [ ] = 3.4 (dk.) ( ölçümü 4) [ ] = = 6. (dk.) E S 1 E S E S 9

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir. ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN GİRİŞ Bir hizmet için beklemek günlük yaşantının bir parçasıdır. Örneğin, restoranlarda yemek yemek için bekleme, hastanelerdeki hasta kuyruğunda

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

1106104 SİSTEM SİMÜLASYONU

1106104 SİSTEM SİMÜLASYONU 6 SİSTEM SİMÜLASYONU Yrd Doç. Dr. Sırma Yavuz Çarşamba : - : (F-9) Ofis: B Blok - Kat Donanım Lab. Ofis Saatleri : Çarşamba 6: - 7: İçerik Simülasyon Modeli Yaklaşımları Kuyruk Sistemlerinin Simülasyonu

Detaylı

IE 303T Sistem Benzetimi L E C T U R E 3 : O L A Y Ç I Z E L G E L E M E A L G O R I T M A S I

IE 303T Sistem Benzetimi L E C T U R E 3 : O L A Y Ç I Z E L G E L E M E A L G O R I T M A S I IE 303T Sistem Benzetimi L E C T U R E 3 : O L A Y Ç I Z E L G E L E M E A L G O R I T M A S I İçerik Olay Çizelgeleme Algoritması Tek Servis Sağlayıcılı Kuyruk (Tekrar) Maden Ocağı Kamyonları Liste İşlemleri

Detaylı

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu Kuyruk Sistemlerinin Benzetimi KUYRUK & BEKLEME HATTI SİSTEMLERİ Dr. Mehmet AKSARAYLI Genel nüfus Bekleme hattı Sunucu Genel nüfus Kuyruğa giriş ve hizmetlerin yapısı Sistemin kapasitesi Kuyruk disiplini

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan

SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan SİMULASYON MODELLEME VE ANALİZ 1 2 Giriş Bu derste ARENA ortamında modelleme yeteneklerini genel olarak tanıtmak için basit bir model sunulacaktır. HAFTA 2 Yrd.Doç.Dr.Beyazıt Ocaktan Simulasyon Dilleri

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

Olay-Tabanlı Modelleme. İlhan AYDIN

Olay-Tabanlı Modelleme. İlhan AYDIN Olay-Tabanlı Modelleme İlhan AYDIN Olay-Sürümlü Modeller Zaman sürümlü modeller düzenli zaman aralıklarında senkron bir tarzda ilerleyen sinyallere sahip sistemleri karakterize eder. Olay sürümlü modeller

Detaylı

ENM-3105 Sistem Simulasyonu Kısa Sınav 1

ENM-3105 Sistem Simulasyonu Kısa Sınav 1 ENM-3105 Sistem Simulasyonu Kısa Sınav 1 Sınav Tarihi ve Yeri: 06 Kasım 2014, Perşembe, İlk ders, B203 No lu Derslik) (Kısa Sınav 1 de aşağıda verilen sorulardan birinin benzeri sorulacaktır.) Soru 1)

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Simülasyon ile Modelleme. Prof.Dr. Aydın Ulucan

Simülasyon ile Modelleme. Prof.Dr. Aydın Ulucan Simülasyon ile Modelleme Prof.Dr. Aydın Ulucan İş dünyasında cevabı aranan karar problemlerinin çoğunda modeli oluşturan bileşenlerin değerleri kesin olarak belirli değildir. Böyle bir durumda karar verici,

Detaylı

Y.Doç.Dr. Fazıl GÖKGÖZ Kuyruk Teorisi. Bölüm 1: Temel Kavramlar. Varışlar: Müşteriler sisteme belirli bir varış yapısında girerler

Y.Doç.Dr. Fazıl GÖKGÖZ Kuyruk Teorisi. Bölüm 1: Temel Kavramlar. Varışlar: Müşteriler sisteme belirli bir varış yapısında girerler Kuyruk Teorisi Bölüm 1: Temel Kavramlar KONU 8 Kuyruk Teorisi nin Bileşenleri Varışlar: Müşteriler sisteme belirli bir varış yapısında girerler Kuyrukta Bekleme : Müşteriler sırada veya sıralarda hizmet

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Ders 1 Yrd.Doç.Dr.Beyazıt Ocaktan Simülasyon, gerçek

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

IE 303 SİSTEM BENZETİMİ

IE 303 SİSTEM BENZETİMİ IE 303 SİSTEM BENZETİMİ DERS 2 : S I M U L A S Y O N Ö R N E K L E R I...making simulations of what you're going to build is tremendously useful if you can get feedback from them that will tell you where

Detaylı

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş Eme 3105 Giriş Sistem simülasyonu Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Sistem Simülasyonuna Giriş Ders 1 Simülasyon, gerçek bir dünya sureci yada sistemindeki

Detaylı

EME 3117 SİSTEM SİMULASYONU

EME 3117 SİSTEM SİMULASYONU EME 3117 SİSTEM SİMULASYONU Sonsuz Ufuk Simulasyon (Kararlı Hal Simulasyonu) Ders 14 Hatırlatma Gözleme ve Zamana Dayalı Performans Ölçümleri Gözleme Dayalı Ortalama sistem süresi Ortalama kuyruk süresi

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr.

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr. EME 3117 SİSTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Hafta 1 Yrd.Doç.Dr.Beyazıt Ocaktan Giriş Simülasyon, gerçek bir dünya süreci yada sistemindeki işlemlerin zamana bağlı değişimlerinin taklit edilmesidir.

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 316 BENZETİM ÖDEV SETİ ÖDEV 1: El ile Benzetim Bir depo ve 7 adet müşterisi olan bir taşımacılık sisteminde müşterilerden gelen siparişler araç ile taşınmaktadır. İki tür sipariş söz konusudur. Birincisi

Detaylı

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği 1 SİSTEM SİMULASYONU Laboratuvar 3 Yrd.Doç.Dr.Beyazıt Ocaktan Elektronik Montaj ve Test Örneği 2 Bir elektronik devre üreticisinin kaplama atölyesini ele alalım. Bu isletmede A ve B parcaları farklı atölyelerde

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme EME 7 Giriş Sistem Simülasyonu Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok Simulasyon Örnekleri Ders kontrol sistemi ele alınıp, sistemin isleyişi

Detaylı

Yönetimde Karar Verme Teknikleri

Yönetimde Karar Verme Teknikleri SAKARYA ÜNİVERSİTESİ Yönetimde Karar Verme Teknikleri Hafta 0 Yrd. Doç. Dr. Harun R. YAZGAN Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine

Detaylı

www.saitkaygusuz.com skaygusuz@uludag.edu.tr STOKLAR TMS-2

www.saitkaygusuz.com skaygusuz@uludag.edu.tr STOKLAR TMS-2 1 STOKLAR TMS-2 Üretim İşletmelerinde Stoklar 2 Stoklar aynı zamanda işletme tarafından üretilen mamulleriya da üretimde olan yarı mamulleri ve üretim sürecinde kullanılmak üzere bekleyen ilk madde ve

Detaylı

1. Süreç nedir? 2. Süreç nedir? 3. Temel süreç unsurları nelerdir? 4. Süreçler nasıl sınıflandırılabilir? Süreç tipleri nelerdir?

1. Süreç nedir? 2. Süreç nedir? 3. Temel süreç unsurları nelerdir? 4. Süreçler nasıl sınıflandırılabilir? Süreç tipleri nelerdir? 1. Süreç nedir? Girdileri çıktı haline getiren birbiriyle ilgili ve etkileşimli faaliyetler takımı dır. 2. Süreç nedir? Tanımlanabilirlik Tekrarlanır olması Ölçülebilirlik Bir sahibi ve sorumluları olması

Detaylı

Bölüm 5: İşlemci Zamanlaması. Operating System Concepts with Java 8 th Edition

Bölüm 5: İşlemci Zamanlaması. Operating System Concepts with Java 8 th Edition Bölüm 5: İşlemci Zamanlaması 5.1 Silberschatz, Galvin and Gagne 2009 Temel Kavramlar Çoklu programlama sayesinde CPU kullanımının optimize edilmesi CPU I/O İşlem Döngüsü Bir işlemin çalıştırılması birbirlerini

Detaylı

ÖZET. Osman ÇEVİK Ayşe Elif YAZGAN

ÖZET. Osman ÇEVİK Ayşe Elif YAZGAN 120 HİZMET ÜRETEN BİR SİSTEMİN BEKLEME HATTI (KUYRUK) MODELİ İLE ETKİNLİĞİNİN ÖLÇÜLMESİ ÖZET Osman ÇEVİK Ayşe Elif YAZGAN Bu çalışmada bekleme hattı modeli yardımıyla bir bankadaki müşterilerin sıra beklemelerine

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme .. Giriş EME SISTEM SİMÜLASYONU Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok kontrol sistemi ele alınıp, sistemin isleyişi elle simule Simulasyon

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

Çizelgeleme Nedir? Bir ürünün üretilmesi/hizmetin sunumu için

Çizelgeleme Nedir? Bir ürünün üretilmesi/hizmetin sunumu için Üretim Çizelgeleme Çizelgeleme Nedir? Bir ürünün üretilmesi/hizmetin sunumu için işgörenin nerede, ne zaman gerekli olduğunun, gerekli faaliyetlerin zamanlamasının, üretime başlama ve üretimi tamamlama

Detaylı

Simülasyon ile Modelleme. Prof.Dr. Aydın Ulucan

Simülasyon ile Modelleme. Prof.Dr. Aydın Ulucan Simülasyon ile Modelleme Prof.Dr. Aydın Ulucan İş dünyasında cevabı aranan karar problemlerinin çoğunda modeli oluşturan bileşenlerin değerleri kesin olarak belirli değildir. Böyle bir durumda karar verici,

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir?

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir? Ders : Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 4 Yrd. Doç. Dr. Beyazıt Ocaktan E-mail: bocaktan@gmail.com Ders İçerik: nedir? Markov Zinciri nedir? Markov Özelliği Zaman Homojenliği

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

BAKIM-ONARIM İÇİN SIRADA BEKLEME (KUYRUK) MODELLERİ

BAKIM-ONARIM İÇİN SIRADA BEKLEME (KUYRUK) MODELLERİ GIRIŞ 2 BAKIM-ONARIM İÇİN SIRADA BEKLEME (KUYRUK) MODELLERİ D R. F E R H A T G Ü N G Ö R 1 Kuyruk teorisi; servis almak için oluşan kuyruk, sağlanan servis hizmetinden fazladır. Bunun çeşitli nedenleri

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı

RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN ÜRETİMİ Benzetimde rassallık k varsa, bir veya birden fazla ğılımdan rassal değişken üretimi yapılacakt lacaktır. Bu ğılımlar, gözlemden g elde edilen veriye giydirilmiş

Detaylı

Zaman Serisi Verileriyle Regresyon Analizi

Zaman Serisi Verileriyle Regresyon Analizi Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

YAPI İŞLETMESİ VE ŞANTİYE TEKNİĞİ 11 MONTE CARLO SİMÜLASYONU İLE İNŞAAT PROJELERİNDE SÜRE PLANLAMASI

YAPI İŞLETMESİ VE ŞANTİYE TEKNİĞİ 11 MONTE CARLO SİMÜLASYONU İLE İNŞAAT PROJELERİNDE SÜRE PLANLAMASI MONTE CARLO SİMÜLASYONU İLE İNŞAAT PROJELERİNDE SÜRE PLANLAMASI Simülasyon gerçek yaşamı taklit etme sürecidir. Simülasyon Çeşitleri Fiziksel simülasyon Bilgisayarlı simülasyon Bilgisayarlı simülasyon

Detaylı

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir.

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. GİRİŞ ENM 316 BENZETİM DERS 1 Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. Model, sistemin çalışması ile ilgili kabullerin bir setinden oluşur.

Detaylı

2 www.koyuncumetal.com

2 www.koyuncumetal.com 2 www.koyuncumetal.com KURUMSAL Şirketimizin temelleri konya da 1990 yılında Abdurrahman KOYUNCU tarafından küçük bir atölyede sac alım-satım ve kesim-büküm hizmeti ile başlamıştır. Müşteri ihtiyaçlarına

Detaylı

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir.

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. ENM 316 BENZETİM DERS 1 GİRİŞ Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. Genel anlamda benzetim, zaman içinde sistemin işleyişinin taklididir.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 1. Ders. Benzetim nedir? Amaçları Avantajı Dezavantajı Uygulama Alanları Sistem Sistemin Bileşenleri

BENZETİM. Prof.Dr.Berna Dengiz. 1. Ders. Benzetim nedir? Amaçları Avantajı Dezavantajı Uygulama Alanları Sistem Sistemin Bileşenleri Prof.Dr.Berna Dengiz 1. Ders Benzetim nedir? Amaçları Avantajı Dezavantajı Uygulama Alanları Sistem Sistemin Bileşenleri 1.GİRİŞ Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

SÜREKLİ( CONTINUOUS) OLASILIK

SÜREKLİ( CONTINUOUS) OLASILIK SÜREKLİ( CONTINUOUS) OLASILIK DAĞILIMLARI Sürekli bir random değişken (a,b) aralığındaki her değeri alabiliyorsa bu değişkene ait olasılık dağılım fonksiyonunun grafiğinde eğri altında kalan alan bize

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

V14xx Güncelleme İşlemleri

V14xx Güncelleme İşlemleri V14xx Güncelleme İşlemleri İnternet tarayıcınızdan www.mikro.com.tr web adresine giriş yapınız. Mikro web sayfasında arşivleri (exe) indirmek için MİKROCRM ikonunu mouse ise seçiniz. Açılan sayfada Kullanıcı

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

ASELSAN. Mikrodalga ve Sistem Teknolojileri Grubu. Proje Yönetimi. Elif BAKTIR ASELSAN Mikrodalga ve Sistem Teknolojileri Grubu Ekim 2002 HIZMETE ÖZEL

ASELSAN. Mikrodalga ve Sistem Teknolojileri Grubu. Proje Yönetimi. Elif BAKTIR ASELSAN Mikrodalga ve Sistem Teknolojileri Grubu Ekim 2002 HIZMETE ÖZEL roje Yönetimi Elif BAKTIR ASELSAN Ekim 2002 Genel Tanitim Is Gelistirme lanlama Uygulama Kapanis Neden roje Yönetimi roje yönetiminin neden gerekli? Ürün gelistirilmesine, giderek çok farkli disiplinlere

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : SOSYAL BİLİMLERDE İSTATİSTİK Ders No : 000100 Teorik : Pratik : 0 Kredi : ECTS : Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar

DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar Zamanlama Kararları DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL Miktar kararları Ne zaman sipariş verilecek? kararıyla birlikte verilir. Bu karar, stok yönetimindeki ana kararlardan biridir. Ne zaman

Detaylı

Simulation. & modelling. İstanbul. Prof. Dr. A. Erkollar. erkollar@etcop.com

Simulation. & modelling. İstanbul. Prof. Dr. A. Erkollar. erkollar@etcop.com Simulation & modelling İstanbul 2015 Prof. Dr. A. Erkollar erkollar@etcop.com İçerik o İşletmelerdeki yapısal değişimler o İşletmelerin modellenmesi ve analizleri o Simulasyonun temelleri o Bu alandaki

Detaylı

NATRO SERVİS SEVİYESİ SÖZLEŞMESİ (NATRO SLAs NATRO SERVICE LEVEL AGREEMENTS)

NATRO SERVİS SEVİYESİ SÖZLEŞMESİ (NATRO SLAs NATRO SERVICE LEVEL AGREEMENTS) NATRO SERVİS SEVİYESİ SÖZLEŞMESİ (NATRO SLAs NATRO SERVICE LEVEL AGREEMENTS) Son revizyon tarihi: 28.06.2011 1. İş bu Sözleşme, NATRO tarafından sunulan muhtelif Web Barındırma ve Veri Merkezi Hizmetlerinin

Detaylı

Donanım Hizmetleri Şube Müdürlüğü 1

Donanım Hizmetleri Şube Müdürlüğü 1 Bilgisayarımızın bağlantılarını (Monitör-Mouse-Klavye ve Network) yaptıktan sonra Bilgisayarımızı Power(elektrik) düğmesinden açarak Şekil-1 deki ekran gelene kadar kesinlikle müdahale etmiyoruz. Bu ekranda

Detaylı

KLÜ İİBF-İŞLETME * KANTİTATİF KARAR VERME TEKNİKLERİ

KLÜ İİBF-İŞLETME * KANTİTATİF KARAR VERME TEKNİKLERİ SORU 1. ASMALI BAKKAL Asmalı Bakkal'ın sahibi Nuri Amca, bir hafta boyunca satacağı ekmeklere ilişkin olarak ekmek fırınına vereceği günlük sipariş miktarı için hafta başında karar vermek zorundadır. Bunun

Detaylı

BÖLÜM 4 FRONT DESK. ikonu tıklanarak seçilen filtrelerin temizlenmesi ve ekranın yeni bir arama işlemi için hazır hale getirilmesi sağlanır.

BÖLÜM 4 FRONT DESK. ikonu tıklanarak seçilen filtrelerin temizlenmesi ve ekranın yeni bir arama işlemi için hazır hale getirilmesi sağlanır. Genel olarak Resepsiyon tarafından kullanılacak fonksiyonlar bu bölüm altında toplanmıştır. Tüm işlemler operasyonel iş akışının gerektirdiği mantıksal bir diziliş ile sıralanmıştır. Aşağıda her bir TAB

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

HASTANELERDE KUYRUK VE RANDEVU SİSTEMİNİN ETKİNLİĞİ ÜZERİNE BİR ARAŞTIRMA: AFYON DEVLET HASTANESİ ÖRNEĞİ

HASTANELERDE KUYRUK VE RANDEVU SİSTEMİNİN ETKİNLİĞİ ÜZERİNE BİR ARAŞTIRMA: AFYON DEVLET HASTANESİ ÖRNEĞİ HASTANELERDE KUYRUK VE RANDEVU SİSTEMİNİN ETKİNLİĞİ ÜZERİNE BİR ARAŞTIRMA: AFYON DEVLET HASTANESİ ÖRNEĞİ Atilla KARAHAN * Koray GÜRPINAR ** Özet Sağlık hizmetlerinde organizasyonel ilerlemelere rağmen,

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

MIS 325T Servis Stratejisi ve Tasarımı Hafta 7:

MIS 325T Servis Stratejisi ve Tasarımı Hafta 7: MIS 325T Servis Stratejisi ve Tasarımı Hafta 7: Servis değerinin yaratılması, talep yönetimi, Servis kataloğu ve portföyünün yönetimi, SSA, OSA, Hazır bulunurluk ve kapasite yönetimi, BT servis süreklilik

Detaylı

VMware 4.0 vcenter Server Kurulumu

VMware 4.0 vcenter Server Kurulumu VMware 4.0 vcenter Server Kurulumu VMware ESX üzerinde sanal sunucu oluşturma makalemizde sizlere sanallaştırma teknolojilerinden birisi olan VMware ESX (vsphere) üzerinde sanal bir sunucunun nasıl oluşturulacağını

Detaylı

Sağlık Hizmeti Sistemlerinin Etkinliği: Bir Kamu Hastanesi ve Özel Hastane Karşılaştırması Bilgehan TEKİN 1

Sağlık Hizmeti Sistemlerinin Etkinliği: Bir Kamu Hastanesi ve Özel Hastane Karşılaştırması Bilgehan TEKİN 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(1): 483-506 Cankiri Karatekin University Journal of Institute of Social Sciences, 6(1): 483-506 Sağlık Hizmeti Sistemlerinin Etkinliği:

Detaylı

Çağrı Merkezi Gelen Çağrılarındaki Bekleme Süresinin Azaltılması: Akıllı Dış Arama Uygulaması

Çağrı Merkezi Gelen Çağrılarındaki Bekleme Süresinin Azaltılması: Akıllı Dış Arama Uygulaması Çağrı Merkezi Gelen Çağrılarındaki Bekleme Süresinin Azaltılması: Akıllı Dış Arama Uygulaması Murat Sayın 1 1 Kuveyt Türk Katılım Bankası, Ar-Ge Merkezi, 34394, Esentepe, İstanbul sayinmurat@gmail.com

Detaylı

Doç.Dr. Özlem İpekgil Doğan Araş Gör. Mert Topoyan

Doç.Dr. Özlem İpekgil Doğan Araş Gör. Mert Topoyan Doç.Dr. Özlem İpekgil Doğan Araş Gör. Mert Topoyan Neden Süreç Yönetimi? Örgütlerin çoğu geleneksel olarak fonksiyonel temelde yapılandırılmıştır. Tüm çalışmalar bağlı olunan fonksiyon içinde başlatılmakta,

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı