RADYOİZOTOPLARIN ÜRETİMİ VE RADYOTERAPİDE KULLANILMASI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "RADYOİZOTOPLARIN ÜRETİMİ VE RADYOTERAPİDE KULLANILMASI"

Transkript

1 T.C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ ANABİLİM DALI RADYOİZOTOPLARIN ÜRETİMİ VE RADYOTERAPİDE KULLANILMASI Hazırlayan: Ebru SEYREK Tez Danışmanı: Dr. Mustafa KARADAĞ Ankara

2 İÇİNDEKİLER BÖLÜM 1: RADYASYON Radyasyonun Tanımı ve Türleri Radyasyon Kaynakları Doğal Radyasyon Kaynakları Yapay Radyasyon Kaynakları Bozunum Türleri Alfa Bozunumu Beta Bozunumu Gama Bozunumu Elektromanyetik Radyasyonun Madde ile Etkileşimi Fotoelektrik Olay Compton Saçılımı Çift Oluşumu 17 BÖLÜM 2: RADYOAKTİF BOZUNMA Bozunma Sabiti Bozunma Faktörü Yarı Ömür Ortalama Yaşam Süresi Biyolojik Yarı Ömür Efektif Yarı Ömür Aktivite...20 BÖLÜM 3: RADYASYON BİRİMLERİ Röntgen REP RAD RBE REM Curie...23 Radyasyon Birimlerinin Çevrilmesi..23 BÖLÜM 4: RADYASYON DOZİMETRESİ (İZOMETRESİ)..25 BÖLÜM 5: RADYASYONUN BİYOLOJİK ETKİLERİ Radyasyonun Moleküler Düzeyde Etkileri Radyasyonun Hücresel Düzeyde Etkileri Radyasyonun Biyolojik Sistemler Üzerine Etkileri Hematopoetik Sistem Lenfatik Sistem Reprodüktif Sistem Ganstrointestinal Sistem Deri Göz..30 2

3 Merkezî Sinir Sistemi Diğer Organlar Doza Bağlı Etkiler Düşük Doz Radyasyonun Biyolojik Etkileri Genetik Etkiler Kanserojenik Etkiler Embriyo ve Fetus Üzerine Etkiler Yüksek Doz Radyasyonun Biyolojik Etkileri Akut Somatik Etkiler Kronik Somatik Etkiler...34 BÖLÜM 6: RADYOTERAPİ Radyoterapi Nedir? Radyoterapi Teknikleri Harici (Eksternal) Radyoterapi Dahili (İnternal) Radyoterapi İntrakaviter Tedavi İnterstisyel Tedavi Süperfisyel Tedavi Sistemik Selektif Radyoterapi Radyoterapinin Olası Yan Etkileri Kanda Görülen Yan Etkiler Ciltte Görülen Yan Etkiler Bölgesel Yan Etkiler Baş ve Boyun Bölgesi Radyoterapisindeki Olası Yan Etkiler Göğüs Kafesi Bölgesi Radyoterapisindeki Olası Yan Etkiler Mide ve Karın Bölgesi Radyoterapisindeki Olası Yan Etkiler..48 BÖLÜM 7: RADYONÜKLİDLERİN ÜRETİMİ Nükleer Reaktörler Nükleer Reaksiyonlar Fisyon (Bölünme) Füzyon (Birleşme) Nötron Yakalaması veya Aktivasyonu Transmutasyon Nükleer Reaktörler Yüklü Parçacık Hızlandırıcıları Lineer Hızlandırıcılar Siklotron Radyonüklid Jeneratörler...55 BÖLÜM 8: RADYOFARMASÖTİKLER Kısa Tarihçesi Tanımlama Radyoizotop Üretimi Seçilen Radyoizotopun elde Edilme Sorunları Hedef Seçimi Radyoaktivitenin Öngörülmesi Nükleer Reaksiyonlar Radyoizotopların Biyokimyası

4 Radyoizotopun Bağlı Olduğu Bileşiğin Kimyası Kontrol Radyofarmasötiklerin Hazırlanması Kalite Kontrolü 60 KAYNAKÇA..64 4

5 BÖLÜM 1: RADYASYON 1.1. RADYASYONUN TANIMI VE TÜRLERİ Radyasyon, iç dönüşüm geçiren atomlar tarafından yayımlanan, boşlukta ve madde içerisinde hareket edebilen enerji olarak tanımlanır. Yayımlayan kaynağın özelliğine bağlı olarak bu enerji parçacıklar veya elektromanyetik dalgalar tarafından taşınabilir. Radyasyonu tanımlamada üç ana parametre kullanılır (Şekil 1). Enerjisi (düşük ve yüksek enerjili radyasyon ) Türü (parçacık radyasyonu ve elektromanyetik radyasyon) Kaynağı (doğal ve yapay radyasyon kaynakları) Radyasyon Parçacık Radyasyonu Elektromanyetik Radyasyon Alfa Beta Nötron Gama X ışınları Mor ötesi Görünür ışık Kızıl ötesi Radyo dalgaları Şekil 1.1. Radyasyonun çeşitleri. Yüksek enerjili radyasyon iyonize radyasyon olarak da tanımlanır ve atomdan elektron koparabilen dolayısıyla atomu iyonize edebilen radyasyon türüdür. Bunlar: Alfa, Beta, Gama ve X-Işınları dır. Düşük enerjili ya da iyonize olmayan radyasyon ise etkileştiği materyal içindeki atomları yeteri kadar enerjisi olmadığı için iyonize edemez ve sadece uyarmakla yetinir. Mikrodalgalar, görünür ışık, radyo dalgaları, kızılötesi ve (çok kısa dalga boyluları hariç olmak üzere) morötesi ışık iyonize olmayan radyasyona örnektir. Elektromanyetik spektrumu oluşturan bütün radyasyonlarda (Şekil 2) enerji, yüksüz ve kütlesiz fotonlar tarafından taşınmaktadır. Eğer iyonize edici elektromanyetik radyasyon çekirdekten yayımlanıyorsa gama, yörüngeden yayımlanıyorsa X-ışını adını alır. 5

6 Şekil 1.2. Elektromanyetik radyasyonun enerji spektrumu RADYASYON KAYNAKLARI Yeryüzündeki tüm canlılar ve cansızlar havada, suda, toprakta, hatta kendi vücutları içerisindeki doğal radyasyon kaynakları ve bunlara ek olarak insanlar tarafından üretilen yapay radyasyon kaynaklarının her gün ışınımına maruz kalmaktadırlar (Şekil 3). Şekil 1.3. Radyasyon kaynakları. 6

7 İnsanoğlu var oluşundan bu yana sürekli olarak radyasyonla iç içe yaşamak zorunda kalmıştır. Dünyanın oluşumuyla birlikte tabiatta yerini alan çok uzun ömürlü (milyarlarca yıl) radyoaktif elementler yaşadığımız çevrede normal ve kaçınılmaz olarak kabul edilen doğal bir radyasyon düzeyi oluşturmuşlardır. Geçtiğimiz yüzyılda bu doğal düzey, nükleer bomba denemeleri ve bazı teknolojik ürünlerin kullanımı ile bir hayli artış göstermiştir. Maruz kalınan doğal radyasyon seviyesinin büyüklüğünü belirleyen birçok neden vardır. Yaşanılan yer, bu yerin toprak yapısı, barınılan binalarda kullanılan malzemeler, mevsimler, kutuplara olan uzaklık ve hava şartları bu nedenlerden bazılarıdır. Yağmur, kar, alçak basınç, yüksek basınç ve rüzgâr yönü gibi etkenler de doğal radyasyon seviyesinin büyüklüğünü belirler. Radyasyon kaynaklarını, doğal ve yapay olmak üzere, iki sınıfa ayırabiliriz DOĞAL RADYASYON KAYNAKLARI Doğal radyasyonun bir kısmını uzaydan gelen kozmik ışınlar oluşturur. Bu ışınların büyük bir kısmı dünya atmosferinden geçmeye çalışırken tutulurlar. Sadece küçük bir miktarı yerküreye ulaşır. Bir dağın tepesinde veya havada yol alan bir uçakta bulunan bir kişi, deniz seviyesinde bulunan bir kişiden çok daha fazla kozmik ışına maruz kalır. Bu yüzden bir pilot, uçuş süresi boyunca, deniz seviyesinde çalışan bir kişinin maruz kaldığı doğal radyasyon düzeyinden yaklaşık 20 kat daha fazla bir radyasyon dozuna maruz kalır. Günlük yaşantımızda, kozmik ışınlar nedeniyle maruz kaldığımız radyasyon dozunun dünya ortalaması 0,39 msv / yıl dır. Şekil 1.4. Kozmik ışınlardan bir saatte alınan radyasyon dozunun yüksekliğe göre değişimi. Fosil yakıtlar doğal ve uzun ömürlü radyoaktif elementler içerirler. Bu tür elementler yakıt içinde iken bir radyasyon tehlikesi yaratmazlar. Ancak fosil yakıtlar yakıldıklarında bu 7

8 elementler atmosfere yayılır ve daha sonra toprağa dönerek doğal radyasyon düzeyinde az da olsa bir artışa neden olur. Doğada mevcut kısa ömürlü radyoaktif elementlerin yaydığı gama ışınlarının da katkısıyla topraktan maruz kaldığımız radyasyon dozunun dünya ortalaması 0,46 msv / yıl dır. Vücudumuzda bulunan radyoaktif elementlerden (özelikle Potasyum 40 radyoaktif elementinden) dolayı da belli bir radyasyon dozuna maruz kalırız. Bir yıl boyunca bu şekilde maruz kaldığımız iç (dâhili) radyasyon dozunun dünya ortalaması 0,23 msv kadardır. Yiyecek, içecek ve teneffüs ettiğimiz havadan maruz kaldığımız dozun dünya ortalaması yaklaşık 0,25 msv / yıl dır. Özellikle kabuklu yiyecekler daha fazla radyoaktif madde içerirler ve bu ürünleri fazla miktarda tüketen insanlar bu ortalamanın üzerinde bir radyasyon dozu alırlar. Doğal radyasyon düzeyini arttıran en önemli sebeplerden biri, yer kabuğunda yaygın bir şekilde bulunan radyoaktif radyum elementinin (Ra 226 ) bozunması sırasında salınan radon gazıdır. Bu bozunma sırasında oluşan diğer radyoaktif maddeler toprak içerisinde kalırken maalesef radon toprak yüzeyine doğru yükselir. Eğer bu gaz, yayılmalar sonucu seyrelirse herhangi bir sorun oluşturmaz. Ancak, radon gazının yayıldığı yüzey üzerinde bulunan evlerde iyi bir havalandırma sisteminin olması gerekir. Böyle bir havalandırma yoksa radon gazı evin içinde dışarıdakinden yüz kat hatta bin kat daha fazla olacaktır. Bu gaz teneffüs edildiği takdirde akciğerlere geçici olarak yerleşip tüm dokuların radyasyona maruz kalmasına neden olabilir. Radon gazından dolayı dünya genelinde maruz kalınan ortalama doz 1,3 msv / yıl dır. Radon gazı hariç doğal radyasyonun sağlık üzerinde zararlı bir etkisi görülmez. Tablo 1.1 de doğal radyasyon kaynaklarının doğal radyasyon seviyesine katkıları oransal olarak gösterilmektedir. Tablo 1.2 de ise değişik bölgelerde ölçülen doğal radyasyon seviyeleri verilmektedir. 8

9 Tablo 1.1. Doğal radyasyon kaynaklarından maruz kalınan küresel radyasyon dozlarının oransal değerleri. Tablo 1.2. Bazı bölgelerdeki doğal radyasyon doz düzeyleri. Mersin (Akkuyu) Ankara Iğdır (Alican) Çanakkale Kars (Digor) Hindistan (Kerela) İran (Ramsar) Brezilya (Guarapari kumsalları) 0.53 msv/yıl 0.44 msv/yıl 0.88 msv/yıl 1.23 msv/yıl 1.58 msv/yıl msv/yıl msv/yıl msv/yıl YAPAY RADYASYON KAYNAKLARI Gelişmiş endüstriyel ekonomilerin ve yüksek yaşam standartlarının, doğada mevcut olmayan bazı radyasyon kaynakları kullanılmadan süreklilik gösterebileceğini düşünmek şimdilik pek mümkün gözükmemektedir. İşte bu yüzden insanoğlu, teknolojik gelişiminin gereği olarak, bazı radyasyon kaynaklarını yapay yollarla üretme ihtiyacı duymuştur. Bu kaynaklar, birçok işin daha iyi, daha kolay, daha çabuk, daha ucuz ve daha basit yapılmasına olanak sağlar. Bazı durumlarda ise alternatifleri yok gibidir. Yapay radyasyon kaynakları da tıpkı doğal radyasyon kaynakları gibi belli miktarlarda radyasyon dozuna maruz kalınmasına neden olurlar. Ancak bu doz miktarı, talebe bağlı olarak artsa da, doğal kaynaklardan alınan doza göre çok daha düşüktür. Doğal radyasyon kaynaklarının aksine tamamen kontrol altında olmaları da maruz kalınacak doz miktarı açısından önemli bir özelliktir. Tıbbi, zirai ve endüstriyel amaçla kullanılan X ışınları ve yapay radyoaktif maddeler, nükleer bomba denemeleri sonucu meydana gelen nükleer serpintiler, çok az da olsa nükleer güç üretiminden salınan radyoaktif maddeler ile bazı tüketici ürünlerinde kullanılan radyoaktif maddeler bilinen başlıca yapay radyasyon kaynaklarıdır. Tablo 1.3 de yapay radyasyon kaynaklarından maruz kalınan küresel radyasyon dozlarının oransal değerleri gösterilmektedir. Tablo 1.4 de doğal ve yapay radyasyon kaynaklarından maruz kalınan küresel radyasyon dozuna oransal katkıları gösterilmektedir. 9

10 Tablo 1.3. Yapay radyasyon kaynaklarından maruz kalınan küresel radyasyon dozunun oransal değerleri Tablo 1.4. Doğal ve yapay radyasyon kaynaklarının küresel radyasyon dozuna oransal katkıları Doğal ve yapay radyasyon kaynaklarından maruz kalınan radyasyon dozunun dünya ortalaması 2,7 msv/yıl'dır. Bu dozun, radyasyon kaynaklarına göre dağılımı ise aşağıdaki gibidir: Kozmik 0.39 msv Serpinti msv Gama 0.46 msv Mesleki msv İç 0.23 msv Atıklar msv Radon 1.30 msv Tüketici Ürünleri msv Tıbbi 0.30 msv 1.3. BOZUNUM TÜRLERİ Radyoaktif çekirdekler kendiliğinden bozunuma uğrarlar. Bu süreç üç şekilde gerçekleşebilir. Alfa ve beta bozunumlarında kararsız bir çekirdek, alfa ya da beta parçacıkları yayarak daha kararlı bir çekirdek haline gelmeye çalışır. Gama bozunumu ise çekirdeğin cinsi değişmeden uyarılmış bir durumdan taban duruma bozunmasıdır ALFA BOZUNUMU Çekirdeğin kararsızlığı hem proton hem de nötron fazlalığından ileri geliyorsa, çekirdek iki proton ve iki nötrondan oluşan bir alfa parçacığı yayımlayarak bozunur (Şekil 1.5). Böylece Denklem 1.1 de görüldüğü gibi bozunan çekirdeğin atom numarası 2, kütle sayısı ise 4 azalır. Rutherford alfa parçacığının gerçekte He çekirdeği olduğunu göstermiştir. Bu bozunumda proton ve nötron sayıları ayrı ayrı korunur. Ayrıca toplam enerji de korunmalıdır (Denklem 1.2). 10

11 Şekil 1.5. Alfa bozunumu. A Z X N A 4 ' 4 Z 2 X N 2 + He 2 (1.1) Q = Δmc 2 ' 4 = [ m( X )-m( X )-m( 2 He )].c 2 (1.2) Bozunum nedeniyle ortaya çıkan enerjinin büyük kısmını, momentumun korunumu 4 gereğince küçük kütleye sahip olan alfa parçacığı alır. 2 He çekirdeği yüksek enerjiye sahip olsa da ağır kütlesi nedeniyle menzili çok kısadır. Alfa bozunumu genellikle kütle numarası 190 dan büyük çekirdeklerde daha sık görülür. Enerji spektrumu kesiklidir ve 4 ile 10 MeV arasında değişim gösterir. Çünkü yüklü bir parçacık olduğundan içerisinden geçtiği maddenin elektronları ile yoğun bir şekilde etkileşir BETA BOZUNUMU Beta bozunumunun üç farklı türü vardır. Bunlar: β bozunumu: Eğer bir radyonüklidin kararsızlığı çekirdekteki nötron fazlalığından ileri geliyorsa, çekirdeğindeki enerji fazlalığını gidermek için nötronlardan birini proton ve elektron haline dönüştürür (Denklem 1.3). Proton çekirdekte kalırken, elektron hızla atomdan dışarı atılır. n p + e - + ν (1.3) Bu yüksek hızlı elektrona beta parçacığı (veya negatron) adı verilir. Bu şekilde beta emisyonu yapan radyonüklidin atom numarası bir artarak kendinden bir sonraki 11

12 elementin izobar atomuna dönüşür. Bu bozunumada kütle sayısı değişmediği için izobarik bozunma adı verilmiştir (Denklem 1.4). A X Z N A ' + 1 N 1 Z X + e - + ν (1.4) Şekil 1.6. Örnek bir β bozunumu. + β bozunumu: Atomun kararsızlığı nötron azlığından veya proton fazlalığından ileri geliyorsa protonlardan biri nötron ve pozitif yüklü elektrona (pozitrona) dönüşür (Denklem 1.5). p n + e + + ν (1.5) Nötron çekirdekte kalır, pozitron dışarı fırlatılır. Böylece pozitron yayımlayan radyonüklidin (Şekil 1.7) proton sayısı (atom numarası) bir eksilerek kendinden bir önceki elementin (izobar) atomuna dönüşür, fakat kütle sayısı değişmez (Denklem 1.6). A Z X N A ' 1 N+1 Z X + e + + ν (1.6) + Şekil 1.7. β bozunumu. 12

13 Elektron Yakalama Olayı: Çekirdek proton fazlalığından dolayı kararsız ise atomun çekirdeğe yakın (K, L) yörüngelerine yakın elektronlarından biri çekirdek tarafından yakalanır. Elektronla bir proton birleşerek nötron ve nötrino haline dönüşür (Denklem 1.7). Bu bozunumda çekirdekten parçacık salınmaz ancak pozitron bozunmasında olduğu gibi proton sayısı bir eksilir. Kütle numarası ise aynı kalır (Denklem 1.8). Bu olayda boşalan elektron yörüngesine üst yörüngelerdeki başka bir elektron geçer ve bremmstrahlung (frenleme) radyasyonu adı verilen x ışınları yayınlanır. p + e - n + ν (1.7) A X Z N + e - A ' 1 N +1 Z X + ν (1.8) Şekil 1.8. Elektron yakalama olayına bir örnek ( 7 Be ). Yukarı da bahsedilen her üç beta bozunumunda da proton ve nötron sayıları bir birim değişmesine rağmen kütle numarası sabit kalır. Ayrıca her üç bozunumda nötrino ve antinötrino denilen yüksüz ve kütlesiz parçacıkların yayımlandığı görülmektedir. Bu parçacıkların varlığı ilk olarak Pauli tarafından 1930 da önerilmiş ve daha sonra Fermi tarafından nötrino olarak adlandırılmışlardır. Beta bozunumunda yayımlanan elektronların enerjileri sürekli bir spektruma sahiptir (Şekil 1.9). 13

14 Şekil 1.9. β bozunumu sonrasında yayımlanan elektronların enerji spektrumlarına bir örnek ( 210 Bi ) GAMA BOZUNUMU Çekirdekteki enerji fazlalığı dolayısıyla veya nüklid bozunma olayı ile radyasyon yayınladıktan sonra çok defa hemen kararlı (temel enerji seviyesi) durumuna geçemez, bozunmada oluşan nüklid hala yarı kararlı durumdadır. Bu fazla kalan uyarılma enerjisini hemen elektromanyetik özellikte olan bir gama radyasyonu şeklinde yayımlar (Şekil 1.9). Bu şekilde bozunan yarı kararlı nüklidin atom ve kütle sayılarında bir değişme olmaz, bu nedenle izomerik bozunma adı verilmiştir. Şekil Gama bozunumu. Gama yayınlanmasının yarı ömrü diğer bozunumlarla kıyaslandığında çok kısadır, genellikle 10-9 saniyeden daha küçüktür, ancak saat, hatta gün mertebesinde yarı ömürlü gama yayınlanması da vardır. Enerji spektrumları ise kesiklidir. 14

15 1.4. ELEKTROMANYETİK RADYASYONUN MADDE İLE ETKİLEŞİMİ Gama ve X ışını gibi bütün elektromanyetik radyasyonlar birçok olayda parçacıklara benzer davranış gösterdiği için, çok küçük enerji paketleri anlamına gelmek üzere bu radyasyonların birim elemanına foton adı verilmiştir. Radyasyonun belli bir frekansı için bütün paketlerde taşınan enerji aynıdır ve E = h.ν (1.9) Denklem 1.9 daki gibi ifade edilir. Fotonlar, içinden geçtikleri ortamın (maddenin) atomları ile rasgele yaptıkları karşılıklı etkileşimler sonucunda ortama enerji bırakarak absorblanabileceği gibi saçılıma da uğrayabilirler. Elektromanyetik radyasyonun madde ile etkileşiminde rol oynayan en önemli üç olay Fotoelektrik Olay Compton Saçılımı Çift oluşumu olaylarıdır. Şekil Elektromanyetik radyasyonun alüminyum ile etkileşimi. 15

16 FOTOELEKTRİK OLAY Düşük enerjili bir foton genellikle içinden geçtiği ortamdaki atomların K veya L yörüngesindeki bir elektrona bütün enerjisini vererek onu pozitif yüklü çekirdeğin bağlayıcı kuvvetinden kurtarır. Dışarıya fırlatılan bu elektrona fotoelektron denir. Bu olay neticesinde oluşan elektron boşluğu dış yörüngedeki başka bir elektron tarafından doldurulur ve bu sırada X ışını yayımlanır. 0,5 MeV den daha küçük enerjili fotonların ağır elementler tarafından soğurulmasında bu olay oldukça önemlidir. Şekil Fotoelektrik olay. Bu olay sırasında gelen fotonun enerjisinin bir kısmı elektronu bağlı olduğu atomdan koparabilmek için harcanır, geri kalan kısmı ise koparılan elektrona kinetik enerji olarak aktarılır (Denklem 1.10). hν = E Bağlanma + E Kinetik (1.10) COMPTON SAÇILIMI Atoma gevşek olarak bağlanmış bir dış yörünge elektronu, enerjisi kendisine kıyasla çok daha büyük olan bir fotonla çarpışması sonucunda meydana gelen olaya Compton Saçılması denir (Şekil 1.13). Elektron kütleli bir parçacık olduğu için fotonun bütün enerjisini absorblaması momentumun korunumu gereği mümkün değildir. Dolayısıyla foton, enerjisinin bir kısmını elektrona aktarıp saçılıma uğrayarak yoluna devam eder. Foton ile elektron arasında oluşan açı fotonun enerjisine bağlıdır. Gelen fotonun dalgaboyu ile saçılan fotonun dalgaboyu arasındaki fark 16

17 Δλ = ' λ λ = h m c 0 (1 cosθ ) (1.11) Şekil Compton saçılması. Denklem 1.11 bağıntısı ile ifade edilir. Buradaki h/mc Compton dalgaboyu olarak adlandırılır. Enerjileri 0,5 2,0 MeV arasında olan fotonların hafif elementlerden oluşan ortamlar tarafından soğurulmasında bu olay diğerlerine göre daha önemlidir. Yüksek enerjili fotonlar enerjileri belirli bir seviyeye düşene kadar Compton saçılımına uğrarlar bu andan sonra da fotoelektrik olayla absorblanırlar. Çünkü sadece Compton saçılımı ile fotonlar tamamen soğurulamazlar ÇİFT OLUŞUMU Eğer, fotonun enerjisi yeteri kadar büyük ise ve bu foton atom çekirdeğinin çok yakınından geçerse, kütlesi olmayan fotonun enerjisinden çekirdek yakınında aynı anda biri negatif yüklü elektron diğeri pozitif yüklü pozitron olmak üzere iki parçacık yaratılır. Böylece elektromanyetik bir dalgadan madde oluşur. hν = m e+ + m e- + T e+ + T e- (1.12) 17

18 Şekil Çift oluşumu. Teorik olarak böyle bir çift oluşumunun meydana gelebilmesi için, (Denklem 1.12) göre fotonun enerjisinin en az = 1,022 MeV olması gerekir. Foton enerjisinin daha büyük olduğu durumlarda ise bu enerjinin artakalan kısmı elektron ve pozitrona kinetik enerji olarak aktarılır. Oluşan elektron, atomla serbest elektronlar gibi etkileşirken, pozitron ise bir yörünge elektronu ile birleşir ve zıt yönlü iki foton salarak yok olur. Bu foton ise fotoelektrik yolla soğurulur. Pratikte çift oluşumu 2 MeV den daha büyük enerjili fotonlar ve ağır elementler için göreceli olarak daha baskındır. 18

19 BÖLÜM 2: RADYOAKTİF BOZUNMA Radyoaktif bozunma spontan bir süreçtir. Fazla enerjisi bulunan bir çekirdeğin elementer veya elektromanyetik parçacıklar yayma yoluyla değişime uğramasıdır. Ne zaman daha stabil bir nüklide dönüşeceği kesin olarak bilinemez. Bu, daha ziyade olasılık hesapları ve ortalama bozunma hızları ile saptanır BOZUNMA SABİTİ ( λ ) İçinde N kadar radyoaktif atom bulunan bir örnekte t zamanı boyunca ortalama bozunma hızı λn dir. ΔN / Δt = λn λ, radyonüklid bozunma sabitidir. Her radyonüklid için bozunma hızı sabittir, yani ona özgüdür. Isı, basınç ve kimyasal olaylardan etkilenmez. Radyoaktif bozunmaya uğrayan atomların belirli bir fraksiyonunun birim zaman boyunca bozunma miktarını gösterir. λ nın birimi zaman -1 dir. Yani λ= 0,01 saniye ise ortalama olarak 1 saniyede atomların %1 i bozunmaya uğruyor demektir. Eşitlikteki eksi işareti atom sayısının zamana karşı azaldığını belirtmek içindir BOZUNMA FAKTÖRÜ (Decay Factor: DF) Zaman geçtikçe N sayıdaki radyoaktif atomlar azalmaya devam eder. Örneğin 1000 atomu bulunan bir radyonüklidin λ sı 0,1 ise 1 s sonra 900 atom, 1 s daha sonra 810 atom kalır. Böylece sıfıra doğru yaklaşırlar, ancak hiçbir zaman tam sıfır olmazlar. Bu durum matematiksel olarak aşağıdaki formülle hesaplanır: N t = N 0 e -λt N t : t zaman sonundaki atom sayısı N 0 : Başlangıçtaki atom sayısı e -λt : t zamanı sonunda kalan radyoaktif atom fraksiyonudur (buna bozunm faktörü de denir, DF) e : Doğal logaritma bazı 19

20 2.3. YARI ÖMÜR (t 1/2 ) Daha önce de belirtildiği gibi radyoaktif bozunma, bir örnekteki radyoaktivitenin belirli bir zamanda sabit bir fraksiyonunun kaybolmasıdır. Fiziksel yarı ömür ise radyonüklidin başlangıçtaki atom sayısının ya da aktivite düzeyinin %50 sine inmesi için geçen süredir (t p ). Yarı ömür ile bozunma sabiti arasındaki ilişki aşağıdaki şekilde gösterilir: t 1/2 = / λ veya λ = / t 1/2 Bozunma faktörü ise DF = e t/ t 1/2 olarak gösterilir ORTALAMA YAŞAM SÜRESİ Radyoaktif atomların bozunma hızları birbirinden çok farklıdır. Kimi çok hızlı bozunma gösterirken, bazıları çok uzun sürede bozunur. Bir nüklidin ortalama yaşam süresi (τ) kendine özgü olup, bozunma sabiti (λ) ile ilişkilidir. τ = 1/λ veya τ = 1,44 t 1/2 Bu formülde de görüldüğü gibi ortalama yaşam süresi yarı ömürden biraz daha uzundur. Bu kavram özellikle radyasyon dozimetre ölçümlerinde önemlidir BİYOLOJİK YARI ÖMÜR (t b ) Bir maddenin yarısının, normal eliminasyon yollarıyla vücuttan atılması için geçen süreye biyolojik yarı ömür denir. Bu, bir maddenin stabil ve radyoaktif hali için aynıdır, değişmez EFEKTİF YARI ÖMÜR (t e ) Fiziksel ve biyolojik yarı ömür göz önünde bulundurulduğunda doku tarafından absorbe edilen radyasyon miktarını belirler. 1 t e 1 = t p 1 + t b t e t t p p t + t b = veya b t b = t t p p t e t e 2.7. AKTİVİTE Bir radyonüklidin aktivitesi birim zaman başına bozulan atom sayısını gösterir. 20

21 A t = A 0 e -λt Aktivite de atom sayısındaki azalmayı gösterdiğinden bozunma formülü ile ifade edilir. Radyoaktivite birimi Becquerel olup (Bq) 1 saniyede 1 dizentegrasyon gösteren bozunma hızıdır. Diğer bir aktivite birimi de Curie dir (Ci). 1 Ci 1 saniyede 3, dizentegrasyon gösteren radyoaktivite miktarıdır. Spesifik Aktivite: Bir radyoaktif örnek, ilgili radyoaktif maddenin stabil izotoplarını da içerebilir. Örneğin içinde İyot 131 bulunan bir tüpte stabil bir izotop olan İyot 127 de bulunabilir. Bu gibi durumlara, yani bir radyoaktif maddenin stabil izotoplarının aynı ortamda bulunması durumunda bu stabil izotoplara taşıyıcı (carrier) adı verilir. Eğer örnekte stabil izotop yoksa örneğin taşıyıcısız (carrier-free) olduğu söylenir. Radyonüklidler üretim yöntemlerine göre carrier-free olabilir veya olmayabilir. Belirli bir hacimde bulunan radyoaktivitenin bu hacmin tümüne olan oranına spesifik aktivite adı verilir. Ci/g birimi ile gösterilir. Pek çok durumda spesifik aktivitenin yüksek olması istenir. Böylece orta derecede aktivite içeren ve miktarı çok az olan bir radyoaktif element hastaya herhangi bir farmakolojik etki olmadan verilebilir. Bir Örnek Problem: 14 Ocak saat 12:00 de 10 mci İyot 131 içeren bir şişedeki aktivite miktarı 16 Ocak saat 15:00 te ne kadar olur? Çözüm: t = 50 saat t 1/2 = 8,1 gün, yaklaşık 194 saat A 0 = 10 mci A t = A 0 e-λt -0, / 194 A t = 10 mci e A t = 10 mci 0,84 A t = 8,4 mci 21

22 BÖLÜM 3: RADYASYON BİRİMLERİ 3.1. RÖNTGEN Bir ortamda bulunan radyasyon düzeyini belirlemek için maruz kalınan radyasyon miktarı ölçülür. Bu, X veya gama ışınının havada neden olduğu iyonizasyon miktarıdır. 1 Röntgen (R) 0, gramlık havada 1 elektrostatik birimlik iyon oluşturan X veya gama ışını miktarıdır. Radyasyonun şiddetini (intensitesini) ölçmez, sayısal olarak ölçer. Mili ve mikro alt birimleri vardır. Ayrıca maruz kalma hızı olarak belirtilen bir birim vardır ki bu örneğin 1 R/dk ise 1 dk lık sürede oluşan iyonizasyon miktarını gösterir REP (ROENTGEN EQUIVALENT, PHYSICAL) [RÖNTGENİN FİZİKSEL EŞDEĞERİ] X ya da gama ışınının 1 gram havada oluşturduğu iyonizasyona eşdeğer iyonizasyonu 1 gram dokuda oluşturan radyasyon miktarıdır RAD (RADIATION ABSORBED DOSE) [ABSORBE EDİLEN RADYASYON DOZU] Radyasyona maruz kalan 1 gram materyalde absorbe edilen 100 erglik enerjiye1 rad denir. Herhangi bir radyasyonu ölçebilir. Radyasyonun şiddetini (intensitesini) veya sayısını ölçmez. Son zamanlarda uluslar arası sisteme göre (Systeme International, SI) rad yerine Gray birimi kullanılmaktadır. 1 Gray 1 kg materyal başına absorbe edilen 1 joule lük enerjiye eşittir. 1 Gray (Gy) = 100 rad 3.4. RBE [RÖLATİF BİYOLOJİK ETKİNLİK] Farklı radyasyon tiplerinin farklı biyolojik ortamlarda değişik etkiler gösterdiğini belirtmek için kullanılan bir terimdir. Yani absorbe edilen X ya da gama ışınının, eşdeğer biyolojik etki oluşturacak başka bir absorbe edilen radyasyona oranını ölçer. RBE = X veya gama ışınları ile oluşturulan doz (rad) İlgili ışın ile oluşturulacak doz (rad) 22

23 Örneğin, 0,05 rad lık alfa ışını 1 rad lık gama ışını ile eşdeğer biyolojik etkinlik oluşturur. Yani alfa ışınının RBE i = 1,00 / 0,05 = 20 dir. Fiziksel olarak farklı iyonize radyasyonların RBE i, iyonizasyon sayısına yani lineer enerji transferine (LET) bağlıdır. LET, iyonize parçacık yükü ve hızının bir fonksiyonu olduğundan X ya da gama ışınının biyolojik etkisi kadar etki oluşturmak için daha az alfa parçacığı gereklidir REM (ROENTGEN EQUIVALENT, MAN) [RÖNTGEN EŞDEĞERİ, İNSANDA] Rem, Rad olarak alınan dozun RBE çarpımına eşittir. X ve gama ışınları için Rem ve Rad eşittir. Rad, absorbe edilen radyasyon dozu; Rem, biyolojik doz birimidir. Radyasyon RBE Alfa 20 Beta 1 X ve Gama 1 SI e göre son zamanlarda Rem yerine Sievert (Sv) kullanılmaktadır. 1 Sievert, 100 Rem e eşittir. Röntgen ve miliröntgen en sık olarak alan ölçerlerde; Rad, dokuların aldığı radyasyon miktarını birim olarak ölçmede; Rem ise radyasyonla çalışan kişilerin maruz kaldıkları değerleri cep dozimetreleri ile ölçmede kullanılır CURIE (Ci) Radyoaktivite miktarını yani bir çekirdeğin bir başka çekirdeğe bozunmasını birim zaman başına ölçer. 1 saniyede 3, çözünme (dizentegrasyon) gösteren radyoaktivite birimine 1 Curie (Ci) denir. SI de Becquerel cinsinden ifade edilir. 1 saniyede 1 dizentegrasyon gösteren aktivite birimine 1 Becquerel (Bq) denir. Curie nin mili ve mikro gibi alt birimleri, Becquerel in mega ve giga gibi üst birimleri vardır. 1miliCurie (mci) = 37 megabecquerel (MBq) RADYASYON BİRİMLERİNİN ÇEVRİLMESİ Nükleer tıpta en sık yapılan çevirme işlemi aktivitenin, maruz kalma hızına (mr/saat) dönüştürülmesidir. n I γ mr / saat = 2 S 23

24 n = milicurie miktarı Iγ = mr/saat, 1 m uzaklıktan 1mCi için S = metre cinsinden uzaklık Her gama kaynağı için sabit bir Iγ değeri vardır. 24

25 BÖLÜM 4: RADYASYON DOZİMETRESİ (İZOMETRESİ) Radyonüklidler vücutta çok çeşitli şekillerde dağılım gösterirler. Genel olarak radyoaktivitenin büyük bir kısmının bulunduğu organa kaynak organ, absorbe ettiği radyasyonu ölçmek istediğimiz organa da hedef organ adı verilir. Nükleer tıp tetkiklerinde kullanılan radyoaktif maddelerin vücuda ve çeşitli organlara verdiği radyasyon (absorbe edilen doz) halen ABD deki MIRD (Medical Internal Radiation Dose) komitesinin önerdiği yöntemle hesaplanmaktadır. Bu yönteme göre enjekte edilen radyofarmasötiğin belirli bir organa verdiği radyasyon dozunu hesaplamada bazı faktörler göz önünde bulundurulur. Bunlar: Enjekte edilen aktivitenin miktarı Radyonüklidin yaydığı ışınların tipleri Radyonüklidin hedef organdaki tutulum oranı Hedef organın ağırlığı Radyonüklidin vücuttaki dağılım şekli Radyonüklidin efektif yarıömrü, gibi çeşitli biyolojik ve fiziksel faktörlerdir. Absorbe edilen doz şu formülle hesaplanır: D = ( Ã / m v ) Δ Φ D = Absorbe edilen doz (rad) Ã = Kümülatif aktivite (zaman integral aktivitesi) m v = Hesaplanan organın kütlesi (gram) Δ = Her bir nükleer transformasyon başına yayılan radyasyonun ortalama enerjisi Φ = Hedef organ tarafından absorbe olunan enerji fraksiyonu Kümülatif aktivite: Oluşan toplam nükleer transformasyon sayısıdır. Ã (μci) = 1,44 A (μci) T e T e = efektif yarıömür (saat) Δ = Her dizentegrasyonda yayılan enerji miktarıdır. Radyoaktif maddenin yaydığı, gerek penetre olabilen (X veya gama ışınları), gerekse penetre olmayan (alfa, beta ışınları, pozitronlar, konversiyon elektronları gibi) bütün enerjiler göz önünde bulundurulur. Bunların 25

26 hesaba katılabilmesi için oluşan tüm ışınların fraksiyonel bollukları (n i ) ve bunların ortalama enerjileri ( E i : mev ) bilinmelidir. Δ = 2,13 n i E i = (gram x rad) / (μci x saat) Belli başlı radyonüklidler için n i ve E i değerleri MIRD broşürlerinde bulunur. Φ = Hedef organın absorbe ettiği enerji fraksiyonudur. Bu fraksiyon kaynak organ tarafından yayılan radyasyon enerjisinin hedef organ tarafından absorbe edilen oranını gösterir. Penetre olmayan radyasyonlar 1 cm içinde tüm enerjilerini kaybettiklerinden, bunların absorbe edilen fraksiyonları daima 1 dir (%100). Penetre olan radyasyonlarda ise radyonüklidin kansantre olduğu organ ve çevre dokularda sadece kısmi absorbsiyon oluşur. Bunu hesaplamak için standart bir insan mankeninden yararlanılır. Φ değerleri de MIRD broşürlerindeki tablolarda mevcuttur. 26

27 BÖLÜM 5: RADYASYONUN BİYOLOJİK ETKİLERİ İyonize radyasyon, canlılarda moleküler ve hücresel düzeylerde fiziksel, kimyasal ve biyolojik çeşitli değişikliklere yol açar. Bu değişiklikler maruz kalınan radyasyonun cinsine, miktarına ve süresine göre geçici (onarılabilen) veya kalıcı (hasara yol açıcı) tipte olabilirler. X ve gama ışınları, alfa, beta parçacıkları, nötronlar gibi iyonize radyasyonlar, içinden geçtikleri hücrelerde önce moleküler düzeyde değişikliğe sebep olurlar. Hücre içerisindeki molekülleri ve atomları iyonize ederek ekzite hale geçirirler (uyarırlar). Bu şekilde fazla enerjilerini bu moleküllere aktararak temel seviyeye inmeye çalışırlar. İyonize radyasyonların gittikleri yol boyunca birim uzaklık başına neden oldukları enerji salınımlarına lineer enerji transferi (LET) denir. LET genellikle iyonize radyasyonun yükü ve hızının fonksiyonu olarak da kabul edilir. İyonize radyasyonun yükü artıp hızı azaldıkça LET i artar. Örneğin, alfa parçacığının hızı düşük, yükü ise 2 pozitiftir. Beta parçacığının ise hızı yüksek, yükü negatiftir. Bu nedenle alfa parçacığının LET i beta parçacığınınkinde daha yüksektir. Genel olarak LET arttıkça radyasyonun öldürücü (letal) etkileri de artar İYONİZE RADYASYONUN MOLEKÜLER DÜZEYDE ETKİLERİ Direkt (doğrudan) veya indirekt (dolaylı) yolla olur. Direkt yolda, değişikliğe uğrayan molekül doğrudan doğruya iyonize radyasyona maruz kalır ve ekzite duruma geçer. İndirekt yolla ise iyonize radyasyon sonucu oluşan bazı ara ürünler başka bir dizi kimyasal reaksiyona girerek diğer moleküllerin değişmesine neden olurlar (iyonize radyasyonun hücrede bol miktarda bulunan su molekülünün ayrışmasına sebep olarak serbest radikallerin oluşumuna yol açtığı düşünülmektedir). H 2 O H 2 O+ + e - H + + OH - iyonize radyasyon Burada oluşan hidrojen ve hidroksil grupları iyon olmayıp, kısa ömürlü ve oldukça reaktif radikallerdir. Bu radikallerin iyonizasyon sonucu kovalent bağları nedeniyle en dış elektron yörüngelerinde boşluklar vardır. Bu nedenle bu boşlukları doldurabilecek başka atomlar ararlar ve yüksek reaktiviteleri yüzünden tekrar birbirleriyle de birleşebilirler. 27

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Radyasyonun Keşfi 1895 yılında Wilhelm Conrad Röntgen tarafından X-ışınlarının keşfi yapılmıştır. Radyasyonun Keşfi 1896 yılında

Detaylı

İSG 514 RADYASYON GÜVENLİĞİ

İSG 514 RADYASYON GÜVENLİĞİ İSG 514 RADYASYON GÜVENLİĞİ İŞ SAĞLIĞI VE GÜVENLİĞİ TEZSİZ YÜKSEK LİSANS PROGRAMI Ders koordinatörü: Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr http://www.turgutozal.edu.tr/mgungormus/

Detaylı

Radyasyona Bağlı Hücre Zedelenmesi. Doç. Dr. Halil Kıyıcı 2015

Radyasyona Bağlı Hücre Zedelenmesi. Doç. Dr. Halil Kıyıcı 2015 Radyasyona Bağlı Hücre Zedelenmesi Doç. Dr. Halil Kıyıcı 2015 Radyasyon nedir? «Yüksek hızlı partiküller ya da dalgalar şeklinde yayılan enerji» Radyasyon kaynakları 1- Doğal kaynaklar 2- Yapay kaynaklar

Detaylı

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz ve Birimler Çekirdek Elektron Elektron Yörüngesi Nötron Proton Nükleon Atom 18.05.2011 TAEK - ADHK 2

Detaylı

RADYASYON GÜVENLİĞİ. Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB

RADYASYON GÜVENLİĞİ. Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB RADYASYON GÜVENLİĞİ Öğr.Gör. Şükrü OĞUZ KTÜ Tıp Fakültesi Radyoloji AB İyonlaştırıcı radyasyonlar canlılar üzerinde olumsuz etkileri vardır. 1895 W.Conrad Roentgen X ışınını bulduktan 4 ay sonra saç dökülmesini

Detaylı

Sağlık Fiziği. 1. Bölüm

Sağlık Fiziği. 1. Bölüm Sağlık Fiziği 1. Bölüm Tıbbi Uygulamalar Tanı Radyasyon başta Radyoloji olmak üzere, Nükleer Tıp, Radyoterapi ve çeşitli tıp dallarında tanı amaçlı kullanılmaktadır. En yüksek oranda tanı amaçlı kullanımı

Detaylı

RADYASYON VE RADYASYONDAN KORUNMA

RADYASYON VE RADYASYONDAN KORUNMA RADYASYON VE RADYASYONDAN KORUNMA Mehmet YÜKSEL Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı MADDENİN YAPISI (ATOM) Çekirdek Elektronlar RADYASYON NEDİR? Radyasyon; iç dönüşüm geçiren

Detaylı

27.01.2014. İçerik. Temel Atom ve Çekirdek Yapısı RADYASYON TEMEL KAVRAMLAR. Çekirdek. Nötronlar (yüksüz) Elektronlar (-1)

27.01.2014. İçerik. Temel Atom ve Çekirdek Yapısı RADYASYON TEMEL KAVRAMLAR. Çekirdek. Nötronlar (yüksüz) Elektronlar (-1) TEKNİKERLERE YÖNELİK BİLGİSAYARLI TOMOGRAFİ SİSTEMLERİNDE RADYASYONDAN KORUNMA VE PERFORMANS TESTLERİ BİLGİLENDİRME SEMİNERLERİ 24-25 OCAK 2014 RADYASYON TEMEL KAVRAMLAR Dr. Aydın PARMAKSIZ Türkiye Atom

Detaylı

İŞ SAĞLIĞI VE GÜVENLİĞİ

İŞ SAĞLIĞI VE GÜVENLİĞİ İSTANBUL ÜNİVERSİTESİ AÇIK VE UZAKTAN EĞİTİM FAKÜLTESİ İŞ SAĞLIĞI VE GÜVENLİĞİ İŞ HİJYENİ-4 PROF. DR. SARPER ERDOĞAN İş Hijyeni-4 Işınlar İyonizan olmayan ışınlar İyonizan ışınlar Eşik değerler 1 Işınlar

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Nükleer Tekniklerin Endüstriyel Uygulamalarında Radyasyondan Korunma. Prof.Dr.Ali Nezihi BİLGE İstanbul Bilgi Üniversitesi

Nükleer Tekniklerin Endüstriyel Uygulamalarında Radyasyondan Korunma. Prof.Dr.Ali Nezihi BİLGE İstanbul Bilgi Üniversitesi Nükleer Tekniklerin Endüstriyel Uygulamalarında Radyasyondan Korunma Prof.Dr.Ali Nezihi BİLGE İstanbul Bilgi Üniversitesi Endüstride Nükleer Teknikler Radyoaktif izleyiciler Radyasyonla Ölçüm Cihazları

Detaylı

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ ÖĞRETİMİ PLANLAMA VE DEĞERLENDİRME Dr. Yücel KAYABAŞI ÖLÇME ARACI Hazırlayan : Hasan Şahin KIZILCIK 98050029457 Konu : Çekirdek

Detaylı

AAPM NĠN TG-51 KLĠNĠK REFERANS DOZĠMETRĠ PROTOKOLÜ VE UYGULAMALARI

AAPM NĠN TG-51 KLĠNĠK REFERANS DOZĠMETRĠ PROTOKOLÜ VE UYGULAMALARI Çukurova Üniversitesi AAPM NĠN TG-51 KLĠNĠK REFERANS DOZĠMETRĠ PROTOKOLÜ VE UYGULAMALARI Mehmet YÜKSEL, Zehra YEĞĠNGĠL Lüminesans Dozimetri Kongresi IV Gaziantep Üniversitesi, 20-22 Eylül 2010 1 İÇERİK

Detaylı

Radyoaktif Çekirdekler

Radyoaktif Çekirdekler NÜKLEER TIP Tıpta radyoaktif çekirdeklerin kullanılması esasen 1920 lerde önerilmiş ve 1940 larda kullanılmaya başlamıştır. Nükleer tıp görüntülemede temel, hasta vücudunda bir gama aktif bölge oluşturmak

Detaylı

TIPTA RADYASYONDAN KORUNMA

TIPTA RADYASYONDAN KORUNMA TIPTA RADYASYONDAN KORUNMA 1. Ulusal Radyasyondan Korunma Kongresi İş Sağlığı ve Güvenliğinde Temel Radyasyondan Korunma Kursu Prof. Dr. Doğan BOR Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği

Detaylı

İÇİNDEKİLER ANA BÖLÜM I: RADYASYON, RADYOAKTİVİTE,VÜCUDA ETKİLER VE RİSK KAVRAMI...1. Bölüm 1: Radyasyonla İlgili Kısa Açıklamalar...

İÇİNDEKİLER ANA BÖLÜM I: RADYASYON, RADYOAKTİVİTE,VÜCUDA ETKİLER VE RİSK KAVRAMI...1. Bölüm 1: Radyasyonla İlgili Kısa Açıklamalar... İÇİNDEKİLER ANA BÖLÜM I: RADYASYON, RADYOAKTİVİTE,VÜCUDA ETKİLER VE RİSK KAVRAMI...1 Bölüm 1: Radyasyonla İlgili Kısa Açıklamalar...3 Bölüm 2: İyonlaştırıcı Radyasyonlar Vücudumuzu Nasıl Etkiliyor?...7

Detaylı

Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com

Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com BİTLİS EREN ÜNİVERSİTESİ FİZİK BÖLÜMÜ BÖLÜM SEMİNERLERİ 26.03.2014 Nükleer Spektroskopi Arş. Gör. Muhammed Fatih KULUÖZTÜRK fatih.fizik@gmail.com NÜKLEER SPEKTROSKOPİ Radyasyon ve Radyoaktivite Radyasyon

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

DIŞKAPI YILDIRIM BEYAZIT EĞİTİM VE ARAŞTIRMA HASTANESİ RADYASYON GÜVENLİK KOMİTESİ TEMEL RADYASYON BİLGİSİ TESTİ

DIŞKAPI YILDIRIM BEYAZIT EĞİTİM VE ARAŞTIRMA HASTANESİ RADYASYON GÜVENLİK KOMİTESİ TEMEL RADYASYON BİLGİSİ TESTİ DIŞKAPI YILDIRIM BEYAZIT EĞİTİM VE ARAŞTIRMA HASTANESİ RADYASYON GÜVENLİK KOMİTESİ TEMEL RADYASYON BİLGİSİ TESTİ 1. Elementlerin özelliklerini taşıyan en küçük yapı birimine... denir. A) Bileşik B) Molekül

Detaylı

RADYOTERAPİ TEDAVİSİNDE ÖLÇÜMÜN YERİ

RADYOTERAPİ TEDAVİSİNDE ÖLÇÜMÜN YERİ 1 RADYOTERAPİ TEDAVİSİNDE ÖLÇÜMÜN YERİ Fatih DOĞAN TÜBİTAK Ulusal Metroloji Enstitüsü PK. 54 41470 Gebze/KOCAELİ Tel: 0262 679 50 00 Tel: 0 554 251 82 68 E-Mail: f.dogan@windowslive.com ÖZET Bu çalışmada,

Detaylı

B unl a r ı B i l i yor mus unuz? MİTOZ. Canlının en küçük yapı biriminin hücre olduğunu 6. sınıfta öğrenmiştik. Hücreler; hücre zarı,

B unl a r ı B i l i yor mus unuz? MİTOZ. Canlının en küçük yapı biriminin hücre olduğunu 6. sınıfta öğrenmiştik. Hücreler; hücre zarı, MİTOZ Canlının en küçük yapı biriminin hücre olduğunu 6. sınıfta öğrenmiştik. Hücreler; hücre zarı, sitoplazma ve çekirdekten meydana gelmiştir. Hücreler büyüme ve gelişme sonucunda belli bir olgunluğa

Detaylı

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir.

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. İş Sağlığı ve Güvenliği İşyeri ortamlarında, çalışanların sağlığını ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. Çalışanların sağlığı ve güvenliğin bozulması

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumları Daire Başkanlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 12. GRUP:

Detaylı

ÇALIŞTAY İŞ SAĞLIĞI VE GÜVENLİĞİNDE RADYASYONDAN KORUNMANIN YERİ VE ÖNEMİ. Prof. Dr. Doğan Bor

ÇALIŞTAY İŞ SAĞLIĞI VE GÜVENLİĞİNDE RADYASYONDAN KORUNMANIN YERİ VE ÖNEMİ. Prof. Dr. Doğan Bor ÇALIŞTAY İŞ SAĞLIĞI VE GÜVENLİĞİNDE RADYASYONDAN KORUNMANIN YERİ VE ÖNEMİ 11, Ekim, 2014 Antalya Radyasyondan Korunma Uzmanlığı Eğitim programları ve Uygulamaları Prof. Dr. Doğan Bor RADYASYON Yaşamın

Detaylı

Radyasyon ve İnsan Sağlığı

Radyasyon ve İnsan Sağlığı Gökhan Özyiğit Gözde Yazıcı Radyasyon ve İnsan Sağlığı Bazı atomların çekirdekleri doğal veya yapay olarak stabil olmadığı için, fazla enerjilerini iyonlaştırıcı radyasyon şeklinde yayarak stabil hale

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

İçerik. İçerik. Radyasyon. Radyasyon güvenliği ve radyasyondan korunma yöntemleri

İçerik. İçerik. Radyasyon. Radyasyon güvenliği ve radyasyondan korunma yöntemleri İçerik Radyasyon güvenliği ve radyasyondan korunma yöntemleri Dr. Zeynep Yazıcı Uludağ Üniversitesi, Radyoloji AD Radyasyon ve iyonlaştırıcı radyasyon nedir? İyonlaştırıcı radyasyonun biyolojik İyonlaştırıcı

Detaylı

RADYASYON KAYNAKLARI VE RADYASYONDAN KORUNMA

RADYASYON KAYNAKLARI VE RADYASYONDAN KORUNMA RADYASYON KAYNAKLARI VE RADYASYONDAN KORUNMA SABRİ HIZARCI Türkiye Atom Enerjisi Kurumu Radyasyon Sağlığı ve Güvenliği Dairesi RADYASYON NEDİR? ENERJİDİR Yaşamımızın doğal bir parçasıdır. Radyasyon Türleri

Detaylı

Doç. Dr. Fadime Akman

Doç. Dr. Fadime Akman RADYOTERAPİNİN TÜMÖR ÜZERİNE ETKİSİ Dr. Fadime Akman DEÜTF Radyasyon Onkolojisi AD 2005 TÜMÖR HÜCRELERİ NELER YAPIYOR? Prolifere olan steril Veya farklılaşmış Dinlenme veya G0 ÖLÜ Radyasyonun etki mekanizmaları

Detaylı

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom KASET Röntgen filmi kasetleri; radyografi işlemi sırasında filmin ışık almasını önleyen ve ranforsatör-film temasını sağlayan metal kutulardır. Özel kilitli kapakları vardır. Kasetin röntgen tüpüne bakan

Detaylı

LENFATİK VE İMMÜN SİSTEM HANGİ ORGANLARDAN OLUŞUR?

LENFATİK VE İMMÜN SİSTEM HANGİ ORGANLARDAN OLUŞUR? LENFOMA NEDİR? Lenfoma, diğer grup onkolojik hastalıklar içinde yaşamın uzatılması ve daha kaliteli yaşam sağlanması ve hastaların kurtarılmaları açısından daha fazla başarı elde edilmiş bir hastalıktır.

Detaylı

RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK.

RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK. RADYASYON VE SAĞLIK A.HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK. RADYASYON ÇALIŞANLARI VE BİLİNMESİ GEREKENLER RADYASYON TANIMI: DALGA VE TANECİK ÖZELLİKTE UZAYDA DOLAŞAN ENERJİ PAKETİ.

Detaylı

Genellikle 50 yaş üstünde görülür ancak seyrekte olsa gençler de de görülme olasılığı vardır.

Genellikle 50 yaş üstünde görülür ancak seyrekte olsa gençler de de görülme olasılığı vardır. Erkek üreme sisteminin önemli bir üyesi olan prostatta görülen malign (kötü huylu)değişikliklerdir.erkeklerde en sık görülen kanser tiplerindendir. Amerika'da her 5 erkekten birinde görüldüğü tespit edilmiştir.yine

Detaylı

METASTATİK BEYİN TÜMÖRLERİ Hazırlayan: Türk Nöroşirürji Derneği Nöroonkoloji Eğitim ve Araştırma Grubu (TURNOG)

METASTATİK BEYİN TÜMÖRLERİ Hazırlayan: Türk Nöroşirürji Derneği Nöroonkoloji Eğitim ve Araştırma Grubu (TURNOG) METASTATİK BEYİN TÜMÖRLERİ Hazırlayan: Türk Nöroşirürji Derneği Nöroonkoloji Eğitim ve Araştırma Grubu (TURNOG) Metastatik tümörler en sık görülen beyin tümörleridir. Her geçen yıl çok daha fazla sayıda

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Nükleer reaktör türleri ve çalışma prensipleri Atomik boyuttaki parçacıkların yapısı Temel kavramlar Elektrostatiğin Temelleri,

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

Vücutta dolaşan akkan sistemidir. Bağışıklığımızı sağlayan hücreler bu sistemle vücuda dağılır.

Vücutta dolaşan akkan sistemidir. Bağışıklığımızı sağlayan hücreler bu sistemle vücuda dağılır. HODGKIN LENFOMA HODGKIN LENFOMA NEDİR? Hodgkin lenfoma, lenf sisteminin kötü huylu bir hastalığıdır. Lenf sisteminde genç lenf hücreleri (Hodgkin ve Reed- Sternberg hücreleri) çoğalır ve vücuttaki lenf

Detaylı

Kan Kanserleri (Lösemiler)

Kan Kanserleri (Lösemiler) Lösemi Nedir? Lösemi bir kanser türüdür. Kanser, sayısı 100'den fazla olan bir hastalık grubunun ortak adıdır. Kanserde iki önemli özellik bulunur. İlk önce bedendeki bazı hücreler anormalleşir. İkinci

Detaylı

Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri. Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası

Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri. Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası İÇERİK - İYONLAŞTIRICI RADYASYON Endüstriyel Uygulamalar Medikal Uygulamalar Diğer

Detaylı

Yeni bir radyoterapi yöntemi: Hadron terapi

Yeni bir radyoterapi yöntemi: Hadron terapi Yeni bir radyoterapi yöntemi: Hadron terapi Hadron terapi, nükleer kuvvetlerle (yeğin kuvvet) etkileşen parçacıkları kullanarak yapılan bir radyasyon tedavi (ışın tedavisi) yöntemidir. Bu parçacıklar protonlar,

Detaylı

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek GÜNEŞ 1- Büyüklük Güneş, güneş sisteminin en uzak ve en büyük yıldızıdır. Dünya ya uzaklığı yaklaşık 150 milyon kilometre, çapı ise 1.392.000 kilometredir. Bu çap, Yeryüzünün 109 katı, Jüpiter in de 10

Detaylı

GÜNEŞ ENERJİSİ VE FOTOVOLTAİK PİLLER SAADET ALTINDİREK 2011282004

GÜNEŞ ENERJİSİ VE FOTOVOLTAİK PİLLER SAADET ALTINDİREK 2011282004 GÜNEŞ ENERJİSİ VE FOTOVOLTAİK PİLLER SAADET ALTINDİREK 2011282004 GÜNEŞİN ÖZELLİKLERİ VE GÜNEŞ ENERJİSİ GÜNEŞİN ÖZELLİKLERİ Güneşin merkezinde, temelde hidrojen çekirdeklerinin kaynaşmasıyla füzyon reaksiyonu

Detaylı

KEMOTERAPİ NASIL İŞLEV GÖRÜR?

KEMOTERAPİ NASIL İŞLEV GÖRÜR? KEMOTERAPİ NEDİR? Kanser hücrelerini tahrip eden kanser ilaçları kullanılarak yapılan tedaviye kemoterapi denir. Bu tedavilerde kullanılan ilaçlara antikanser ilaçlar da denir. Kanserin türüne göre kemoterapinin

Detaylı

HODGKIN DIŞI LENFOMA

HODGKIN DIŞI LENFOMA HODGKIN DIŞI LENFOMA HODGKIN DIŞI LENFOMA NEDİR? Hodgkin dışı lenfoma (HDL) veya Non-Hodgkin lenfoma (NHL), vücudun savunma sistemini sağlayan lenf bezlerinden kaynaklanan kötü huylu bir hastalıktır. Lenf

Detaylı

RADYASYON Yrd. Doç. Dr. Aslı AYKAÇ. YDÜ Tıp Fakültesi Biyofizik AD

RADYASYON Yrd. Doç. Dr. Aslı AYKAÇ. YDÜ Tıp Fakültesi Biyofizik AD RADYASYON Yrd. Doç. Dr. Aslı AYKAÇ YDÜ Tıp Fakültesi Biyofizik AD Radyasyon uzayda ya da madde içinde parçacık ya da dalga biçiminde enerjinin yayılması olarak tanımlanır Radyoaktivite Doğal (Uranyum-238)

Detaylı

Prostat Kanserinde Prostat Spesifik Membran Antijen 177. Lu-DKFZ-617 ( 177 Lu-PSMA) Tedavisinde Organ ve Tümör Dozimetrisi: ilk sonuçlar

Prostat Kanserinde Prostat Spesifik Membran Antijen 177. Lu-DKFZ-617 ( 177 Lu-PSMA) Tedavisinde Organ ve Tümör Dozimetrisi: ilk sonuçlar Prostat Kanserinde Prostat Spesifik Membran Antijen 177 Lu-DKFZ-617 ( 177 Lu-PSMA) Tedavisinde Organ ve Tümör Dozimetrisi: ilk sonuçlar Nami Yeyin 1, Mohammed Abuqbeitah 1, Emre Demirci 2, Aslan Aygün

Detaylı

RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işınları Absorbsiyon ve saçılma Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak ABSORBSİYON VE SAÇILMA X-ışınları maddeyi (hastayı) geçerken enerjileri absorbsiyon (soğurulma) ve saçılma

Detaylı

Radyasyon Sağlığı ve Korunma

Radyasyon Sağlığı ve Korunma Radyasyon Sağlığı ve Korunma Arş.Gör. Yusuf ŞİMŞEK Öğr.Gör. Hacı DOĞAN Gazi Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Yusuf Şimşek (G.Ü. SHMYO) Radyasyon sağlığı 1 / 61 1 Radyasyon? 2 Radyasyon

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir.

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir. 4.HAFTA 2.1.3. NÜKLEER STABİLİTE Bulunan yarı ampirik formülle nükleer stabilite incelenebilir. Aşağıdaki şekil bilinen satbil çekirdekler için nötron sayısı N e karşılık proton sayısı Z nin çizimini içerir.

Detaylı

TOPRAK TOPRAK TEKSTÜRÜ (BÜNYESİ)

TOPRAK TOPRAK TEKSTÜRÜ (BÜNYESİ) TOPRAK Toprak esas itibarı ile uzun yılların ürünü olan, kayaların ve organik maddelerin türlü çaptaki ayrışma ürünlerinden meydana gelen, içinde geniş bir canlılar âlemini barındırarak bitkilere durak

Detaylı

RÖNTGEN FİZİĞİ. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİNE GİRİŞ VE RADYASYON RADYOLOJİ TANIMI ve Radyolojik görüntüleme yöntemleri ana prensipleri RADYOLOJİ BİLİMİNİN TANIMI Radyoloji

Detaylı

MEME KANSERİ. Söke Fehime Faik Kocagöz Devlet Hastanesi Sağlıklı Günler Diler

MEME KANSERİ. Söke Fehime Faik Kocagöz Devlet Hastanesi Sağlıklı Günler Diler MEME KANSERİ Söke Fehime Faik Kocagöz Devlet Hastanesi Sağlıklı Günler Diler KANSER NEDİR? Hücrelerin kontrolsüz olarak sürekli çoğalmaları sonucu yakındaki ve uzaktaki başka organlara yayılarak kötü klinik

Detaylı

KUTUP IŞINIMI AURORA. www.astrofotograf.com

KUTUP IŞINIMI AURORA. www.astrofotograf.com KUTUP IŞINIMI AURORA www.astrofotograf.com Kutup ışıkları, ya da aurora, genellikle kutup bölgelerinde görülen bir gece ışımasıdır. Aurora, gökyüzündeki doğal ışık görüntüleridir. Genelde gece görülen

Detaylı

Radyasyondan Korunma Prensipleri ve Yönetmelikler Dr. Emin GÜNGÖR

Radyasyondan Korunma Prensipleri ve Yönetmelikler Dr. Emin GÜNGÖR Radyasyondan Korunma Prensipleri ve Yönetmelikler Dr. Emin GÜNGÖR İçerik Radyasyon Nedir? Radyasyonun Biyolojik Etkileri Radyasyondan Korunma Yapay kaynaklardan toplum ışınlanmaları Radyasyon etkilerinin

Detaylı

RADYASYON GÜVENLİĞİ TÜZÜĞÜ

RADYASYON GÜVENLİĞİ TÜZÜĞÜ 2883 RADYASYON GÜVENLİĞİ TÜZÜĞÜ Bakanlar Kurulu Kararının Tarihi : 24/7/1985, No : 85/9727 Dayandığı Kanunun Tarihi : 9/7/1982, No : 2690 Yayımlandığı R. Gazetenin Tarihi : 7/9/1985, No : 18861 Yayımlandığı

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

RADYASYON MARUZİYETİ ve TEDAVİSİ

RADYASYON MARUZİYETİ ve TEDAVİSİ RADYASYON MARUZİYETİ ve TEDAVİSİ İçerik Radyasyon tanımı Radyoaktivite tanımı Radyasyonun madde ile etkileşimi Radyasyonun organizma ile etkileşimi Radyasyon güvenliği Radyasyona olası maruz kalınma durumları

Detaylı

GAZ, ISI, RADYASYON ÖLÇÜM CİHAZLARI

GAZ, ISI, RADYASYON ÖLÇÜM CİHAZLARI GAZ, ISI, RADYASYON ÖLÇÜM CİHAZLARI CO 262 CO ( KARBON MONOKSİT ) MONİTÖRÜ Karbon Monoksit ( CO ) 3. Grup Zehirli gaz olup, hemen her yangında ortaya çıkar. Kan zehiridir. Akciğerlerden hücrelere oksijen

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

TALASEMİDE OSTEOPOROZ EGZERSİZLERİ

TALASEMİDE OSTEOPOROZ EGZERSİZLERİ TALASEMİDE OSTEOPOROZ EGZERSİZLERİ DR. FZT. AYSEL YILDIZ İSTANBUL ÜNİVERSİTESİ, İSTANBUL TIP FAKÜLTESİ FİZİKSEL TIP VE REHABİLİTASYON ANABİLİM DALI Talasemi; Kalıtsal bir hemoglobin hastalığıdır. Hemoglobin

Detaylı

TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ 1 NİÇİN KORUYUCU GAZ KULLANILIR? 1- Ergimiş kaynak banyosunu, havada mevcut olan gazların zararlı etkilerinden

Detaylı

ORMANCILIK İŞ BİLGİSİ. Hazırlayan Doç. Dr. Habip EROĞLU Karadeniz Teknik Üniversitesi, Orman Fakültesi

ORMANCILIK İŞ BİLGİSİ. Hazırlayan Doç. Dr. Habip EROĞLU Karadeniz Teknik Üniversitesi, Orman Fakültesi ORMANCILIK İŞ BİLGİSİ Hazırlayan Doç. Dr. Habip EROĞLU Karadeniz Teknik Üniversitesi, Orman Fakültesi 1 Çevre Koşullarının İnsan Üzerindeki Etkileri Çevre: Bir elemanın dışında çeşitli olayların geçtiği

Detaylı

VÜCUT KOMPOSİZYONU 1

VÜCUT KOMPOSİZYONU 1 1 VÜCUT KOMPOSİZYONU VÜCUT KOMPOSİZYONU Vücuttaki tüm doku, hücre, molekül ve atom bileşenlerinin miktarını ifade eder Tıp, beslenme, egzersiz bilimleri, büyüme ve gelişme, yaşlanma, fiziksel iş kapasitesi,

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

1. ÜNİTE : HÜCRE BÖLÜNMESİ VE KALITIM

1. ÜNİTE : HÜCRE BÖLÜNMESİ VE KALITIM 1. ÜNİTE : HÜCRE BÖLÜNMESİ VE KALITIM 1 DNA (Deosiribo Nükleik Asit) Kalıtım maddesi hücre çekirdeğinde bulunur. Kalıtım maddesi iğ ipliği (Yumak) şeklinde bir görünümdedir. İğ ipliğindeki kalıtım maddesi

Detaylı

Hücrelerde gerçekleşen yapım, yıkım ve dönüşüm olaylarının bütününe metabolizma denir.

Hücrelerde gerçekleşen yapım, yıkım ve dönüşüm olaylarının bütününe metabolizma denir. METABOLİZMA ve ENZİMLER METABOLİZMA Hücrelerde gerçekleşen yapım, yıkım ve dönüşüm olaylarının bütününe metabolizma denir. A. ÖZÜMLEME (ANABOLİZMA) Metabolizmanın yapım reaksiyonlarıdır. Bu tür olaylara

Detaylı

3 )Peroksitlerle deney yapılırken aşağıdakilerden hangisi yapılmamalıdır?

3 )Peroksitlerle deney yapılırken aşağıdakilerden hangisi yapılmamalıdır? 1)Aşağıdakilerden hangisi kuvvetli patlayıcılar sınıfına girer? Dumansız barut Kibrit Roket yakıtı Havai fişek Dinamit** 2) Yanıcı sıvıları parlayıcı sıvılardan ayıran en önemli fark aşağıdakilerden hangisidir?

Detaylı

SİNÜS - AĞRI, BASINÇ, AKINTI

SİNÜS - AĞRI, BASINÇ, AKINTI SİNÜS - AĞRI, BASINÇ, AKINTI Yardım edin sinüslerim beni öldürüyor! Bunu daha önce hiç söylediniz mi?. Eğer cevabınız hayır ise siz çok şanslısınız demektir. Çünkü her yıl milyonlarca lira sinüs problemleri

Detaylı

HİDROJEN PEROKSİT, SAÇ BOYALARI ve KANSER

HİDROJEN PEROKSİT, SAÇ BOYALARI ve KANSER HİDROJEN PEROKSİT, SAÇ BOYALARI ve KANSER A)HİDROJEN PEROKSİT Hidrojen peroksit; ısı, kontaminasyon ve sürtünme ile yanıcı özellik gösteren, renksiz ve hafif keskin kokuya sahip olan bir kimyasaldır ve

Detaylı

İyonize Radyasyonun Biyolojik Etkileri. Biological Effects of Ionizing Radiation

İyonize Radyasyonun Biyolojik Etkileri. Biological Effects of Ionizing Radiation S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ T E K N İ K B İ L İ M L E R M E S L E K Y Ü K S E K O K U L U S U L E Y M A N D E M I R E L U N I V E R S I T Y T E C H N I C A L S C I E N C E S V

Detaylı

Kansız kişilerde görülebilecek belirtileri

Kansız kişilerde görülebilecek belirtileri Kansızlık (anemi) kandaki hemoglobin miktarının yaş ve cinsiyete göre kabul edilen değerlerin altında olmasıdır. Bu değerler erişkin erkeklerde 13.5 g/dl, kadınlarda 12 g/dl nin altı kabul edilir. Kansızlığın

Detaylı

Kanserin sebebi, belirtileri, tedavi ve korunma yöntemleri...

Kanserin sebebi, belirtileri, tedavi ve korunma yöntemleri... Kanser Nedir? Kanserin sebebi, belirtileri, tedavi ve korunma yöntemleri... Kanser, günümüzün en önemli sağlık sorunlarından birisi. Sık görülmesi ve öldürücülüğünün yüksek olması nedeniyle de bir halk

Detaylı

ERKEN ÇOCUKLUKTA GELİŞİM

ERKEN ÇOCUKLUKTA GELİŞİM 9.11.2015 ERKEN ÇOCUKLUKTA GELİŞİM Konular Doğum öncesi gelişim aşamaları Zigot Doğum öncesi çevresel etkiler Teratojenler Doğum Öncesi G elişim Anneyle ilgili diğer faktörler Öğr. Gör. C an ÜNVERDİ Zigot

Detaylı

HADRON TERAPİ: Kanser Tedavisinde Proton ve Çekirdek Demetlerinin Kullanımı

HADRON TERAPİ: Kanser Tedavisinde Proton ve Çekirdek Demetlerinin Kullanımı HUPP, 26.03.2013 HADRON TERAPİ: Kanser Tedavisinde Proton ve Çekirdek Demetlerinin Kullanımı Ümit KAYA TOBB Ekonomi ve Teknoloji Üniversitesi İÇERİK Giriş Tarihçe Radyoterapide Kullanılan Yöntemler Avantajlar

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ Van Sağlık Hizmetleri Meslek Yüksekokulu 2014-2015 Bütünleme Sınav Tarihleri ANESTEZİ

YÜZÜNCÜ YIL ÜNİVERSİTESİ Van Sağlık Hizmetleri Meslek Yüksekokulu 2014-2015 Bütünleme Sınav Tarihleri ANESTEZİ ANESTEZİ Yabancı Sistem Hastalıkları Klinik Anestezi-II Reanimasyon-II Meslek Etiği Biyoteknoloji Girişimcilik II Anestezi Cihaz ve Ekipmanları Anestezi Uygulama-II Enfeksiyonların Önlenmesinde Prensipler

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ Van Sağlık Hizmetleri Meslek Yüksekokulu 2014-2015 Final Sınav Tarihleri ANESTEZİ

YÜZÜNCÜ YIL ÜNİVERSİTESİ Van Sağlık Hizmetleri Meslek Yüksekokulu 2014-2015 Final Sınav Tarihleri ANESTEZİ ANESTEZİ Yabancı Sistem Hastalıkları Klinik Anestezi-II Reanimasyon-II Meslek Etiği Biyoteknoloji Girişimcilik II Anestezi Cihaz ve Ekipmanları Anestezi Uygulama-II Enfeksiyonların Önlenmesinde Prensipler

Detaylı

Rahim ağzı kanseri hücreleri doku kültürü mikroskopik görüntüsü.

Rahim ağzı kanseri hücreleri doku kültürü mikroskopik görüntüsü. Doç.Dr.Engin DEVECİ HÜCRE KÜLTÜRÜ Hücre Kültürü Araştırma Laboratuvarı, çeşitli hücrelerin invitro kültürlerini yaparak araştırmacılara kanser, kök hücre, hücre mekaniği çalışmaları gibi konularda hücre

Detaylı

PROSTAT BÜYÜMESİ VE KANSERİ

PROSTAT BÜYÜMESİ VE KANSERİ PROSTAT BÜYÜMESİ VE KANSERİ PROSTAT BÜYÜMESİ Prostat her erkekte doğumdan itibaren bulunan, idrar torbasının hemen altında yer alan bir organdır. Yaklaşık 20 gr ağırlığındadır ve idrar torbasındaki idrarı

Detaylı

Güneş Sistemi nin doğum öncesi resmi

Güneş Sistemi nin doğum öncesi resmi Yüzüğünüz süpernova patlamasının, akıllı telefonunuz beyaz cüce nin tanığı Güneş Sistemi nin doğum öncesi resmi Tabii o zaman bizler olmadığımızdan fotoğrafı kendimiz çekemeyeceğimize göre o resim yukarıdaki

Detaylı

RADYOTERAPİ CİHAZLARINDAKİ GELİŞMELER. Hatice Bilge

RADYOTERAPİ CİHAZLARINDAKİ GELİŞMELER. Hatice Bilge RADYOTERAPİ CİHAZLARINDAKİ GELİŞMELER Hatice Bilge KISA TARİHÇE 1895: X-ışınlarının keşfi 1913: W.E.Coolidge, vakumlu X-ışını tüplerinin geliştirilmesi 1931: Sikletronun Lawrence tarafından geliştirilmesi

Detaylı

ÇEVRESEL SİNİR SİSTEMİ SELİN HOCA

ÇEVRESEL SİNİR SİSTEMİ SELİN HOCA ÇEVRESEL SİNİR SİSTEMİ SELİN HOCA Çevresel Sinir Sistemi (ÇSS), Merkezi Sinir Sistemine (MSS) bilgi ileten ve bilgi alan sinir sistemi bölümüdür. Merkezi Sinir Sistemi nden çıkarak tüm vücuda dağılan sinirleri

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

Kazdağları/Edremit Ormanlık Alanlarında 137 Cs Kaynaklı Gama Doz Hızı Tahmini

Kazdağları/Edremit Ormanlık Alanlarında 137 Cs Kaynaklı Gama Doz Hızı Tahmini Kazdağları/Edremit Ormanlık Alanlarında 137 Cs Kaynaklı Gama Doz Hızı Tahmini Rukiye Çakır 1 ve Özlem Karadeniz 2 1 Dokuz Eylül Üniversitesi, Sağlık Bilimleri Enstitüsü, Medikal Fizik Anabilim Dalı, İzmir;

Detaylı

T.C. ÇEVRE VE ŞEHİRCİLİK BAKANLIĞI'

T.C. ÇEVRE VE ŞEHİRCİLİK BAKANLIĞI' ' İnsanlar üzerinde olumsuz etki yapan ve hoşa gitmeyen seslere gürültü denir. Özellikle büyük kentlerimizde gürültü yoğunlukları oldukça yüksek seviyede olup Dünya Sağlık Teşkilatınca belirlenen ölçülerin

Detaylı

Daha iyi bir yasam kalitesi için!

Daha iyi bir yasam kalitesi için! Daha iyi bir yasam kalitesi için! Dünya çapında patentli, üstün Alman teknolojisi ve işlev garantisi sunan TÜV onaylı ilk ve tek hava temizleme cihazı, DİKA A.Ş. güvencesiyle artık Türkiye de! TEMİZ HAVA

Detaylı

Kuramsal: 28 saat. 4 saat-histoloji. Uygulama: 28 saat. 14 saat-fizyoloji 10 saat-biyokimya

Kuramsal: 28 saat. 4 saat-histoloji. Uygulama: 28 saat. 14 saat-fizyoloji 10 saat-biyokimya HEMATOPOETİK SİSTEM Hematopoetik Sistem * Periferik kan * Hematopoezle ilgili dokular * Hemopoetik hücrelerin fonksiyon gösterdikleri doku ve organlardan meydana gelmiştir Kuramsal: 28 saat 14 saat-fizyoloji

Detaylı

Infrared Spektroskopisi ve Kütle Spektrometrisi

Infrared Spektroskopisi ve Kütle Spektrometrisi Infrared Spektroskopisi ve Kütle Spektrometrisi 1 Giriş Spektroskopi, yapı tayininde kullanılan analitik bir tekniktir. Nümuneyi hiç bozmaz veya çok az bozar. Nümuneden geçirilen ışımanın dalga boyu değiştirilir

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ Van Sağlık Hizmetleri Meslek Yüksekokulu 2014-2015 Bütünleme Sınav Tarihleri ANESTEZİ

YÜZÜNCÜ YIL ÜNİVERSİTESİ Van Sağlık Hizmetleri Meslek Yüksekokulu 2014-2015 Bütünleme Sınav Tarihleri ANESTEZİ YÜZÜNCÜ YIL ÜNİVERSİTESİ ANESTEZİ 08.00-08.50 Sistem Hastalıkları MYHST 120 Klinik Anestezi-II Anestezi Cihaz ve Ekipmanları Sınıfların Reanimasyon-II Biyoteknoloji Anestezi Uygulama-II Girişimcilik II

Detaylı

27.09.2012 RADYASYON YARALANMALARI. Çernobil Nükleer Santral Kazası. Ülkemizdeki Radyasyon Kazaları

27.09.2012 RADYASYON YARALANMALARI. Çernobil Nükleer Santral Kazası. Ülkemizdeki Radyasyon Kazaları RADYASYON YARALANMALARI Dr. DERYA YILMAZ 04.09.1209 PLAN Radyasyon kazaları Tanımlar Radyasyon klinik etkileri Hasta ve durum yönetimi RADYASYON KAZALARI Dünya genelinde 1944-2001 arası 420 radyasyon kazası

Detaylı

Beyin Omurilik ve Sinir Tümörlerinin Cerrahisi. (Nöro-Onkolojik Cerrahi)

Beyin Omurilik ve Sinir Tümörlerinin Cerrahisi. (Nöro-Onkolojik Cerrahi) Beyin Omurilik ve Sinir Tümörlerinin Cerrahisi (Nöro-Onkolojik Cerrahi) BR.HLİ.018 Sinir sisteminin (Beyin, omurilik ve sinirlerin) tümörleri, sinir dokusunda bulunan çeşitli hücrelerden kaynaklanan ya

Detaylı

MULTİPL MYELOM VE BÖBREK YETMEZLİĞİ. Dr. Mehmet Gündüz Ankara Üniversitesi Tıp Fakültesi Hematoloji B.D.

MULTİPL MYELOM VE BÖBREK YETMEZLİĞİ. Dr. Mehmet Gündüz Ankara Üniversitesi Tıp Fakültesi Hematoloji B.D. MULTİPL MYELOM VE BÖBREK YETMEZLİĞİ Dr. Mehmet Gündüz Ankara Üniversitesi Tıp Fakültesi Hematoloji B.D. Multipl Myeloma Nedir? Vücuda bakteri veya virusler girdiğinde bazı B-lenfositler plazma hücrelerine

Detaylı

MANYETİK REZONANS TEMEL PRENSİPLERİ

MANYETİK REZONANS TEMEL PRENSİPLERİ MANYETİK REZONANS TEMEL PRENSİPLERİ Dr. Ragıp Özkan Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Radyoloji ABD REZONANS Sinyal intensitesini belirleyen faktörler Proton yoğunluğu TR T1 TE T2

Detaylı

Cerrahi Hastada Beslenme ve Metabolizma. Prof.Dr. İsmail Hamzaoğlu

Cerrahi Hastada Beslenme ve Metabolizma. Prof.Dr. İsmail Hamzaoğlu Cerrahi Hastada Beslenme ve Metabolizma Prof.Dr. İsmail Hamzaoğlu Travma ve cerrahiye ilk yanıt Total vücut enerji harcaması artar Üriner nitrojen atılımı azalır Hastanın ilk resüsitasyonundan sonra Artmış

Detaylı

21.12.2015 Pazartesi İzmir Basın Gündemi

21.12.2015 Pazartesi İzmir Basın Gündemi 21.12.2015 Pazartesi İzmir Basın Gündemi MANİSA HABER Soğuklarla birlikte sinüzit vakalarında artış yaşanıyor Kulak Burun Boğaz Hastalıkları Anabilim Dalı Başkanı Doç. Dr. Ercan Pınar, havaların

Detaylı

Yaşlanmaya Bağlı Oluşan Kas ve İskelet Sistemi Patofizyolojileri. Sena Aydın 0341110011

Yaşlanmaya Bağlı Oluşan Kas ve İskelet Sistemi Patofizyolojileri. Sena Aydın 0341110011 Yaşlanmaya Bağlı Oluşan Kas ve İskelet Sistemi Patofizyolojileri Sena Aydın 0341110011 PATOFİZYOLOJİ Fizyoloji, hücre ve organların normal işleyişini incelerken patoloji ise bunların normalden sapmasını

Detaylı