AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ"

Transkript

1 AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a m a l a r ı» i s i m l i k i t a p t a n h a z ı r l a n m ı ş t ı r.

2 2. BÖLÜM: Temel Yapılar: Kümeler, Fonksiyonlar, Diziler, Toplamlar ve Matrisler 2.2. Küme İşlemleri Giriş İki küme birçok farklı şekilde birleştirilebilir. Mesela, okulunuzdaki matematik öğrencileri kümesi ve okulunuzdaki bilgisayar bilimleri öğrencileri kümesi ile başlayarak, matematik veya bilgisayar bilimleri öğrencileri kümesi, matematik ve bilgisayar bilimlerinde çift anadal yapan öğrenciler kümesi, matematik bölümünde olmayan öğrenciler kümesi vb. gibi kümeler oluşturulabilir.

3 2.2. Küme İşlemleri Giriş TANIM 1: A ve B kümeler olsun. A ve B kümelerinin birleşimi, A B olarak gösterilir ve ya A kümesinde ya da B kümesinde olan, veya her iki kümede de olan elemanlardan oluşur. Bir x elemanı ancak ve ancak x, A ya veya B ye ait olduğunda A ve B kümelerinin birleşiminin elemanıdır. Yani, A B = {x xϵa xϵb} ÖRNEK: {1,3,5} ve {1,2,3} kümelerinin birleşimi {1,2,3,5} olur; yani, {1,3,5} {1,2,3} = {1,2,3,5} ÖRNEK: Okulunuzdaki bilgisayar mühendisliği öğrencileri kümesi ile okulunuzdaki matematik bölümü öğrencileri kümelerinin birleşimi, okulunuzdaki öğrencilerden bilgisayar mühendisliğinde olanları veya matematik bölümünde olanları (veya her ikisinde birden olanları) içerir.

4 2.2. Küme İşlemleri Giriş TANIM 2: A ve B kümeler olsun. A ve B kümelerinin kesişimi A B olarak gösterilir ve A ve B kümelerinin her ikisinde birden olan elemanları içerir. Bir x elemanı ancak ve ancak x hem A nın elemanı hem de B nin elemanı ise A ve B kümelerinin kesişiminin elemanıdır. Bu A B={x xϵa^xϵb} demektir. A ve B birleşimini gösteren Venn Şeması A ve B kesişimini gösteren Venn Şeması

5 2.2. Küme İşlemleri Giriş TANIM 3: İki kümenin kesişimi boş küme ise bu iki küme ayrık kümedir. ÖRNEK: A={1,3,5,7,9} ve B={2,4,6,8,10} olsun. A B=Ø olduğundan, A ve B ayrık kümelerdir. TANIM 4: A ve B kümeler olsun. A fark B kümesi, A-B olarak gösterilir, A nın içinde olup da B nin içinde olmayan elemanlardan oluşan kümedir. A fark B aynı zamanda B nin A ya göre tümleyeni olarak adlandırılır. ÖRNEK: {1,3,5} ve {1,2,3} kümelerinin fark kümesi {5} tir; yani, {1,3,5}-{1,2,3}={5}. Bu sonuç, {1,2,3} ve {1,3,5} kümelerinin fark kümesi olan {2} den farklıdır.

6 2.2. Küme İşlemleri Giriş NOT: A ve B kümelerinin farkları A\B olarak da gösterilir. Bir x elemanı ancak ve ancak xϵa ve x B ise A fark B kümesinin elemanıdır. Bunun anlamı: A-B={x xϵa^x B} A-B taralı alana karşılık gelmektedir. Ā taralı alana karşılık gelmektedir.

7 2.2. Küme İşlemleri Giriş TANIM 5: U evrensel küme olsun. Bir A kümesinin tümleyeni, Ā olarak gösterilir, A nın U ya göre tümleyenidir. Dolayısıyla, A kümesinin tümleyeni U-A dır. Bir eleman ancak ve ancak x A ise, Ā nin elemanıdır. Diğer bir ifadeyle: Ā={xϵU x A}. ÖRNEK: A={a,e,i,o,u} (evrensel küme İngiliz alfabesindeki harfler olsun). O halde, A={b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z}. ÖRNEK: A 10 dan büyük pozitif tamsayılar kümesi olsun (evrensel küme tüm pozitif tamsayılardan oluşuyor). O halde, Ā={1,2,3,4,5,6,7,8,9,10}. A ve B nin farkını, A ve B nin tümleyeninin kesişimi olarak gösterebiliriz. Yani A-B=A B

8 Küme Özdeşlikleri ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

9 Küme Özdeşlikleri Dağılma Özelliği için bir üyelik tablosu

10 Genelleştirilmiş Birleşimler ve Kesişimler Kümelerin birleşimleri ve kesişimleri birleşme kanunlarını sağladıkları için, A B C kümesi A B C kümesi iyi tanımlanmış kümelerdir. Diğer bir deyişle, A, B ve C kümeler olduğu durumda notasyonda bir belirsizlik bulunmamaktadır. Yani, hangi işlemin daha önce yapılacağını belirtmek için parantez kullanmaya gerek yoktur. Çünkü A (B C) = (A B) C ve A (B C) = (A B) C dir. (a) A B C taralı alana karşılık gelmektedir. (b) A B C taralı alana karşılık gelmektedir.

11 Genelleştirilmiş Birleşimler ve Kesişimler ÖRNEK: A={0,2,4,6,8}, B={0,1,2,3,4}, ve C={0,3,6,9} kümeleri olsun. A B C ve A B C kümeleri nelerdir? ÇÖZÜM: A B C kümesi A, B ve C kümelerinden en az bir tanesinde bulunan elemanları içerir. Dolayısıyla, A B C={0,1,2,3,4,6,8,9}. A B C kümesi, A, B ve C kümelerinin üçünde birden bulunan elemanları içerir. Dolayısıyla, A B C={0}.

12 Genelleştirilmiş Birleşimler ve Kesişimler TANIM 6: Bir kümeler topluluğunun birleşim kümesi, koleksiyondaki kümelerden en az bir tanesinin elemanı olan unsurları içerir. A 1, A 2,..., A n kümelerinin birleşimini göstermek için şu gösterimi kullanırız: TANIM 7: Bir kümeler koleksiyonunun kesişim kümesi, topluluktaki kümelerden hepsinin birden elemanı olan unsurları içerir.

13 ALIŞTIRMALAR 1. Okulun bir kilometre uzaklığı çevresinde oturan öğrencilerin kümesi A ve okula yürüyerek gelen öğrencilerin kümesi B olsun. Aşağıdaki kümelerin içindeki öğrencileri tarif ediniz. A. A B B. A B C. A-B D. B-A

14 ALIŞTIRMALAR 1. Okulun bir kilometre uzaklığı çevresinde oturan öğrencilerin kümesi A ve okula yürüyerek gelen öğrencilerin kümesi B olsun. Aşağıdaki kümelerin içindeki öğrencileri tarif ediniz. A. A B Okulun bir kilometre çevresinde yaşayan ve okula yürüyerek gelen öğrencilerin kümesi B. A B Okulun bir kilometre çevresinde yaşayan veya okula yürüyerek gelen öğrencilerin kümesi (ya da ikisini de yapan) C. A-B Okulun bir kilometre çevresinde yaşayan ve okula yürüyerek gelmeyen öğrencilerin kümesi D. B-A Okula yürüyerek gelen öğrencilerin kümesi fakat okuldan bir kilometreden uzakta yaşayan öğrencilerin kümesi

15 ALIŞTIRMALAR 2. A={1,2,3,4,5} ve B={0,3,6} olsun. Aşağıdakileri bulunuz: A. A B B. A B C. A-B D. B-A

16 ALIŞTIRMALAR 2. A={1,2,3,4,5} ve B={0,3,6} olsun. Aşağıdakileri bulunuz: A. A B {0,1,2,3,4,5,6} B. A B {3} C. A-B {1,2,4,5} D. B-A {0,6}

17 ALIŞTIRMALAR 3. A={0,2,4,6,8,10}, B={0,1,2,3,4,5,6} ve C={4,5,6,7,8,9,10} olsun. Aşağıdakileri bulunuz: A. A B C B. A B C C. (A B) C D. (A B) C

18 ALIŞTIRMALAR 3. A={0,2,4,6,8,10}, B={0,1,2,3,4,5,6} ve C={4,5,6,7,8,9,10} olsun. Aşağıdakileri bulunuz: A. A B C {4,6} B. A B C {0,1,2,3,4,5,6,7,8,9,10} C. (A B) C {4,5,6,8,10} D. (A B) C {0,2,4,5,6,7,8,9,10}

19 ALIŞTIRMALAR 4. Aşağıdaki eşitlikleri biliyorsak A ve B kümeleri hakkında ne söyleyebilirsiniz? A. A B = A? B. A B = A? C. A-B = A? D. A B = B A? E. A-B = B-A?

20 ALIŞTIRMALAR 4. Aşağıdaki eşitlikleri biliyorsak A ve B kümeleri hakkında ne söyleyebilirsiniz? A. A B = A? B A B. A B = A? A B C. A-B = A? A B=Ø D. A B = B A? Hiçbir şey, çünkü her zaman doğru E. A-B = B-A? A=B

21 ALIŞTIRMALAR 5. A sonsuz bir küme ve B herhangi bir küme ise A B nin de sonsuz bir küme olduğunu gösteriniz.

22 ALIŞTIRMALAR 5. A sonsuz bir küme ve B herhangi bir küme ise A B nin de sonsuz bir küme olduğunu gösteriniz. Eğer A B kümesi sonlu olsaydı n tane doğal sayı için n elemanı olurdu. Fakat A nın eleman sayısı n den fazladır ve eleman sayısı sonsuzdur. Bu nedenle A B nin eleman sayısı da n den fazladır. Bu çelişkiden A B nin eleman sayısı da sonsuz olmalıdır.

KÜMELER. A = {x : (x in özelliği)} Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Küme oluşturur. Çünkü Kilis in üç tane ilçesi.

KÜMELER. A = {x : (x in özelliği)} Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Küme oluşturur. Çünkü Kilis in üç tane ilçesi. KÜMELER Canlı yada cansız varlıkların oluşturduğu iyi A = {a, b, {a, b, c}} ise, s(a) = 3 tür. tanımlanmış nesneler topluluğuna küme denir. 2. Ortak Özellik Yöntemi Kümenin elemanlarını, daha somut ya

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

Volkan Karamehmetoğlu

Volkan Karamehmetoğlu 1 Doğal Sayılar Tanımlar Rakam: Sayıları yazmaya yarayan sembollere denir. {1,2,3,4,5,6,7,8,9} Sayı: Rakamların çokluk belirten ifadesine denir. 365 sayısı 3-6-5 rakamlarından oluşmuştur. 2 Uyarı: Her

Detaylı

Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez. A kümesinin eleman sayısı s(a) ya da n(a) ile gösterilir.

Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez. A kümesinin eleman sayısı s(a) ya da n(a) ile gösterilir. KÜMELER Küme : Nesnelerin iyi tanımlanmış listesine küme denir ve genellikle A, B, C gibi büyük harflerle gösterilir. Kümeyi oluşturan öğelere, kümenin elemanı denir. a elemanı A kümesine ait ise,a A biçiminde

Detaylı

ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ İ ğ ç ğ ğ ç ç ğ İ ğ ğ İ ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ İ ğ İ ğ İ ğ İ İ ğ ç ç ç ğ ç ğ

ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ İ ğ ç ğ ğ ç ç ğ İ ğ ğ İ ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ İ ğ İ ğ İ ğ İ İ ğ ç ç ç ğ ç ğ İ İ İ İ ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ İ ğ ç ğ ğ ç ç ğ İ ğ ğ İ ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ İ ğ İ ğ İ ğ İ İ ğ ç ç ç ğ ç ğ ğ ç ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ğ ğ ğ ç ğ İç ğ ğ ğ ğ ç ç ğ ç ğ ç ğ ğ ğ ç ç

Detaylı

Ü Ü Ü Ü ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ü ç ç ç ç ç Ü ç ç Ü Ü Ü ç Ü ç ç Ü ç ç ç ç Ü Ü ç ç Ü ç ç ç ç Ü ç ç ç ç ç Ü ç ç ç ç ç Ü ç ç ç ç ç ç ç ç ç ç ç ç Ö ç Ö ç Ü Ü ç ç ç ç ç ç ç ç ç Ö ç ç ç ç Ö ç ç ç ç ç ç

Detaylı

Ğ Ğ Ü Ü ÜĞ Ö Ö Ç ç Ö ç

Ğ Ğ Ü Ü ÜĞ Ö Ö Ç ç Ö ç Ğ ç Ğ ç Ç ç Ö ç ç ç ç Ğ ç ç ç Ğ Ğ Ü Ü ÜĞ Ö Ö Ç ç Ö ç Ğ Ğ Ğ Ö Ö Ç ç Ö ç ç ç ç Ğ Ö Ö Ö Ö Ö ç Ö Ğ Ğ Ö Ö Ğ «Ğ Ç ç Ö ç ç ç Ö ç Ç Ğ Ğ Ğ ç Ğ Ğ ç Ğ Ö ç Ö ç Ğ Ü ÜĞÜ Ö ç Ö Ğ Ç Ö Ö ç Ö Ü Ö Ö ç Ö ç ç Ö ç ç ç Ö ç

Detaylı

Ğ Ğ Ü Ü Ç Ö Ö Ö Ö « Ğ ÖĞ Ü Ü Ü Ü Ç Ü Ç Ü Ç Ü Ü Ü Ç Ü Ü Ü Ü Ü Ü Ç Ğ Ğ Ö Ç Ğ Ğ ÖĞ Ç Ç Ç Ç Ç Ç Ğ ÖĞ Ö Ç Ç Ü Ç Ü Ü Ü Ö Ç Ç Ç Ğ Ö Ö « Ğ Ğ Ö «Ü Ö Ö Ü Ü Ğ ÖĞ Ü Ğ Ğ Ü Ö Ğ Ğ ÖĞ Ğ Ü Ğ Ö Ö Ö Ö Ü Ü Ü Ö Ğ Ğ ««Ö Ç

Detaylı

ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ Ü ğ ğ ç Ü ç ç ç ğ ç ğ ğ ğ ğ ğ ğ ğ ğ ç ç ç ğ ç ğ ç ç ç ğ ğ ğ ç ç ğ ğ ç ğ ğ ğ ğ ç ç ç ğ ç ğ ğ ç ç ğ ğ ç ğ ğ ğ ç ç ğ ç ğ ğ ç ğ ğ ç ğ ğ ğ ğ ç ç ğ ç ğ ç

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

1. ÜNİTE TAM SAYILAR KONULAR 1. SAYILAR

1. ÜNİTE TAM SAYILAR KONULAR 1. SAYILAR 1. ÜNİTE TAM SAYILAR KONULAR 1. SAYILAR 2. Doğal Sayılar 3. Sayma Sayıları 4. Tam Sayılar(Yönlü sayılar) 5. Tam sayılarda Dört İşlem 6. Tek ve çift sayılar 7. Asal Sayılar 8. Bölünebilme Kuralları 9. Asal

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin

Detaylı

BİRİNCİ BÖLÜM SAYILAR

BİRİNCİ BÖLÜM SAYILAR İÇİNDEKİLER BİRİNCİ BÖLÜM SAYILAR 1.1 Tamsayılarda İşlemler... 2 1.1.1 Tek, Çift ve Ardışık Tamsayılar... 5 1.2 Rasyonel Sayılar... 6 1.2.1 Kesirlerin Birbirine Çevrilmesi... 7 1.2.2 Kesirlerin Genişletilmesi

Detaylı

b Üslü Sayılara Giriş b İşlem Önceliği b Ortak Çarpan Parantezine Alma ve Dağılma Özelliği b Doğal Sayı Problemleri b Çarpanlar ve Katlar - Kalansız

b Üslü Sayılara Giriş b İşlem Önceliği b Ortak Çarpan Parantezine Alma ve Dağılma Özelliği b Doğal Sayı Problemleri b Çarpanlar ve Katlar - Kalansız 1 b Üslü Sayılara Giriş b İşlem Önceliği b Ortak Çarpan Parantezine Alma ve Dağılma Özelliği b Doğal Sayı Problemleri b Çarpanlar ve Katlar - Kalansız Bölünebilme Kuralları b Asal Sayılar, Asal Çarpanlar,

Detaylı

Ğİ İ ÖĞ Ü Ğ Ğ Ç ğ ÜÇÜ Ş Ç Ç Ğ Ğ Ğ ğ Ç Ç ğ Ç Ö ğ Ğ Ç ğ ÜÇÜ Ş ğ ğ Ğ Ğ» Ğ Ğ Ç ğ ÜÇÜ Ş Ç Ç ğ Ç ğ Ç Ğ Ğ Ğ Ç ğ Ğ Ç ğ ÜÇÜ Ş Ç Ğ Ğ Ğ Ş ĞĞ Ç Ğ ğ ğ ğ ğ İ ğ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ç ğ ğ ğ ğ ğ

Detaylı

Kümeler Tarihi Küme Nedir Kümeler Tarihçesi

Kümeler Tarihi Küme Nedir Kümeler Tarihçesi Kümeler Tarihi Küme Nedir Kümeler Tarihçesi İnternetten Alınmış Hazır Bilgidir 29.12.2009 Matematik dilinde birlik sağlama gereksinimi on dokuzuncu yüzyıl sonlarına doğru duyuldu. Bu işi İlk görenlerin

Detaylı

İ «Ğ İ ç İİ İ İ ç ç Ş ç ç Ü Ğ Ö İ İ Ö Ü İ İ İĞİ ç ç Ü Ü Ü ç ç İ Ü Ü ç ç ç ç ç ç ç ç ç ç ç ç ç İ ç ç ç İ İ İ İ ç ç Ü ç ç ç İ Ü ç ç ç İ ç ç ç ç ç ç » İ Ş ç İ İĞİ Ğ İ İ İ ç İ Ç Ş İ Ö Ö Ö Ö İ İ Ş Ü İ İ İ Ö

Detaylı

Kümenin özellikleri. KÜMELER Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Örnek: Kilis in ilçeleri

Kümenin özellikleri. KÜMELER Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Örnek: Kilis in ilçeleri Canlı yada cansız varlıkların oluşturduğu iyi tanımlanmış nesneler topluluğuna küme denir. KÜMELER urada x : ifadesi öyle x lerden oluşur ki diye okunur. iyi tanımlanmış: herkes tarafından kabul edilen

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE 2012 ÖNSÖZ Bu kitap Çanakkale Onsekiz Mart Üniversitesi Matematik Bölümünde lisans dersi olarak Cebirden

Detaylı

ö» Ğ Ğ Ö ö ö Ş Ğ ö ö Ö ö ö Ç ö Ö ÖÖ Ö ö ŞŞ Ş Ş ö Ş Ş Ç ö Ç Ğ Ğ Ö Ö Ç Ç ö Ö Ş Ş Ş ŞŞ Ç Ş Ö Ş ö «Ü Ö ö Ş ö Ö ö ö ö Ş Ş ö «Ğ ö ö Ş Ş ö ö ö Ç Ş Ş Ş Ö ö ö ö Ş Ğ Ş Ğ Ş ö Ü ö ö ö Ş Ş ö Ş Ç Ş ö ö Ş Ş Ö Ö ö ö Ç

Detaylı

Örnek...3 : 8 x (mod5) denkliğini sağlayan en küçük pozitif doğal sayısı ile en büyük negatif tam sa yısının çarpım ı kaçtır?

Örnek...3 : 8 x (mod5) denkliğini sağlayan en küçük pozitif doğal sayısı ile en büyük negatif tam sa yısının çarpım ı kaçtır? MOD KAVRAMI (DENKLİK) a ve b tam sayıları arasındaki fark bir m pozitif tam sayısına tam bölünebiliyorsa bu sayılara m modülüne göre denktir denir ve a b(modm) yazılır. Yani m Z +,m (a b) a b (mod m) dir

Detaylı

Ğ Ö ç ç Ö»» Ç ç Ş» Ğ Ğ Ö ç Ö»» Ç Ö Ç ç ÇÜ Ö Ç Ş Ş Ş Ğ Ğ Ö Ğ ç ç Ö ç ç Ş ç Ş ç Ö ç ç ç Ö Ş ç Ö ç Ş Ş «Ş ç ç ç Ş ç ç Ğ» ç Ç Ş Ş ç ç Ü Ş ç Ş ç Ş ç ç Ç ç ç Ş ç ç Ş Ç ç ç Ş ç Ş Ç Ğ ç Ş Ş ç ç ç ç ç ç ç ç ç»

Detaylı

Ğ Ğ Ü ğ ö Ü Ç Ç Ş Ş

Ğ Ğ Ü ğ ö Ü Ç Ç Ş Ş Ğ Ğ Ü ğ ğ ö ö Ş Ü Ş Ç Ğ Ğ Ü ğ ö Ü Ç Ç Ş Ş Ş ö ö ğ ö ğ ğ ö ö ö ö ğ ö ö ö ğ ğ ö ö Ğ ğ öğ Ğ ğ Ü ğ ğ ğ ğ ğ ö ö ğ ö ğ ğ ö ö ö ğ ö ö ğ ğ Ş ğ ö ğ ğ ö ğ ö ğ ğ ö ö ğ ö Ü ğ ö Ş ğ ö ğ ğ ğ ğ Ş Ğ ğ ö ö ğ ö ö ğ ö ğ

Detaylı

Ğ Ğ Ü Ü Ö Ü Ö Ö Ö Ü Ö Ü Ü Ü Ü Ü İ İ Ü Ü Ö Ö Ü Ö Ü Ö Ü Ö İ Ü Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ü Ö İ Ö Ü Ö İ Ö İ İ İ İ İ İ İ İ İ İ Ö Ö Ö Ö Ö Ö Ö İ Ü İ Ü İ İ İ İ İ İ İ Ö İ Ü İ İ İ Ö İ Ö Ö İ İ Ö Ö İ İ İ İ İ İ İ İ İ İ Ö

Detaylı

Ü Ğ Ğ Ş Ö Ü Ü Ğ Ğ ü ü ü ü ü Ö Ü ü ü ü Ş ü ü Ş Ş ü ü ü ü üü ü Ş ü ü ü ü ü ü ü Ç ü ü ü ü ü ü ü üü ü ü ü üü ü ü ü ü ü ü ü ü Ş ü ü Ö ü ü ü ü ü ü ü ü Ç Ş Ç üü Ş ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü Ş ü ü ü Ü ü ü

Detaylı

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ İ Ş Ş İ İ Ö İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ ğ Ö Ö Ç ğ ğ ğ ğ ğ Ü ğ İ ğ ğ Ç İ ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ş ğ ğ ğ Ü ğ ğ ğ ğ Ö ğ ğ Ö ğ ğ ğ

Detaylı

İ Ç Ü ö üğü İ ö üğü ü öğ ü ü ü ü Ö ği İ ü ö İ ğ Ğ Ü Ç ö üğü ö ü ü Ç ğ ü ğ Ş ğ ü ü ü ü ü ğ ö ü ü ü ü ü ö Ö Ş Ö ğ ö ü Ç ğ İ Ç Ü Ç ğ ğ Ü Ü ü «ü ö üğü İ Ü Ö Ü İ Ş İ Ü ü ö ü ö ğ ü İ «Ö ü ö ü İ ğ Ş ü Ş ö ö ü

Detaylı

ü ü ü ö ü ü Ö Ö Ö öğ öğ ü ü İ ç ö ü ü ü Ü ü ö ü ü ö ö ö ö ö ç ö ö ü ö ü İ Ö Ü ü ü ü ü ö ü ö ü ü ü ü ü ç ü ö ç Ö ü ç ö ö ö ü ü ö ö ö ç ü ç ö ç ö ö ü ö ö ç ü ç ç ö ü ü ü ü ö ü ü ö ü Ö Ö ö ü ü Ö ö ö ö ü ü

Detaylı

ü ü üğü ğ Ö ü ö üş ö İ ü ü üğü ş ğ ç İ ç Ş ç ş ğ ş ş ğ ç ö ç ğ ş ş ş ö ü ğ ş ğ ü ü üğü ü ğ ö ü ü üğü ş ğ ş ş ş ö ü ç ğ ö ü ğ ö ü ü üğü ş ö ğ ç ğ ü ü üğü ü ğ ü ü üğü ü ü ü üğ ü ğ ö ü ğ ş ö üş ü ü üğü ü

Detaylı

İ Ç Ü ş ö üü ş ş ö üü Ü ü ü ö ü ç ü ü ü Ö Ü Ü Ö ç ç ş ş ç ç ü İ ü ç Ü ç ş ö üü ö ü ü ç ş ş ü ş ş ç ş ş ü ü ü ç ü ş ü ç Ş ü Ü ç ü ü ü ç ş ş ö ş Ö ş Ö ş ö ü ç ş Ç Ü Ç ş Ç İ Ü İ Ü Ş ş ü ş ö çü ü Ç Ü ü ö ş

Detaylı

Ğ Ğ ö Ş Ş Ğ Ş Ş Ü Ş Ğ Ğ Ğ ö ö Ğ Ş Ş Ğ Ğ ö Ğ ö ö ö ö ö ö ö ö Ü Ş Ö Ö Ö Ş Ş Ç Ü ö Ü Ü Ğ ö «ö ö ö Ğ Ş ö ö ö ö ö ö ö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ö ö ö Ö Ö ö ö ö ö ö ö ö ö ö ö Ö Ö ö ö Ç Ö ö Ü ö

Detaylı

ç ç ö Ğ Ö Ş ö ü ü Ş ç ö ü ç ğ ü ç ç Ğ Ü Ü ÜĞÜ ç ö ö ü ç ü üç ç ğ ü ü Ş ğ ü ü üğü ç ö ö ü ç ü ö ç Ş Ş ü ü üğü Ğ Ğ Ş ü üğü Ğ ç ü ö ğ ü ö Ö Ü Ş ü ü ü Ğ ğ ü ö ğ ü ü üğü ğ Ö Ğ ğ ü ü ü ç ö ö ü ö ü ü ğ ç ç ö

Detaylı

Ç Ç ü Ş ç Ü İ İ İ İ İ Ü İ İ Ş ğ ü Ö ç ç ü ç İ Ü ç İ İ ü ç ü ç İç ö ö ö ö ü ü ü ü ü ü ö Ü İ Ö İ ç ö ğ ü ö ç ç ö ç ö ü ğ ğ Ş ç Ç Ç Ş ü ö ç ğ ç ü ü ü ö ö ü ö ü ü ü ğ ğ ç ğ ğ ü ü ü ç ö ğ ç ğ ö ğ ğ ğ ç ü ü

Detaylı

ö Ü Ü ö Ö ğ ğ ğ ö Ü Ş ö Ü Ğ ö Ü ö Ü ö ğ ö ğ ö ö ğ ğ Ş Ü ğ ö ğ ğ ğ ğ ğ Ş Ş ğ ö ğ ğ ğ ğ ğ ö ö Ş ğ Ç ğ Ç Ş ö Ç ö ğ Ç ğ ö ğ ö ö ğ ö ğ ö Ş ğ Ç ğ Ç ğ ğ Ç Ş ö ö ö ğ Ç Ş Ç ö ö ğ ğ ğ ğ Ü Ü ö ğ «ğ ğ ğ ö ö «ö ğ ğ

Detaylı

ü Ğ İ Ğ ü İ ç ü ü ü ç Ç ü ü ç Ç ü ü ç ü ü Ü Ç Ü ç ü ü ü ü ü ç Ç ü ü ç İ ü Ğ Ş İ İ ü Ğ İ Ğ ü İ Ö üçü ü Ö Ö ü Ö ü İ İ Ş Ğ İ İĞİ ü ü ü Ğİ İ Ğ İ Ğ ü Ö Ö Ü İĞİ ü Ü İ İ Ğİ ü ü Ğ İ İ İ İ İ İ ç ü ç ü ç ü ü ç ü

Detaylı

İ İ İ Ğ İ İ İ İ Ğ Ğ Ş Ç Ş Ö Ş Ç İ Ç İ Ç Ş Ç Ü İ İ İ Ş Ş Ş Ş Ö Ç Ş Ş Ğ Ş Ç Ö Ş Ö Ö İ Ş Ç Ş Ş Ç Ş Ğ Ğ Ğ Ç İ Ğ Ş Ş Ç Ç Ş İ Ç Ş Ş Ş Ş İ Ğ Ö Ö Ş Ç Ş Ç Ş Ş Ş Ü Ö Ö Ö Ö Ö Ç Ç Ç Ö Ş Ç Ö Ö Ş İ İ Ç Ş Ş Ğ Ü Ş İ Ö

Detaylı

İ Ç Ü ö üğü İ Ö ö üğü Ş ü öğ ü ç Ç ü ü ü Ç Ü ç ğ ç ğ Ğ ç Ş ğ ç ö ğ ğ ü ç Ü Ç ö üğü ö ü ü İİ Ç ğ ü ğ ç ğ ü ü ü ç ü ü Ş ü ğ ç ü ü ç ü ü ç ö Ö Ş Ö ğ ö ü ç ğ İ Ç Ü Ç ğ Ç ğ Ü Ü İ ü ç ğ ğ ğ ğ ğ ğ ç Ç ç ü ç Ş

Detaylı

Ü ş ğ ğ Ü ş Ç ğ ş ş Ç ğ ş Ü ğ Ü ş ğ Ü Ç ğ ğ Ü ğ ğ ğ ş ğ ğ ğ ş ş ğ ş ş ş Ç Ç Ö ş ğ ş ş ğ ş ğ ğ ş Ü Ç ğ ş ğ ş ş ğ Ü ğ ş ş ğ ş ş ş ş ş ş ğ ğ ş ş ş ş ş ş ş Ü ğ ş ş Ü Ç ğ Ç Ç ş ş ş ğ ş Ö ÇÜ Ö ş ğ Ö ş ş ğ ş

Detaylı

ç ü ü ç ç ş İ Ç Ü ş İ Ç Ü ç ş ü İ Ç Ü ş ş ç ş ü Ö ü Ö İş ş ç İ Ç Ü ş ş ç ü ç ş ş İ Ç Ü ş ç Ü İ Ç Ü İ Ç Ü ü ç ş ş ş İ Ç Ü ç ü ş İ Ç Ü İş ş ş ü ş İ Ç Ü ş ü ş üç ü ş ş ş ç ü ü ç ş ş ş ş ü ş ü ü ş ç ü ç ç

Detaylı

ç Ğ Ü ç ö Ğ «ö ç ö ç ö ç ç ö ç ç ö ö ö ç ç ç ç ö ç ç ö ç ç ç ö ö ö ç ç ç Ç Ö Ü ç ç ç ç ç ç ç Ü ç ç ö ö ç ç ç ö ç ç ç ö ö ç ç ö Ç ç ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ü ö ç ç ç ç ç Ç Ç ç ç Ç

Detaylı

ç ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ ğ ç ğ ğ ç ç ğ ğ ğ Ü ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ ğ ğ Ü ğ ğ ç ç ç ğ ç ğ ğ ç ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ğ ğ ğ ç ğ ç ğ Ü ğ ğ ğ ç ç ğ ç ğ Ü ç ğ ğ ğ ç Ü ç ç ç ç ğ ç ğ ğ

Detaylı

Ü İ İ İ İ ö İ ö ğ ğ Ü ö Ş Ç ğ İç Ş Ç ğ Ü ö İ İ ğ Ü ö ğ Ü ö İ İ Ş Ç ğ İ İ ğ Ü ğ ğ ğ ç ç ö ğ ö ö ğ ğ ğ ö ç ç Ç Ç ö Ö ğ ğ ç ç Ş ğ ğ Üç Ç ğ ç ö Ş Ç ğ ğ Ş Ü ğ ğ Ş ğ ç ç ç ğ ö ö ğ ö ö İ ç ç ğ ğ Ü ö İ İ ğ Ş ğ

Detaylı

Ç Ü ö ö Ü ö ç Ö Ü ç ö ç ç Ğ ç ç ç ö ö ç ç Ü ç ö ö ç ç ç ç ç ç ö Ö Ş Ö ö ç Ç Ü Ç Ç Ü Ü ö ç ö ç ç ç ç ö ç ç ç ö ç ö ö ö ç ö ö Ü ç çö çö Ü ç çö Ö ö ö çö ç Ü ö ç ç ç çö ç ç ç ö ç çö çö ö ö ö ç Çö çö çö ö ç

Detaylı

Ç ö Ü ğ ö Ş ç ç Ş Ü Ö Ü Ü ö Ü ğ ğ ö ö ç ç Ü ğ ç ç ğ ğ ğ Ü ğ ö ö Ş ö ç ğ ö ç ç ğ ç ç ö Ş Ş ö ğ ç Ç ç ö ö ç Ç ö ğ Ü ö ğ ğ ç ö ç ğ ç ğ ö ç ö ö Üç ğ ö ç ö ç ö ç ğ ö ğ ö ç Ç ğ ç ç ğ ö ö ç ç ç ğ ğ ç ğ ç ğ ç

Detaylı

İ İ İ İ İ İ İ İ İ İ Ö İ İ İ İ İ Ü Ç İ Ş Ş İ İ Ü İ İ İ İ İ İÇİ Ö Ö Ç Ç Ç İ Ü Çİ İ Ü Ü İ İ İ İ İ İ İİ İ Ç Ş İ İ İ İ Ü Çİ Ö İ Ü Çİ İ İ Ü İİ İ Ç Ö İ Ö İ Ç Ç İ Ç Ö İ İ İİ İ Ç Ç Ç Ü İ Ç İ Ç İ Ş Ç İ Ğ İ İ İ İ

Detaylı

Ç Ü ğ Ç ç Ğ ç Ü ç ğ ç ğ ğ ç ğ ç ç ğ ç ç Ö Ş Ö ğ ç ğ Ç Ü Ç ğ Ç ğ Ü Ü Ç Ü ğ ğ Ü ğ ç Ç ğ Ü ç ç ğ Ğ Ğ ç ç ğ ğ ğ ğ ğ Ğ Ğ Ğ Ğ Ğ Ş Ş Ç Ö Ö ç Ç ğ ç ç ğ ç ğ ç ç ç ğ ç ç ç Ü ç ç ç ğ Ö Ü Ç Ş Ş ç Ö ç ğ ğ ğ ç ğ ğ ğ

Detaylı

Ş İ İ ç İ İ İ İ ç Ş ü ü ü ü ç ü üç ü ü ü ç ü ü Ü İ Ğ Ş üç ü İ ü ü ü ç ü ç Ç ç İ ü üç ü Ç üç ü ç ç Ç ü Ç ç üç ü ç Ç ç ç ç ç Ğ Ğ ç İ ü ü ç ç ç ü ü ü Ü ç ç ü ç ç ü ü ü Ö ü ü ü ü Ü ü ü ç ü ç ç ü ü ü ü ç ü

Detaylı

Ç Ç ç Ğ ç Ö Ğ Ş ç Ö Ö Ğ Ğ Ö Ö Ç Ü ç Ç Ü ç Ö ç ç ç ç Ğ ç ç Ç Ç ç Ç Ü ç ç Ç ç ç ç Ö ç Ö Ö ç ç ç ç ç ç ç ç ç ç ç Ö Ş ç ç ç ç ç ç ç ç Ü ç ç Ü ç ç ç ç ç ç ç Ö Ç ç ç ç ç ç ç ç ç ç ç Ö ç ç Ğ Ç Ü ç ç Ç Ü ç ç Ç

Detaylı

İ Ç Ü ş ö ğ ş ö ğ Ü öğ ç ş Ö Ü ğ ç ö ç ş ş ğ Ğ ç ç ğ ğ ö ş İ ç Ü ç ş ö ğ ö ç ç ş ş İ ğ ş ğ ş ç ş ğ ş ç ş ğ ç ç ş ş ö ş Ö Ş Ö ğ ş ö ç ş ğ Ç Ü Ç ğ ş Ç ğ İ Ü İ Ü ö ş ş ş ğ ç ş ö ğ çö ğ ş ş ç ö ş ş ş ğ ç ş

Detaylı

Ş İ İ İ ç İ İ İ İ ç ç ç Ç ç ç ç ç İ Ö İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ö Ö ç ç ç ç Ö ç Ö ç ç ç ç ç ç ç Ç ç ç ç Ç ç ç ç ç ç Ç ç Ö ç ç ç ç Ç ç Ö Ç ç ç Ş ç ç Ç Ş ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

Ü Ö Ö ö ö Ü Ü Ö ö ç ç ö ç ö ç ç ö ö ö ö ö ç ö ö ç ç ç ç ç ç ö ö ö ö ç ç ö ç» ö ö ö ö ç ö ö ö ö ç ö ç ö ç ö ç ö ö ç ç ç ç ö ö ö ç ç ç ç ç ç ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ö ç ç ç ö ö ö ç ç ç ç ö ç ç ç ç

Detaylı

Ü Ü Ğ Ş Ş Ş Ş Ş Ü Ğ ç Ş Ğ Ü Ü Ğ Ü Ş Ö ç ç Ğ Ğ Ü Ş Ü Ş Ş ç ç Ç Ü Ş Ç Ç Ü Ş Ş Ü Ü Ü Ü Ü Ü ç Ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ş Ğ Ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ş ç ç ç Ç ç ç ç ç ç ç Ç ç Ç ç ç ç

Detaylı

Ğ ü ü ç ş ş ğ ğ ğ ğ Ö ü ğ ş ğ ü ş Ç ş ş Ç ş ü ü ü ğ ç ç ş ü ş ş Ç ş ü ü ü ü ğ ş ş ü ü ş ş ş ü ü ğ ü üğü ş ç ü ü Ç ç ğ ü ü üğü ğ ü ç ş ş ş ş ğ ç ü ü ü ş ş ş Ç ş Ç ğ Ç ğ Ç Ç ü ş ş ü Öğ ü ş ş ğ ç Ç Ç ş Ç

Detaylı

İ» Ö İ İ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ İ ö ö ç ğ ğ ğ ğ ğ Ö Ü Ü ğ ğ ğ ö ğ ğ ğ ğ ö ğ ğ İ İ İ İ ğ ğ ğ ö İ ğ ğ ğ ğ ğ ö ğ ğ ö ö ğ öğ ğ ğ ğ İ ö ç ç ğ ö ö ç ğ ç ç ğ ç ğ ö ç ğ ğ ğ ğ ğ ğ İ Ü Ş İ ö İ ğ ğ İ İ ğ ğ ğ ç ğ ğ

Detaylı

ğ Ş ğ ş ğ İ ö ç ö ö İ ğ ş ş ç ç ğ ç ğ ş ğ İ Ş Ü İş ö Ö ğ Öğ ş ğ ğ İ ö ö Çğ ö İ ö ç İ ş ş ş ç ş öğ ş Ş ğ ö ğ ş ö ğ İ ğ ö ş ş ş ğ ğ İ ş ğ çö ğ ğ ş ö öğ ç öği İ ğ ğ ğ ğ öğ ö ş ğ İ ç ş İ İ ğ ç İ İ Ö ÖĞ İ ğ

Detaylı

İ Ğ Ş İ» Ğ Ğ ö Ğ ö ö Ç ö Ç İ Ş ö ö ö ö ö ö ö ö ö ö ö Ç ö ö ö ö ö ö İ İ ö ö ö Ü ö ö ö ö ö ö ö Ş ö ö İ ö ö İ ö ö İ İ ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ç İ İ ö İ İ İ İ Ö İ Ç ö ö Ö Ç ö ö ö ö ö ö ö ö ö ö

Detaylı

Ğ Ğ Ö İ İĞİ» Çö İ İ İĞİ Ç İ İĞİ Ü İ İĞİ İ İ ö ö ö Ğ İ ç Ö Ö ö ö ö ç ç ö Ö ö ö ö ö ö Ö ç ç ç ç ç Ğ ç Ğ İ Çö öğ ö İ İ İ ç ö ö ç Ğ İ ö ö İ İĞİ İ İĞİ Ğ Ç Ğ ö ö ö Ğ ç Ö Ö ö ç ö Ö ö ö ç ö ö ö ç Ö ç ç ç ç ç Ğ

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır? www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne

Detaylı

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 9. Sınıf Matemat k Ders İşleme Defter KÜMELER - 1 Altın Kalem Yayınları Küme: B rb r nden farklı nesneler n oluşturduğu topluluklar küme şekl nde adlandırılır. Kümey oluşturan nesneler n y bel rlenm ş

Detaylı

Matematiksel İktisat-I Ders-1 Giriş

Matematiksel İktisat-I Ders-1 Giriş Matematiksel İktisat-I Ders-1 Giriş 1 Matematiksel İktisat: Matematiksel iktisat ekonomik analizlerde kullanılan bir yöntemdir. Bu analizde iktisatçılar iktisat ile ilgili bir bilimsel soruya cevap ararlarken

Detaylı