Zeki Optimizasyon Teknikleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zeki Optimizasyon Teknikleri"

Transkript

1 Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski bilgiye dayalı tahmin etme, eksik bilgiyi tamamlama gibi yeteneklerini makinelere kazandırmayı amaçlar. Birçok işlem ünitesinden (processing elements, units, neuron) oluşur. Birçok farklı alanda başarıyla uygulanmıştır. (İşaret tanıma, el yazısı tanıma, ileriye dönük tahminde bulunma, adaptif kontrol, gürültülü veya eksik bilgileri tanıma v.b.)

2 Yapay Sinir Ağları (Biyolojik nöron) İşlem birimlerine neuron (nöron) adı verilir. Her nöron bir gövde (body), akson (axon) ve çok sayıda dentrit ten (dendrites) oluşmaktadır. Bir nöron aktif (firing) veya pasif (rest) durumunda olabilir. Eğer toplam giriş değeri belirtilen eşik değerinden (threshold - bias) büyükse nöron aktif olur aksi takdirde pasiftir. Sinaps nöron ile başka bir nöron un dentrit i arasındaki boşluktur. Yapay Sinir Ağları (Yapay nöron) Node olarak adlandırılan birçok sayıda işlem ünitesinden oluşmaktadır. Her bir node girişlere ve çıkışlara sahiptir. Her node (nöron) sahip olduğu aktivasyon fonksiyonu (activation function) ile basit hesaplamalar yapar. Nöronlar aktif olmak için bir eşik değerine (treshold - bias) sahiptir. Nöronlar girişine gelen değerler için giriş fonksiyonuna sahiptir. (Genellikle girişlerin toplamı alınır) w 0 bias x w f : aktivasyon fonksiyonu Girişler x i w i h(w 0,w i, x i ) y = f( h) y x n w n h : w i ve x i birleştirir Çıkış 2

3 Yapay Sinir Ağları (Yapay nöron) Yapay sinir ağları ile biyolojik sinir ağları ANN Node lar giriş çıkış node fonksiyonu Bağlantılar Bağlantı gücü Biyolojik NN Hücre gövdesi Diğer nöronlardan işaret ateşleme frekansı ateşleme mekanizması Sinapslar Sinaptic gücü Yapay Sinir Ağları (Tarihçe) Walter Pitts & Warren McCulloch 943 yılında biyolojik nöronların ilk yapay modelini oluşturmuşlardır. Bütün mantıksal işlemler farklı eşik değerleri ve farklı ağırlıklar ile gerçekleştirilmiştir. Donald Hebb 949 yılında Hebb öğrenme kuralını bulmuştur. Eğer iki nöron aktifse ikisi arasındaki bağlantı güçlendirilir. Rosenblatt 958 yılında ilk perceptron u buldu ve öğrenme metodu geliştirdi. 960 yılında Widrow ve Hoff ADALINE ı geliştirdi. Türevlenebilir fonksiyonlarla gradiant descent tabanlı öğrenme kuralını budular. 3

4 Yapay Sinir Ağları (Tarihçe) 96 yılında Rosenblatt backpropagation öğrenme şemasını önerdi ancak ağın eğitiminde başarılı olamadı. Minsky ve Papert 969 yılında perceptron un bazı basit mantıksal işlemlerde l yetersiz olduğunu ğ göstermişlerdir. öt il Örneğin bir perceptron un XOR problemini çözemediği görüldü. Çok katmanlı ağ ile bu tür problemlerin çözülebileceği düşünüldü ancak nasıl eğitilebileceği konusunda çözüm bulunamadı. 980 li yıllarda bu iki problem çok katmanlı ve farklı ağ yapıları kullanılarak çözüldü. Günümüzde ANN diğer yapay zeka teknikleriyle (fuzzy logic, genetik algoritma) birlikte kullanılarak çok daha etkin çözümler ortaya koymaktadır. Yapay Sinir Ağları (Perceptron) Tek katmanlı bir işlem ünitesi. Perceptron tüm girişleri toplar ve eşik değeriyle karşılaştırır. Eğer sonuç eşik değerden (sign function için 0) büyükse değilse - değerini (sign activation function) çıkış olarak üretir. 4

5 Yapay Sinir Ağları (Perceptron) En çok kullanılan node fonksiyonları Step, if input > c a, diğer Ramp, if input > d a, if input < c a+(input-c)(b-a)/(d-c), diğer Yapay Sinir Ağları (Perceptron) En çok kullanılan node fonksiyonları Sigmoid f(x) = /(+e -x ) Gaussian 5

6 Yapay Sinir Ağları Diğer node fonksiyonları ψ ψ ψ ψ ψ ψ ψ ψ Yapay Sinir Ağları AND Perceptron girişler 0 veya ikiside ise çıkış birisi 0 ise çıkış 0 2-D giriş uzayı 4 olası data noktası threshold çizgi ile gösterilebilir. 6

7 Yapay Sinir Ağları OR Perceptron girişler 0 veya birisi ise çıkış ikiside 0 ise çıkış 0 2-D giriş uzayı 4 olası data noktası threshold çizgi ile gösterilebilir. Yapay Sinir Ağları (ANN Mimarileri) Komple bağlı ağlar (Fully connected networks) Her node diğer tüm node lara bağlıdır. Bağlantılar pozitif, negatif veya 0 olabilir. 7

8 Yapay Sinir Ağları (ANN Mimarileri) Katmanlı ağlar (Layered networks) Node lar katman ismi verilen alt gruplar halindedir. İleri katmandan geriye doğru bağlantı olamaz. Yapay Sinir Ağları (ANN Mimarileri) İleri beslemeli ağlar (Feedforward networks) Bağlantılar i.katmandaki bir node ile i+.katmandaki bir node arasında yapılabilir. En yaygın kullanılan ağ yapısıdır. 8

9 Yapay Sinir Ağları (Öğrenme Stratejileri) Denetimli öğrenme (Supervised learning) Ağa belirli giriş değeri için çıkış değerleri verilir. Nöronlar arasındaki ağırlıklar verilen giriş ve çıkış değerlerine göre yarlanır. Delta öğrenme kuralı ve geri yayılmalı (backpropagation) öğrenme denetimli öğrenmedir. Denetimsiz öğrenme (Unsupervised learning) Çıkış değerlerinin girilmesine gerek yoktur. Öğrenme süresince sadece örnek giriş değerleri verilir ve örnekler arasındaki ilişkiler ile sistemin kendi kendisine öğrenmesi sağlanır. Kohonen algoritması ve Adaptive Resonance Theory (ART) denetimsiz öğrenme metodunu kullanır. Destekleyici öğrenme (Reinforcement learning) Denetimli öğrenmenin farklı bir türüdür. Çıkış değerleri girmek yerine verilen giriş değerlerine göre çıkışı değerlendirerek öğrenmeyi sağlar.. Genetik Algoritmalar ve LVQ (Learning Vector Quantizer) ağı destekleyici öğrenme kullanır. Yapay Sinir Ağları (Öğrenme Stratejileri) Denetimli öğrenme (Supervised learning) Hatanın geri yayılımı Hata = t - o Eğitim seti: {(x m, t m ); m P} µ x in o - İstenen çıkış (denetmen) µ t out 9

10 Yapay Sinir Ağları (Öğrenme) Perceptron öğrenme kuralı w i+ = w i + w i x x 2 d w i = η * x i * (d - o) η = öğrenme oranı (0- arasında) w i = i.bağlantının ağırlık değeri w i = Ağırlık değişim değeri x i = i.girişe i i girilen iil değer dğ d = İstenen çıkış değeri o = Hesaplanan çıkış değeri x x 2 - w w w 0 ao Yapay Sinir Ağları (Öğrenme) x x 2 d (w,w 2 ) (w + w,w 2 + w 2 ) - Minimum hata x x 2 w w w 0 ao 0

11 Yapay Sinir Ağları (Hata) Sum Square Error SSE = P K p= j= ( d p, j o p, j ) 2 P = K = Eğitim kümesi boyutu Çıkış vektörü boyutu (Çıkış neuron sayısı) Mean Squared Error MSE = P P p= K j= ( d p, j o p, j ) 2 Yapay Sinir Ağları (Öğrenme) Çok katmanlı ağlarda öğrenme (Backpropagation) r E E E ( w ) =, w w,..., 0 w n E,..., r r r w w+ w r r w = η E ( w ) w w + w i E w = η i i w i i

12 Yapay Sinir Ağları (Öğrenme) Çok katmanlı ağlarda öğrenme (Backpropagation) w,2 = w,2 + w,2 w,2 =η( E / O 2 )( O 2 / net 2 ) ( net 2 / w,2 ) E / O 2 = ( / O 2 )(T 2 -O 2 ) 2 E / 2 O 2 = -2(T 2 -O 2 ) ( d k ok ) O 2 / net 2 = ( / net 2 )f(net 2 ) O 2 / net 2 = f (net 2 ) net 2 / w,2 =O, E = w,2 = η (T 2 -O 2 ) f (net 2 ) O, Sigmoid f(x) = /(+exp(-x)) f (x) = exp(-x)/(+exp(-x)) 2 I w,2 I 2 = /(+exp(-x)) /(+exp(-x)) 2 = f(x) ( f(x)) I 2 I 3 I 4 I I 6 Layer Layer 2 2 O O 2 Yapay Sinir Ağları (Öğrenme) Çok katmanlı ağlarda öğrenme (Backpropagation) w i,2 = w i,2 + w i,2 w i,2 =η( E / O 2 )( O 2 / net 2 ) ( net 2 / O,2 ) ( O,2 / net,2 ) ( net,2 / w i,2 ) I w i,2 I 2 I 2 I 3 w 2, 2 O net 2 / O,2 = w 2,2 O,2 / net,2 = f (net,2 ) net,2 / w i,2 = I w i,2 = η (T 2 -O 2 )f (net 2 )w 22 2,2 f (net,2 ) I w i,2 =η( E / O )( O / net ) ( net / O,2 ) ( O,2 / net,2 ) ( net,2 / w i,2 ) I 4 I 5 I 6 w 2,2 3 4 Layer 2 Layer 2 w i,2 = η (T -O ) f (net ) w 2, f (net,2 ) I O 2 2

13 Yapay Sinir Ağları (Öğrenme oranı) Yapay Sinir Ağları (Uygulamalar Ses tanıma) Problem: İki farklı kişinin merhaba kelimesini söylemesinin öğretilmesi. Kişi = Ahmet 2. Kişi = Mehmet Frekans dağılımı 60 örnek ile alınsın. 3

14 Yapay Sinir Ağları (Uygulamalar Ses tanıma) Ağ yapısı = ileri beslemeli çok katmanlı 60 giriş (her frekans örneği için) 6 gizli node 2 çıkış (0- ise Ahmet, -0 ise Mehmet ) Yapay Sinir Ağları (Uygulamalar Ses tanıma) Ahmet 0 Mehmet 0 4

15 Yapay Sinir Ağları (Uygulamalar Ses tanıma) Ahmet Mehmet Yapay Sinir Ağları (Uygulamalar Ses tanıma) Ahmet = = 0.74 Mehmet 0.73 = =

16 Yapay Sinir Ağları (Uygulamalar Ses tanıma) Ahmet Mehmet Yapay Sinir Ağları (Uygulamalar Karakter tanıma) İleri beslemeli çok katmanlı ağ Bacpropagation öğrenme ğ metodu A B C D E Hidden Layer Output Layer Input Layer 6

17 Yapay Sinir Ağları (Avantajlar Dezavantajlar) ANN, GA ve FL ANN Öğrenme Kapasitesi Optimizasyon Kapasitesi GA FL İfade Kabiliyeti Yapay Sinir Ağları (Araştırma) Kaynaklar:. Neural Networks, A Comprehensive Foundation, S. Haykin, Prentice Hall (999) 2. Elements of Articial Neural Networks, K.Mehrotra, C.K. Mohan, S.Ranka, MIT, İnternet adresleri : 7

18 Yapay Sinir Ağları Haftalık Ödev: Yapay Sinir Ağları kullanılarak yapılmış bir makale bulup elde edilen sonuçları içeren bir rapor hazırlayınız. İncelenen makalede Yapay Sinir Ağı kullanılmasının gerekçeleri, uygulamanın sonuçları değerlendirilecektir. - İncelenen makale son 5 yılda yayınlanmış olacaktır. - Makale Yurtdışında SCI te taranan bir dergide yayınlanmış olacaktır. - Hazırlanan rapora makalenin tam metnide eklenecektir. - Hazırlanan rapor ve makalenin tamamı diğer öğrencilerin hepsine e-postayla gönderilecektir. 8

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ Ahmet Cumhur KINACI Bilgisayar Mühendisliği

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

İSTATİKSEL NORMALİZASYON TEKNİKLERİNİN YAPAY SİNİR AĞIN PERFORMANSINA ETKİSİ

İSTATİKSEL NORMALİZASYON TEKNİKLERİNİN YAPAY SİNİR AĞIN PERFORMANSINA ETKİSİ İSTATİKSEL NORMALİZASYON TEKNİKLERİNİN YAPAY SİNİR AĞIN PERFORMANSINA ETKİSİ Selahattin YAVUZ * Muhammet DEVECİ ** ÖZ Son yıllarda, yapay sinir ağları pek çok alanda uygulanan ve üzerinde en çok araştırma

Detaylı

ÖZEL EGE LİSESİ ORTAÖĞRETİM ÖĞRENCİLERİNİN SINAV PERFORMANSI MODELLEMESİNDE YAPAY SİNİR AĞLARI KULLANIMI

ÖZEL EGE LİSESİ ORTAÖĞRETİM ÖĞRENCİLERİNİN SINAV PERFORMANSI MODELLEMESİNDE YAPAY SİNİR AĞLARI KULLANIMI ÖZEL EGE LİSESİ ORTAÖĞRETİM ÖĞRENCİLERİNİN SINAV PERFORMANSI MODELLEMESİNDE YAPAY SİNİR AĞLARI KULLANIMI HAZIRLAYAN ÖĞRENCİLER: Yaren DEMİRAĞ Ege Onat ÖZSÜER DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2015

Detaylı

NÖRAL SİSTEMLERE GİRİŞ. Ders Notu

NÖRAL SİSTEMLERE GİRİŞ. Ders Notu NÖRAL SİSTEMLERE GİRİŞ Ders Notu 1 1. GİRİŞ... 4 2. ZEKA... 5 3. YAPAY ZEKA... 5 4. YAPAY ZEKA NIN GELİŞİM SÜRECİ... 5 5. YAPAY ZEKANIN AMAÇLARI... 7 6. YSA TESTLERİ... 7 6.1 Turing Testi... 7 6.2 Çin

Detaylı

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12 Electronic Letters on Science & Engineering () (2005) Available online at www.e-lse.org A Study on Binary Gas Mixture Ali Gülbağ, Uğur Erkin Kocamaz, Kader Uzun Sakarya University, Department of Computer

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI TRANSFORMATÖR ÜRETİMİNDE ÜRETİM ZAMANLARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ İÇİN BİR ÇALIŞMA YÜKSEK LİSANS TEZİ ÖMÜR

Detaylı

Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi

Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 5, SAYI: 1, OCAK 2012 19 Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi Kerim Kürşat ÇEVİK 1, Emre DANDIL 2 1 Bor Meslek Yüksekokulu,

Detaylı

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D ĠS L ĠK B ĠL ĠM L E R ĠD E R G ĠS

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Yapay Sinir Ağlarına Giriş

Yapay Sinir Ağlarına Giriş Yapay Sinir Ağlarına Giriş Neslihan Serap Şengör Oda no: 1107 Tel: 0212 285 36 10 e-mail: sengorn@itu.edu.tr Tuba Ayhan Oda no: 1109 Tel: 0212 285 36 17 e-mail: ayhant@itu.edu.tr Ders Hakkında Yarıyıliçi

Detaylı

ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI

ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI Oğuz KAYNAR * Serkan TAŞTAN ** ÖZ Bu çalışmada zaman serisi analizinde yaygın olarak kullanılan Box-Jenkis modelleri

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YAPAY SİNİR AĞLARI YÖNTEMİ İLE TAHMİN (İMKB DE BİR UYGULAMA)

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YAPAY SİNİR AĞLARI YÖNTEMİ İLE TAHMİN (İMKB DE BİR UYGULAMA) T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YÜKSEK LİSANS TEZİ YAPAY SİNİR AĞLARI YÖNTEMİ İLE TAHMİN (İMKB DE BİR UYGULAMA) DANIŞMAN Doç. Dr. İbrahim GÜNGÖR HAZIRLAYAN

Detaylı

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Fatih Kölmek ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Türkiye Elektrik Piyasası Dengeleme ve Uzlaştırma Mekanizması Fiyat Tahmin Modelleri Yapay Sinir

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

YAPAY SİNİR AĞLARI Bölüm 1-Giriş. Dr. Erhan AKDOĞAN

YAPAY SİNİR AĞLARI Bölüm 1-Giriş. Dr. Erhan AKDOĞAN YAPAY SİNİR AĞLARI Bölüm 1-Giriş YSA, insan beyninin özelliklerinden olan öğrenme yolu ile yeni bilgiler türetebilme, yeni bilgiler oluşturabilme ve keşfedebilme gibi yetenekleri herhangi bir yardım almadan

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI Merve ARABACI a, Miray BAYRAM a, Mehmet YÜCEER b, Erdal KARADURMUŞ a a Hitit Üniversitesi, Mühendislik

Detaylı

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Bilgisayar Mühendisliği Anabilim Dalı Hüseyin ÖZÇINAR Danışman: Yard.

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Genel bilgiler Değerlendirme Arasınav : 25% Ödevler : 15% Final Projesi : 30% Final Sınavı : 30%

Detaylı

Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı

Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı BAÜ Fen Bil. Enst. Dergisi Cilt 13(1) 88-101 (2011) Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı Gürkan TUNA 1 Trakya Üniversitesi, Edirne

Detaylı

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ ELECTRICAL PEAK LOAD FORECASTING IN KÜTAHYA WITH ARTIFICIAL NEURAL NETWORKS. Y. ASLAN * & C. YAŞAR * & A. NALBANT * * Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik Fakültesi Dumlupınar Üniversitesi,

Detaylı

TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ

TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ YAPAY SĐNĐR AĞLARININ ĐNCELENMESĐ VE SIRT AĞRISI OLAN BĐREYLER ÜZERĐNDE BĐR UYGULAMASI Burcu KARAKAYA BĐYOĐSTATĐSTĐK ANABĐLĐM DALI YÜKSEK

Detaylı

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ADAPAZARI KENTSEL ATIKSU ARITMA TESĐSĐ ÇIKIŞ SUYU PARAMETRELERĐ VE VERĐM DEĞERLERĐNĐN

Detaylı

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ * Nuran BAĞIRGAN 1, Muhammet Mahir YENİCE 2 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Kütahya, nbagirgan@dumlupinar.edu.tr

Detaylı

ANFIS ve YSA Yöntemleri ile İşlenmiş Doğal Taş Üretim Sürecinde Verimlilik Analizi

ANFIS ve YSA Yöntemleri ile İşlenmiş Doğal Taş Üretim Sürecinde Verimlilik Analizi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 16 (2016) 017101 (174 185) AKU J. Sci. Eng. 16 (2016) 017101 (174

Detaylı

GÜL ÇİÇEĞİ DİKİM ALANLARININ YAPAY SİNİR AĞLARI YÖNTEMİYLE TAHMİNİ

GÜL ÇİÇEĞİ DİKİM ALANLARININ YAPAY SİNİR AĞLARI YÖNTEMİYLE TAHMİNİ Akdeniz Üniversitesi Uluslararası Alanya İşletme Fakültesi Dergisi Y.2011, C.3, S.2, s.137-149 Akdeniz University International Journal of Alanya Faculty of Busıness Y.2011, Vol.3, No.2, pp.137-149 GÜL

Detaylı

T.C. İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI METODU İLE GAYRİMENKUL DEĞERLEME YÜKSEK LİSANS TEZİ.

T.C. İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI METODU İLE GAYRİMENKUL DEĞERLEME YÜKSEK LİSANS TEZİ. T.C. İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI METODU İLE GAYRİMENKUL DEĞERLEME YÜKSEK LİSANS TEZİ Erhan SARAÇ Anabilim Dalı: İnşaat Mühendisliği Programı: Proje Yönetimi

Detaylı

YAPAY SİNİR AĞLARI TEMELLİ TIBBÎ TEŞHİS SİSTEMİ. Muzaffer DOĞAN Yüksek Lisans Tezi

YAPAY SİNİR AĞLARI TEMELLİ TIBBÎ TEŞHİS SİSTEMİ. Muzaffer DOĞAN Yüksek Lisans Tezi YAPAY SİNİR AĞLARI TEMELLİ TIBBÎ TEŞHİS SİSTEMİ Muzaffer DOĞAN Yüksek Lisans Tezi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Anabilim Dalı Ağustos 2003 i ÖZET Yüksek Lisans Tezi YAPAY SİNİR AĞLARI

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TALEP TAHMİNİNDE YAPAY SİNİR AĞLARININ KULLANILMASI YÜKSEK LİSANS TEZİ Fatih ADIYAMAN Anabilim Dalı : ENDÜSTRİ MÜHENDİSLİĞİ Programı : MÜHENDİSLİK YÖNETİMİ

Detaylı

ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ

ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ 1 45 89 133 177 221 265 309 353 397 441 485 529 573 617 661 705 GW MW ELEKTRİK DAĞITIM ŞEBEKELERİNDE TALEP TAHMİNİ Mehmet ÖZEN 1 e-posta: ozenmehmet.92@gmail.com Ömer GÜL 1 e-posta: enerjikalitesi@gmail.com

Detaylı

HĠBRĠT RADYAL TABANLI FONKSĠYON AĞLARI ĠLE DEĞĠġKEN SEÇĠMĠ VE TAHMĠNLEME: MENKUL KIYMET YATIRIM KARARLARINA ĠLĠġKĠN BĠR UYGULAMA

HĠBRĠT RADYAL TABANLI FONKSĠYON AĞLARI ĠLE DEĞĠġKEN SEÇĠMĠ VE TAHMĠNLEME: MENKUL KIYMET YATIRIM KARARLARINA ĠLĠġKĠN BĠR UYGULAMA T.C. Ġstanbul Üniversitesi Sosyal Bilimler Enstitüsü ĠĢletme Anabilim Dalı Sayısal Yöntemler Bilim Dalı Doktora Tezi HĠBRĠT RADYAL TABANLI FONKSĠYON AĞLARI ĠLE DEĞĠġKEN SEÇĠMĠ VE TAHMĠNLEME: MENKUL KIYMET

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA

YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2004 CİLT 1 SAYI 4 (55-60) YAPAY AÇIKLIKLI RADAR GÖRÜNTÜLERİNDE YAPAY SİNİR AĞLARI İLE HEDEF TANIMLAMA Okyay KAYNAK Boğaziçi Üniversitesi Mühendislik Fakültesi

Detaylı

Otomatik Doküman Sınıflandırma

Otomatik Doküman Sınıflandırma Otomatik Doküman Sınıflandırma Rumeysa YILMAZ, Rıfat AŞLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Fen Edebiyat Fakültesi Matematik Bölümü, Aydın rumeysa2903@gmailcom, rasliyan@aduedutr, kgunel@aduedutr

Detaylı

MATLAB. Y. Doç. Dr. Aybars UĞUR Yapay Sinir Ağları Ders Notları

MATLAB. Y. Doç. Dr. Aybars UĞUR Yapay Sinir Ağları Ders Notları MATLAB Y. Doç. Dr. Aybars UĞUR Yapay Sinir Ağları Ders Notları MATLAB Nedir? MATLAB, Mathworks firmasının geliştirdiği teknik bir programlama dilidir. (www.mathworks.com) MATLAB, teknik hesaplamalar ve

Detaylı

T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI (BİTİRME ÖDEVİ) Süha TOZKAN 99220056

T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI (BİTİRME ÖDEVİ) Süha TOZKAN 99220056 T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI (BİTİRME ÖDEVİ) Süha TOZKAN 99220056 YÖNETEN Yrd. Doç. Dr. Hasan H. BALIK ELAZIĞ 2004 1 T.C. FIRAT

Detaylı

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 8, Sayı 1, 2007 97

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 8, Sayı 1, 2007 97 C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 8, Sayı, 2007 97 SİVAS İLİNDE YAPAY SİNİR AĞLARI İLE HAVA KALİTESİ MODELİNİN OLUŞTURULMASI ÜZERİNE BİR UYGULAMA Ahmet Gürkan YÜKSEK *, Hüdaverdi BİRCAN **,

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com ISSN:15-631X Yapı Teknolojileri Elektronik Dergisi 6 (2) 1 - TEKNOLOJİK ARAŞTIRMALAR Makale PUZOLANLARIN BETON BASINÇ DAYANIMINA ETKİSİNİN YAPAY SİNİR AĞLARIYLA İNCELENMESİ

Detaylı

Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini

Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini International Journal of Engineering Research and Development, Vol.4, No., January 202 46 Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini Hüseyin Ceylan ve Murat Avan Kırıkkale

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

Diferansiyel Evrim Algoritması Destekli Yapay Sinir Ağı ile Orta Dönem Yük Tahmini

Diferansiyel Evrim Algoritması Destekli Yapay Sinir Ağı ile Orta Dönem Yük Tahmini International Journal of Research and Development, Vol.3, No., January 20 28 Diferansiyel Evrim Algoritması Destekli Yapay Sinir Ağı ile Orta Dönem Yük Tahmini İbrahim EKE Gazi Üniversitesi Mühendislik

Detaylı

YAPAY SĐNĐR AĞLARI ĐLE YÜZ TANIMA

YAPAY SĐNĐR AĞLARI ĐLE YÜZ TANIMA YAPAY SĐNĐR AĞLARI ĐLE YÜZ TANIMA Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Mekatronik Mühendisliği Bölümü, Mekatronik Mühendisliği Anabilim Dalı Ozan TAŞOVA Haziran, 2011 ĐZMĐR

Detaylı

YAPAY SİNİR AĞLARI TABANLI SİLİNDİRİK DÜZ DİŞLİ ÇARK TASARIMI

YAPAY SİNİR AĞLARI TABANLI SİLİNDİRİK DÜZ DİŞLİ ÇARK TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2007 : 13 : 3 : 387-395

Detaylı

Electronic Letters on Science & Engineering 4(1) (2008) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 4(1) (2008) Available online at www.e-lse.org Electronic Letters on Science & Engineering 4(1) (8) Available online at www.e-lse.org Artificial Neural Networks Application for Modelling of Wastewater Treatment Plant Performance Ece Ceren Yilmaz 1

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 0, Sayı 5, 04, Sayfalar 45-49 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences ACİL ÇAĞRI

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI 1 TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI TÜRKİYE DE FAALİYET GÖSTEREN TİCARİ BANKALARIN FİNANSAL RİSKLERİNİN YAPAY SİNİR AĞLARI YAKLAŞIMI İLE BELİRLENMESİ

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ U. Özveren 2, S. Dinçer 1 1 Yıldız Teknik Üniversitesi, Kimya Müh. Bölümü, Davutpaşa Kampüsü, 34210 Esenler / İstanbul e-posta: dincer@yildiz.edu.tr

Detaylı

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ Levent AKSOY e-posta: levent@ehb.itu.edu.tr Neslihan Serap ŞENGÖR e-posta: neslihan@ehb.itu.edu.tr Elektronik ve

Detaylı

YAPAY SİNİR AĞLARI VE GEZGİN SATICI PROBLEMİNE UYGULANMALARI. Müh. Murat YILDIRIMHAN

YAPAY SİNİR AĞLARI VE GEZGİN SATICI PROBLEMİNE UYGULANMALARI. Müh. Murat YILDIRIMHAN İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI VE GEZGİN SATICI PROBLEMİNE UYGULANMALARI YÜKSEK LİSANS TEZİ Müh. Murat YILDIRIMHAN Anabilim Dalı : Endüstri Mühendisliği Programı

Detaylı

YÜKSEK LİSANS TEZİ Eray AŞIK DANIŞMAN Doç.Dr. Mevlüt GÜLLÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ

YÜKSEK LİSANS TEZİ Eray AŞIK DANIŞMAN Doç.Dr. Mevlüt GÜLLÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ LOKAL JEOİT BELİRLEMEDE YAPAY SİNİR AĞLARI VE KRİGİNG YÖNTEMLERİNİN KARŞILAŞTIRILMASI YÜKSEK LİSANS TEZİ Eray AŞIK DANIŞMAN Doç.Dr. Mevlüt GÜLLÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ Haziran, 2013 Bu tez

Detaylı

Hava Kirliliğine Neden Olan PM10 ve SO 2 Maddesinin Yapay Sinir Ağı Kullanılarak Tahmininin Yapılması ve Hata Oranının Hesaplanması

Hava Kirliliğine Neden Olan PM10 ve SO 2 Maddesinin Yapay Sinir Ağı Kullanılarak Tahmininin Yapılması ve Hata Oranının Hesaplanması Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD XX (201X) xxxxxx (xx s) AKU J. Sci.Eng.XX (201X) xxxxxx (xx pp)

Detaylı

Electronic Letters on Science & Engineering 3 (2) (2007) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 3 (2) (2007) Available online at www.e-lse.org Electronic Letters on Science & Engineering 3 (2) (2007) Available online at www.e-lse.org Determination Of Breast Cancer Using ANN Armağan Ebru Temiz 1 1 Sakarya Üniversity Elektronic-Computer Education

Detaylı

İSTANBUL KÜLTÜR ÜNİVERSİTESİ

İSTANBUL KÜLTÜR ÜNİVERSİTESİ İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI İLE AKIM TAHMİNİ: MAHMUDİYE GÖLETİ ÖRNEĞİ YÜKSEK LİSANS TEZİ Murat CAN Prof. Dr. Yusuf Hatay ÖNEN Anabilim Dalı : İnşaat Mühendisliği

Detaylı

BIL684 Nöron Ağları Dönem Projesi

BIL684 Nöron Ağları Dönem Projesi BIL684 Nöron Ağları Dönem Projesi SNNS Uygulama Parametrelerinin bir Örnek Aracılığı ile İncelenmesi Kerem ERZURUMLU A0064552 Bu rapor ile Bil684 Nöron Ağları dersi kapsamında gerçekleştirilmiş olan SNNS

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Doç. Dr. Cüneyt BAYILMIŞ

Doç. Dr. Cüneyt BAYILMIŞ BSM 460 KABLOSUZ ALGILAYICI AĞLAR 1 BSM 460 KABLOSUZ ALGILAYICI AĞLAR 1. Hafta NESNELERİN İNTERNETİ (Internet of Things, IoT) 2 Giriş İletişim teknolojilerinde ve mikroelektronik devrelerde yaşanan gelişmeler

Detaylı

görüntü işleme, pattern tanıma yapay zeka

görüntü işleme, pattern tanıma yapay zeka KARAKTER TANIMA Çeşitli kaynaklardan bilgisayar ortamına aktarılmış karakterleri tanıma işi görüntü işleme, pattern tanıma ve yapay zeka alanlarında oldukça ilgi çekmiştir. Ancak bu alanda uygulanan klasik

Detaylı

YAPAY SİNİR AĞLARI İLE FİYAT TAHMİNLEMESİ

YAPAY SİNİR AĞLARI İLE FİYAT TAHMİNLEMESİ YAPAY SİNİR AĞLARI İLE FİYAT TAHMİNLEMESİ Elif ERDOĞAN Fatih Üniversitesi Ankara Meslek Yüksekokulu, Ostim /Ankara Öğretim Görevlisi eerdogan@fatih.edu.tr Hamide ÖZYÜREK Fatih Üniversitesi Ankara Meslek

Detaylı

T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ

T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ LOJİSTİK REGRESYON ANALİZİ (LRA), YAPAY SİNİR AĞLARI (YSA) ve SINIFLANDIRMA ve REGRESYON AĞAÇLARI (C&RT) YÖNTEMLERİNİN KARŞILAŞTIRILMASI ve TIP

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

THE ANALYSES OF THIN WALLED TUBES BY USING ARTIFICIAL NEURAL NETWORK

THE ANALYSES OF THIN WALLED TUBES BY USING ARTIFICIAL NEURAL NETWORK Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 6 Sayı 1-2, (2002), 45-54 İNCE CİDARLI ÜP SİSEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ Ömer KELEŞOĞLU *, Adem FIRA ÖZE Bu çalışmada, tüp sistemlerin

Detaylı

Bilgisayar Programlama

Bilgisayar Programlama Bilgisayar Programlama M Dosya Yapısı Kontrol Yapıları Doç. Dr. İrfan KAYMAZ Matlab Ders Notları M-dosyası Genel tanıtımı : Bir senaryo dosyası (script file) özel bir görevi yerine getirmek için gerekli

Detaylı

Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini

Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini 23 Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini Hasbi YAPRAK ve Abdulkadir KARACI Kastamonu University, Kastamonu, 37100 Türkiye, Kastamonu

Detaylı

Alkın Küçükbayrak alkin@superonline.com. Beyin ve Yapay Zeka III - Beyin Simulatörleri

Alkın Küçükbayrak alkin@superonline.com. Beyin ve Yapay Zeka III - Beyin Simulatörleri Alkın Küçükbayrak alkin@superonline.com Beyin ve Yapay Zeka III - Beyin Simulatörleri Bundan önceki yazımızda Yapay Sinir Ağları konusunu örneklerle incelemiştik. İstatistiksel yöntemler kullanılarak yapılan

Detaylı

YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ. İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr

YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ. İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr YAPAY SİNİR AĞLARI İLE TRAFİK AKIM KONTROLÜ İbrahim ALTUN 1, Selim DÜNDAR 1, ialtun@yildiz.edu.tr, sdundar@yildiz.edu.tr Öz: Yapay sinir ağları birçok basit elemanın birleşmesinden oluşmuş paralel bağlantılı

Detaylı

Oğuz ÜSTÜN. Geliş Tarihi/Received : 16.07.2009, Kabul Tarihi/Accepted : 02.09.2009

Oğuz ÜSTÜN. Geliş Tarihi/Received : 16.07.2009, Kabul Tarihi/Accepted : 02.09.2009 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Cilt 15, Sayı 3, 2009, Sayfa 395-403 Genetik Algoritma Kullanılarak İleri Beslemeli Bir Sinir Ağında Etkinlik Fonksiyonlarının Belirlenmesi Determination

Detaylı

Erdem Işık Accepted: January 2011. ISSN : 1308-7231 erdemis@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

Erdem Işık Accepted: January 2011. ISSN : 1308-7231 erdemis@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 2011, Volume: 6, Number: 1, Article Number: 1A0140 ENGINEERING SCIENCES Received: October 2010 Erdem Işık Accepted: January 2011 Mustafa İnallı Series

Detaylı

FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ TERMAL ANALİZİ

FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ TERMAL ANALİZİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 905-913, 2011 Vol 26, No 4, 905-913, 2011 FARKLI YAPAY SİNİR AĞLARI YÖNTEMLERİNİ KULLANARAK KURU TİP TRANSFORMATÖR SARGISININ

Detaylı

FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRONİK-BİLGİSAYAR EĞİTİMİ ANABİLİM DALI 2015-2016 GÜZ YARIYILI ELEKTRONİK-HABERLEŞME EĞİTİMİ PROGRAMI (DOKTORA)

FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRONİK-BİLGİSAYAR EĞİTİMİ ANABİLİM DALI 2015-2016 GÜZ YARIYILI ELEKTRONİK-HABERLEŞME EĞİTİMİ PROGRAMI (DOKTORA) FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRONİK-BİLGİSAYAR EĞİTİMİ ANABİLİM DALI ELEKTRONİK-HABERLEŞME EĞİTİMİ PROGRAMI (DOKTORA) 3 4 :30- :0 6 9 YAPAY SİNİR AĞLARI HASAN HÜSEYİN ÇELİK 0 3 ELEKTRONİK-HABERLEŞME EĞİTİMİ

Detaylı

Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi 1

Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi 1 İMO Teknik Dergi, 2004 3267-3282, Yazı 219 Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi 1 Mahmut FIRAT * Mahmud GÜNGÖR ** ÖZET Son yıllarda, inşaat mühendisliğindeki bilgisayarlı

Detaylı

BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN

BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN 42 BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN ETKİLERİNİN İNCELENMESİ Murat LÜY 1, İlhan KOCAARSLAN 2, Ertuğrul ÇAM 3 Electrical & Electronics Engineering Department, Kirikkale University,

Detaylı

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org

Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Electronic Letters on Science & Engineering 1(1) 2005 Available online at www.e-lse.org Solution of Forward Kinematic for Five Axis Robot Arm using ANN A. Mühürcü 1 1 Sakarya University, Electrical-Electronical

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi THE USING OF ARTIFICIAL NEURAL NETWORKS IN INSULATION COMPUTATIONS

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi THE USING OF ARTIFICIAL NEURAL NETWORKS IN INSULATION COMPUTATIONS Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 2005/3 THE USING OF ARTIFICIAL NEURAL NETWORKS IN INSULATION COMPUTATIONS Ömer KELEŞOĞLU *, Cevdet Emin EKİNCİ, Adem

Detaylı

AŞINDIRICI SU JETİNİN TEORİK ANALİZİ VE YAPAY SİNİR AĞI YÖNTEMİYLE MODELLENMESİ

AŞINDIRICI SU JETİNİN TEORİK ANALİZİ VE YAPAY SİNİR AĞI YÖNTEMİYLE MODELLENMESİ Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi Cilt:XXII, Sayı:2, 29 Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, Vol: XXII, No:2, 29 Makalenin

Detaylı

BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2. Öğretim planındaki AKTS 524000000001301 3 0 0 3 5

BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2. Öğretim planındaki AKTS 524000000001301 3 0 0 3 5 ). BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2 Ders Kodu Teorik Uygulama Lab. Kimyasal Reaksiyon Mühendisliği Ulusal Kredi Öğretim planındaki AKTS 524000000001301 3 0 0 3 5 Ön Koşullar : Yok: Bu dersin

Detaylı

mühendislikdergisi Üniversitesi Mühendislik Fakültesi

mühendislikdergisi Üniversitesi Mühendislik Fakültesi mühendislikdergisi Dicle Üniversitesi Mühendislik Fakültesi Cilt: 5, 1, 3-9 Mart 2014 Karakaya HES ya / Özet la suyun ve, - Anahtar Kelimeler: : Karakaya baraj sinir a santrali, Modelleme kenaninalli@hotmail.com;

Detaylı

YAPAY SİNİR AĞI İLE HAVA SICAKLIĞI TAHMİNİ APPROXIMATION AIR TEMPERATURE WITH ARTIFICIAL NEURAL NETWORK

YAPAY SİNİR AĞI İLE HAVA SICAKLIĞI TAHMİNİ APPROXIMATION AIR TEMPERATURE WITH ARTIFICIAL NEURAL NETWORK YAPAY SİNİR AĞI İLE HAVA SICAKLIĞI TAHMİNİ Hande ERKAYMAZ, Ömer YAŞAR Karabük Üniversitesi / TÜRKĠYE herkaymaz@karabuk.edu.tr ÖZET : Bu çalıģmada Yapay Sinir Ağları (YSA) ile hava sıcaklığının tahmini

Detaylı

Makine Öğrenmesi 1. hafta

Makine Öğrenmesi 1. hafta Makine Öğrenmesi 1. hafta Temel Terimler Danışmanlı Danışmansız Öğrenme Veri Hazırlama Çapraz Geçerlik Aşırı Eğitim 1 Makine Ögrenmesi Nedir? Makine Öğrenmesi, verilen bir problemi probleme ait ortamdan

Detaylı

Yapay Zeka Teknikleri ve Yapay Sinir Ağları Kullanılarak Web Sayfalarının Sınıflandırılması

Yapay Zeka Teknikleri ve Yapay Sinir Ağları Kullanılarak Web Sayfalarının Sınıflandırılması Yapay Zeka Teknikleri ve Yapay Sinir Ağları Kullanılarak Web Sayfalarının Sınıflandırılması Yrd.Doç.Dr. Aybars Uğur, Ahmet Cumhur Kınacı Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü aybars.ugur@ege.edu.tr,

Detaylı

Esnek Hesaplamada Sinirsel Bulanık Sinerjiyi Temel Alan Sistemler ve Yaklaşımlar Üzerine Bir İnceleme (Derleme)

Esnek Hesaplamada Sinirsel Bulanık Sinerjiyi Temel Alan Sistemler ve Yaklaşımlar Üzerine Bir İnceleme (Derleme) Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt 35, No. 2 (2014) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 35, No. 2 (2014) ISSN: 1300-1949

Detaylı

Murat CANER ve Emre AKARSLAN * Geliş Tarihi/Received : 27.10.2008, Kabul Tarihi/Accepted : 30.03.2009

Murat CANER ve Emre AKARSLAN * Geliş Tarihi/Received : 27.10.2008, Kabul Tarihi/Accepted : 30.03.2009 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 15, Sayı 2, 2009, Sayfa 221-226 Mermer Kesme İşleminde Spesifik Enerji Faktörünün ANFIS ve YSA Yöntemleri ile Tahmini Estimation of Specific Energy

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

BİLGİ EDİNME HAKKI YASASI ÇERÇEVESİNDE YAPILAN ELEKTRONİK BAŞVURULARIN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMASI

BİLGİ EDİNME HAKKI YASASI ÇERÇEVESİNDE YAPILAN ELEKTRONİK BAŞVURULARIN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMASI Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 4, 2009 27 BİLGİ EDİNME HAKKI YASASI ÇERÇEVESİNDE YAPILAN ELEKTRONİK BAŞVURULARIN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMASI Yavuz KILAĞIZ

Detaylı

YAPAY SİNİR AĞI İLE KRİPTOLOJİ UYGULAMALARI. Apdullah YAYIK. Yüksek Lisans Tezi. Antakya/HATAY

YAPAY SİNİR AĞI İLE KRİPTOLOJİ UYGULAMALARI. Apdullah YAYIK. Yüksek Lisans Tezi. Antakya/HATAY MUSTAFA KEMAK ÜNİVERSTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENFORMATİK ANA BİLİM DALI YAPAY SİNİR AĞI İLE KRİPTOLOJİ UYGULAMALARI Apdullah YAYIK Yüksek Lisans Tezi Antakya/HATAY Haziran 2013 MUSTAFA KEMAL ÜNİVERSTESİ

Detaylı