Chapter 3 Image Enhancement in the Spatial Domain R. C. Gonzalez & R. E. Woods

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods"

Transkript

1 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

2 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

3 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

4 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

5

6 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

7 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

8 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

9 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

10 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

11 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

12 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

13 Bit Slicing (Dilimleme) Pikseller, bitlerden meydana gelen sayılardır. Bir görüntüyü tanımlarken parlaklık aralığını tari etmektense, görüntüyü oluşturmaya katkı sağlayan bitleri ön plana çıkararak belirtmek mümkündür R. C. Gonzalez & R. E. Woods

14 Bit Slicing (Dilimleme)

15 Bit Slicing (Dilimleme)

16 Bit Slicing (Dilimleme)

17 Bit Slicing (Dilimleme)

18 Bit Slicing (Dilimleme)

19

20

21

22

23

24

25

26

27

28

29 3. Bölüm Uzaysal Domende İmge Zenginleştirme 2002 R. C. Gonzalez & R. E. Woods

30 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

31 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

32 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

33 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

34 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

35 Yerel zenginleştirme yönteminin bir özeti aşağıdaki gibidir : (,y) koordinatlarındaki bir pikselin değeri (,y) ise bu pikselin zenginleştirildikten sonraki yeni değeri g(,y) şöyle verilebilir: Eğer msy k0 OK VE k1sk σsy k2 SK ise ; g (,y) = E (,y) Diğer durumlarda ise ; g (,y) = (,y) 2002 R. C. Gonzalez & R. E. Woods

36 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

37 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

38 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

39 The logic operations AND, OR, and NOT orm a complete set, meaning that any other logic operation (XOR; NOR, NAND) can be created by a combination o these basic elements. They operate in a bit-wise ashion on piel data. EXAMPLE: We are perorming a logic AND on two images. Two corresponding piel values are in one image and 8810 in the second image. A= = B= 8810 = AND R. C. Gonzalez & R. E. Woods

40

41

42 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

43 = I 1 = I 2 = = I 3

44

45

46

47

48

49 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

50 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

51 İmge Ortalaması (,y) imgesine η(,y) gürültüsü eklendiğinde oluşan imgenin g (,y) olduğunu düşünelim. g (,y) = (,y) + η(,y) = = K i i y g K y g 1 ), ( 1 ), ( { } ), ( ), ( y y g E = 2 ), ( 2 ), ( 1 y y g K η σ σ = ), ( ), ( 1 y y g K η σ σ =

52 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

53 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

54 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

55 R = w z1 + w2 z w mn z mn = mn w i z R = w1 r + w r w r i = 1 i = 1 i = 9 1 w i r i 2002 R. C. Gonzalez & R. E. Woods

56

57 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

58

59 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

60 Piksel değerleri: (10, 20, 20, 20, 15, 20, 20, 25, 100) ise Sıralanınca : (10, 15, 20, 20, 20, 20, 20, 25, 100) olur. Tam ortadaki yani 5. değer olan 20 merkezdeki piksele atanır R. C. Gonzalez & R. E. Woods

61 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

62

63 Tek boyutlu () onksiyonunun birinci dereceden türevinin tanımı ark tır. Yani: ) ( 1) ( + = İkinci dereceden türev yine ark olarak tanımlanır: ) ( 2 1) ( 1) ( =

64 Eğer Laplace maskesinin merkez katsayısı negati ise Eğer Laplace maskesinin merkez katsayısı poziti ise y y + = ), ( 2 ) 1, ( ) 1, ( 2 2 y y y + + = ), ( 2 1), ( 1), ( 2 2 y y y y + + = [ ] ), ( 4 1), ( 1), ( ) 1, ( ) 1, ( 2 y y y y y = + = ), ( ), ( ), ( ), ( ), ( 2 2 y y y y y g

65

66

67 Sadeleştirmeler: [ ] ), ( 4 1), ( 1), ( ) 1, ( ) 1, ( ), ( ), ( y y y y y y y g = [ ] 1), ( 1), ( ) 1, ( ) 1, ( ), ( = y y y y y

68

69 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

70

71

72 Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods

73

74

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1013 [936] DİJİTAL GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK GÖRÜNTÜLERDEN DETAY ÇIKARIMI Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1 Öğr. Gör., Yüzüncü Yıl Üniversitesi, Mülkiyet Koruma

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1)

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) BLM429 Görüntü İşlemeye Giriş Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) Yrd. Doç. Dr. Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN İkilik Sayı Sistemi İkilik sayı sisteminde 0 lar ve 1 ler bulunur. Bilgisayar sistemleri yalnızca ikilik sayı sistemini kullanır. ( d 4 d 3 d 2 d 1 d 0 ) 2 = ( d 0. 2 0 ) + (

Detaylı

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

İLERİ GÖRÜNTÜ İŞLEME Ders-1

İLERİ GÖRÜNTÜ İŞLEME Ders-1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde

Detaylı

Görüntü İşleme Dersi Ders-8 Notları

Görüntü İşleme Dersi Ders-8 Notları Görüntü İşleme Dersi Ders-8 Notları GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar BLM429 Görüntü İşlemeye Giriş Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar Yrd. Doç. Dr. Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru

Detaylı

BULANIK UYARLAMALI ORTALAMA F

BULANIK UYARLAMALI ORTALAMA F 5 Uluslararası İleri Teknoloiler Sempozyumu (IATS 09), 3-5 Mayıs 2009, Karabük, Türkiye BULANIK UYARLAMALI ORTALAMA FİLTRESİ KULLANARAK MR GÖRÜNTÜLERİNDEKİ DARBE GÜRÜLTÜSÜNÜN BASTIRILMASI IMPULSE NOISE

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR

Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR Görüntü İşlemeye Giriş Introduction to Image Processing Doç. Dr. Aybars UĞUR 2013 1 İçerik Görüntü ve Piksel Görüntü Türleri Görüntü İşleme Görüntü İşlemenin Amaçları Görüntü İyileştirme Görüntü Analizi

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM. ÖzĢen ÇORUMLUOĞLU b , Selçuklu, Konya. GümüĢhane

FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM. ÖzĢen ÇORUMLUOĞLU b , Selçuklu, Konya. GümüĢhane FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM Cihan ALTUNTAġ a*, ÖzĢen ÇORUMLUOĞLU b a Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi, Harita Mühendisliği Bölümü, 42075,

Detaylı

GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT

GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI Hüseyin GÜNEŞ 1, Alper BURMABIYIK 2, Semih KELEŞ 3, Davut AKDAŞ 4 1 hgunes@balikesir.edu.tr Balıkesir

Detaylı

İKİLİ VE RENKLİ LOGO İLE SAYISAL DAMGALAMA DIGITAL WATERMARKING WITH BINARY AND COLORED WATERMARK

İKİLİ VE RENKLİ LOGO İLE SAYISAL DAMGALAMA DIGITAL WATERMARKING WITH BINARY AND COLORED WATERMARK İKİLİ VE RENKLİ LOGO İLE SAYISAL DAMGALAMA DIGITAL WATERMARKING WITH BINARY AND COLORED WATERMARK Selçuk KİZİR 1 H.Metin ERTUNÇ 2 Hasan OCAK 3 1,2,3 Kocaeli Üniversitesi, Mekatronik Mühendisliği Bölümü

Detaylı

FITNESS IN TURKEY. Dr. Gülşah ŞAHİN

FITNESS IN TURKEY. Dr. Gülşah ŞAHİN FITNESS IN TURKEY Dr. Gülşah ŞAHİN TÜRKİYE-TURKEY ÇANAKKALE 7/20/2016 Dr.G.Şahin,Fitness in Turkey CANAKKALE VIDEO 7/20/2016 Dr.G.Şahin,Fitness in Turkey Let s CLUB 7/20/2016 Dr.G.Şahin,Fitness in

Detaylı

hkm 2004/90 5. Göllerin Çok Bantl Uydu Görüntülerinden Ç kar m 6. Sonuç ve Öneriler

hkm 2004/90 5. Göllerin Çok Bantl Uydu Görüntülerinden Ç kar m 6. Sonuç ve Öneriler Çöl arazide, yeşil bitki örtüsü su kenarlar nda bulunur. Bu ilişki göllerin ya da rmaklar n etraf nda yeşil bitki örtüsünün olabileceğini gösterir ve su nesnesinin tan nmas nda ve anlaş lmas nda yard mc

Detaylı

Hava Lazer Tarama Verilerinden Fourier Dönüşümü Kullanılarak Bina Detaylarının Belirlenmesi

Hava Lazer Tarama Verilerinden Fourier Dönüşümü Kullanılarak Bina Detaylarının Belirlenmesi Hava Lazer Tarama Verilerinden Fourier Dönüşümü Kullanılarak Bina Detaylarının Belirlenmesi F. Karsli 1, * and O. Kahya 2 1 KTU, Mühendislik Fakültesi, Jeodezi ve Fotogrametri Müh. Böl. 61080 Trabzon (fkarsli@ktu.edu.tr)

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Bölüm 4: İş Parçacıkları. Operating System Concepts with Java 8 th Edition

Bölüm 4: İş Parçacıkları. Operating System Concepts with Java 8 th Edition Bölüm 4: İş Parçacıkları 14.1 Silberschatz, Galvin and Gagne 2009 Bölüm 4: İş Parçacıkları Genel Bakış Çoklu İş Parçacığı Modelleri İş Parçacığı Kütüphaneleri İş Parçacıkları ile İlgili Meseleler İşletim

Detaylı

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini

Detaylı

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 1302120002 1302130068 1302150039 1302150049 Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 17.10.2016 SPEKTRAL İMGELER Bir malzeme için yansıyan, yutulan veya iletilen ışınım miktarları dalga

Detaylı

FARKLI NETLİKTEKİ RESİMLERİN BİRLEŞTİRİLMESİ İÇİN BÖLGE BAZLI YENİ BİR METOD

FARKLI NETLİKTEKİ RESİMLERİN BİRLEŞTİRİLMESİ İÇİN BÖLGE BAZLI YENİ BİR METOD FARKLI NETLİKTEKİ RESİMLERİN İRLEŞTİRİLMESİ İÇİN ÖLGE AZLI YENİ İR METOD Veysel ASLANTAŞ Ayder ULATOV, ilgisayar Mühendisliği ölümü, Erciyes Üniversites Kayseri e-posta: aslantas@erciyes.edu.tr e-posta:

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi Wavelet Transform and Applications A. Enis Çetin Bilkent Üniversitesi Multiresolution Signal Processing Lincoln idea by Salvador Dali Dali Museum, Figueres, Spain M. Mattera Multi-resolution signal and

Detaylı

Dijital Görüntü İşleme (COMPE 464) Ders Detayları

Dijital Görüntü İşleme (COMPE 464) Ders Detayları Dijital Görüntü İşleme (COMPE 464) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Dijital Görüntü İşleme COMPE 464 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i

Detaylı

PARALEL GÖRÜNTÜ FİLTRELEME İÇİN ÇOK ÇEKİRDEKLİ BİLGİSAYAR ÜZERİNDE BAŞARIM ANALİZİ

PARALEL GÖRÜNTÜ FİLTRELEME İÇİN ÇOK ÇEKİRDEKLİ BİLGİSAYAR ÜZERİNDE BAŞARIM ANALİZİ İleri Teknoloji Bilimleri Dergisi Cilt 2, Sayı 1, 76-83, 2013 Journal of Advanced Technology Sciences Vol 2, No 1, 76-83, 2013 PARALEL GÖRÜNTÜ FİLTRELEME İÇİN ÇOK ÇEKİRDEKLİ BİLGİSAYAR ÜZERİNDE BAŞARIM

Detaylı

Dalgacık Dönüşümü ve Nötrozofi Yaklaşımı ile Gri Seviye Doku Görüntülerinin Bölütlenmesi

Dalgacık Dönüşümü ve Nötrozofi Yaklaşımı ile Gri Seviye Doku Görüntülerinin Bölütlenmesi 6 th nternational Advanced Technologies Symposium (ATS ), 6-8 May 0, Elazığ, Turkey Dalgacık Dönüşümü ve Nötrozofi Yaklaşımı ile Gri Seviye Doku Görüntülerinin Bölütlenmesi K. Hanbay, A. Şengür Bingöl

Detaylı

UYARLANABİLİR GÖRÜNTÜ FİLTRE TASARIMI. Uğur GÜVENÇ DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2008 ANKARA

UYARLANABİLİR GÖRÜNTÜ FİLTRE TASARIMI. Uğur GÜVENÇ DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2008 ANKARA ii UYARLANABİLİR GÖRÜNTÜ FİLTRE TASARIMI Uğur GÜVENÇ DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2008 ANKARA ii Uğur GÜVENÇ tarafından hazırlanan UYARLANABİLİR GÖRÜNTÜ

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

ÇOK SPEKTRUMLU VERİLERDEN BİLGİ ÇIKARIMINDA MEKANSAL FİLTRELEME ETKİSİNİN İNCELENMESİ

ÇOK SPEKTRUMLU VERİLERDEN BİLGİ ÇIKARIMINDA MEKANSAL FİLTRELEME ETKİSİNİN İNCELENMESİ ÇOK SPEKTRUMLU VERİLERDEN BİLGİ ÇIKARIMINDA MEKANSAL FİLTRELEME ETKİSİNİN İNCELENMESİ Merve KESKİN 1, Ahmet Özgür DOĞRU 2, Çiğdem GÖKSEL 3, Filiz Bektaş BALÇIK 4 1 Araş. Gör., İstanbul Teknik Üniversitesi,

Detaylı

POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM

POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM Melih KUNCAN Siirt Üniversitesi, Mühendislik-Mimarlık Fakültesi, Mekatronik Mühendisliği Bölümü, Siirt, TÜRKIYE melihkuncan@siirt.edu.tr

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-3 29.02.2016 Boolean Algebra George Boole (1815-1864) 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ E. Ayhan 1,G. Atay 1, O. Erden 1 1 Karadeniz Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Bölümü,

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Grafik Programlama Bilgisayar kullanılırken monitörlerde iki tür ekran moduyla karşılaşılır. Bu ekran modları Text modu ve Grafik modu dur. Text modunda ekran 25 satır ve 80 sütundan

Detaylı

Uzaktan algılamada uydu görüntülerine uygulanan işlemler

Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılama görüntülerine uygulanan işlemler genel olarak; 1. Görüntü ön işleme (Düzeltme) 2. Görüntü İşleme olarak ele alınabilir. GÖRÜNTÜ

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri sabdikan@beun.edu.tr 0 372 2574010 1718 http://geomatik.beun.edu.tr/abdikan/ Öğrenci

Detaylı

1 9 1 4 1 0 1 6 1 9 1 1-2012

1 9 1 4 1 0 1 6 1 9 1 1-2012 1 3 1 4 1 9 1 1 1 2 1 9 1 4 1 1 1 2 1 9 1 7 1 4 1 9 1 4 1 7 1 1 1 8 1 9 1 0 1 4 1 9 1 7 1 1 1 7 1 9 1 8 1 7 1 8 1 2 1 9 1 9 1 8 1 2 1 9 1 0 1 2 1 4 1 1 1 6 1 1 1 9 1 9 1 8 1 8 1 8 1 1 1 9 1 8 1 7 1 9 1

Detaylı

BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI

BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI M. Emin YÜKSEL 1 Alper BAŞTÜRK 1 M. Tülin YILDIRIM 2 1 Erciyes Üniversitesi, Mühendislik Fakültesi, Elektronik

Detaylı

Süleyman UZUN 1, Devrim AKGÜN 2. Özet. Abstract. 2. Doğrusal Görüntü Filtreleme. 1. Giriş.

Süleyman UZUN 1, Devrim AKGÜN 2. Özet. Abstract. 2. Doğrusal Görüntü Filtreleme. 1. Giriş. Görüntü Filtre Çekirdek Matrisinin Genetik Algoritmalar ile Eğitiminin Bir Analizi An Analysis of Genetic Algorithm with Training of Image Filter Kernel Matrix Süleyman UZUN 1, Devrim AKGÜN 2 1 Bilgi İşlem

Detaylı

Katlı Giriş Geçitleri

Katlı Giriş Geçitleri Katlı Giriş Geçitleri Eviriciler ve tamponlar tek-girişli geçit devresi için olasılıkları çıkartır. Tamponlamak yada evirmekten başka tek mantık sinyali ile daha fazla ne yapılabilir? Daha fazla mantık

Detaylı

Bu makalede, rulman üretim hattının son

Bu makalede, rulman üretim hattının son BİLGİSAYARLI GÖRÜNTÜ YARDIMIYLA RULMAN HATALARININ DENETİMİ Arda MOLLAKÖY 0814046@student.cankaya.edu.tr Sibel ÇİMEN c0814016@student.cankaya.edu.tr Emre YENGEL Mekatronik Mühendisliği e.yengel@cankaya.edu.tr

Detaylı

GÜZ YARIYILI FİZİK 1 DERSİ

GÜZ YARIYILI FİZİK 1 DERSİ 2015-2016 GÜZ YARIYILI FİZİK 1 DERSİ 1 Bölüm 6 Momentum, İtme ve Çarpışma 2 İçerik Çizgisel Momentum İtme (İmpuls) Çizgisel Momentumun korunumu Esnek ve esnek olmayan çarpışmalar İki ve üç boyutta momentumun

Detaylı

KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ IMAGE DE-BLURRING BASED ON EDGE TRANSITIONS

KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ IMAGE DE-BLURRING BASED ON EDGE TRANSITIONS 28 SDU International Journal of Technological Science pp. 28-36 Computational Technologies KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ Halime Boztoprak Geliş Tarihi/ Received: 11.02.2016,

Detaylı

BM312 Ders Notları 2014

BM312 Ders Notları 2014 Kümeler ve Bağıntılar Bir küme nesnelerden oluşur L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir c L, k L şeklinde ifade edilir. Elemanların sırası ve tekrarı önemli değildir {üzüm, kiraz,

Detaylı

COM337 Bilgisayar Grafiği. OpenGL ile Grafik Programlama. Dr. Erkan Bostancı

COM337 Bilgisayar Grafiği. OpenGL ile Grafik Programlama. Dr. Erkan Bostancı COM337 Bilgisayar Grafiği OpenGL ile Grafik Programlama Dr. Erkan Bostancı İçerik Işık Resim ve Metin Görüntüleme Texture-mapping Işık (1/3) OpenGL de bir sahne 8 farklı ışık kaynağı kullanabilir. İlk

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /

Detaylı

Virtualmin'e Yeni Web Sitesi Host Etmek - Domain Eklemek

Virtualmin'e Yeni Web Sitesi Host Etmek - Domain Eklemek Yeni bir web sitesi tanımlamak, FTP ve Email ayarlarını ayarlamak için yapılması gerekenler Öncelikle Sol Menüden Create Virtual Server(Burdaki Virtual server ifadesi sizi yanıltmasın Reseller gibi düşünün

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ

UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ 660 [1016] UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ Sakine KANDİL 1, H.Gonca COŞKUN 2 ÖZET 1 Müh., İstanbul Teknik Üniversitesi, Geomatik Mühendisliği Bölümü, 34469, Maslak, İstanbul, kandils@itu.edu.tr

Detaylı

Onluk duzende toplama. Lecture 4. Addition and Subtraction. Onluk tabanda toplama

Onluk duzende toplama. Lecture 4. Addition and Subtraction. Onluk tabanda toplama Lecture 4 Oku H&P sections 4.3-4.5 ddition and Subtraction CPU daki circuit (devrelerle) gerceklestirilir Bu is icin devreler nasil dizayn edilir? Bilgisayar Mimarisi 4.1 Bilgisayar Mimarisi 4.2 Onluk

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Güç Spektral Yoğunluk (PSD) Fonksiyonu

Güç Spektral Yoğunluk (PSD) Fonksiyonu 1 Güç Spektral Yoğunluk (PSD) Fonksiyonu Otokorelasyon fonksiyonunun Fourier dönüşümü j f ( ) FR ((τ) ) = R ( (τ ) ) e j π f τ S f R R e d dτ S ( f ) = F j ( f )e j π f ( ) ( ) f τ R S f e df R (τ ) =

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. (Yrd. Doç. Dr. M. Kemal GÜLLÜ)

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. (Yrd. Doç. Dr. M. Kemal GÜLLÜ) İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

Determination of Flood Extent Using Multi -Temporal & Multi -Resolution Satellite Images:

Determination of Flood Extent Using Multi -Temporal & Multi -Resolution Satellite Images: İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü COĞRAFYA DERGİSİ Sayı 15, Sayfa 13-23, İstanbul, 2007 Basılı Nüsha ISSN No: 1302-7212 Elektronik Nüsha ISSN No: 1305-2128 TAŞKIN ALANLARININ BELİRLENMESİNDE

Detaylı

Yönbağımsız ve Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering

Yönbağımsız ve Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering Yönbağımsız Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering Deniz Yıldırım 1, Bekir Dizdaroğlu 2 1 Harita Mühendisliği Bölümü, 2 Bilgisayar Mühendisliği Bölümü Karadeniz Teknik

Detaylı

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü Restorasyonu BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü İyileştirme (İmage restoration) Görüntü restorasyonu konusu, bir görüntünün oluşumu esnasında oluşabilen veri kayıplarını

Detaylı

Programlama Dilleri. C Dili. Programlama Dilleri-ders02/ 1

Programlama Dilleri. C Dili. Programlama Dilleri-ders02/ 1 Programlama Dilleri C Dili Programlama Dilleri-ders02/ 1 Değişkenler, Sabitler ve Operatörler Değişkenler (variables) bellekte bilginin saklandığı gözlere verilen simgesel isimlerdir. Sabitler (constants)

Detaylı

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

SAYISAL VLSI SİSTEM TASARIM AKIŞI

SAYISAL VLSI SİSTEM TASARIM AKIŞI SAYISAL VLSI SİSTEM TASARIM AKIŞI 1 Tasarım Öncesi: Ürünle ilgili bilgilerin olgunlaştırılması: kullanım yeri/amacı? yıllık gereksinim (sayı)? teknik gereksinimler/özellikler (spec.)? Fizibilite çalışması:

Detaylı

Tuğba Palabaş, Istanbul Arel Üniversitesi, tugbapalabas@arel.edu.tr. Ceren Gülra Melek, Istanbul Arel Üniversitesi, cerenmelek@arel.edu.

Tuğba Palabaş, Istanbul Arel Üniversitesi, tugbapalabas@arel.edu.tr. Ceren Gülra Melek, Istanbul Arel Üniversitesi, cerenmelek@arel.edu. Uydu Görüntülerinden Elde Edilen Bilgilerle Yeryüzü Şekillerinin Tanımlanması ve Değişimlerinin Gözlenmesinde Coğrafi Bilgi Sistemlerinden Yararlanılması Üzerine Bir Ön Çalışma Sabri Serkan Güllüoğlu,

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

ATEM. Zamanında ve etkin servis hizmetiyle size en yakın noktadayız.

ATEM. Zamanında ve etkin servis hizmetiyle size en yakın noktadayız. Zamanında ve etkin servis hizmetiyle size en yakın noktadayız. A U S T R I A ATEM www.eurocnc.com info@eurocnc.com MAKİNE OTOMASYON SAN. VE T İC. LT D. ŞTİ. Arı Sanayi Sitesi 1364. (Eski 585.) Sokak No:

Detaylı

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 011, Elazığ, Turkey Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Sayısal Görüntü İşleme BIL413 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number:, Article Number: 1A0173 ENGINEERING SCIENCES Burhan Ergen Received: November 010 Muhammet Baykara Accepted: February 011 Firat

Detaylı

ArcGIS ile Tarımsal Uygulamalar Eğitimi

ArcGIS ile Tarımsal Uygulamalar Eğitimi ArcGIS ile Tarımsal Uygulamalar Eğitimi Kursun Süresi: 5 Gün 30 Saat http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr ArcGIS ile Tarımsal Uygulamalar Eğitimi Genel

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması

Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması URSI-TÜRKİYE 214 VII. Bilimsel Kongresi, 28-3 Ağustos 214, ELAZIĞ Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması Cafer Budak

Detaylı

İBN RÜŞD DE DİN-FELSEFE İLİŞKİSİ BAĞLAMINDA TE VİL

İBN RÜŞD DE DİN-FELSEFE İLİŞKİSİ BAĞLAMINDA TE VİL T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Felsefe ve Din Bilimleri Anabilim Dalı İBN RÜŞD DE DİN-FELSEFE İLİŞKİSİ BAĞLAMINDA TE VİL Perihan AYVALI Yüksek Lisans Tezi Çorum 2013 İBN RÜŞD DE DİN-FELSEFE

Detaylı

Turkish and Kurdish influences in the Arabic Dialects of Anatolia. Otto Jastrow (Tallinn)

Turkish and Kurdish influences in the Arabic Dialects of Anatolia. Otto Jastrow (Tallinn) Türk Dilleri Araştırmaları, 21.1 (2011): 83-94 Turkish and Kurdish influences in the Arabic Dialects of Anatolia Otto Jastrow (Tallinn) Özet: Anadolu Arapçası, ayrı lehçeler (Sprachinseln) biçiminde ortaya

Detaylı

Verilog HDL e Giriş Bilg. Yük. Müh. Selçuk BAŞAK

Verilog HDL e Giriş Bilg. Yük. Müh. Selçuk BAŞAK Verilog HDL e Giriş Bilg. Yük. Müh. Selçuk BAŞAK SelSistem Bilgi ve İletişim Teknolojileri www.selsistem.com.tr Donanım Tanımlama Dilleri - HDL İlk olarak 1977 yılında, ISP(Instruction Set Processor) -

Detaylı