SİSTEM DİNAMİĞİ VE KONTROL

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SİSTEM DİNAMİĞİ VE KONTROL"

Transkript

1 ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU

2 . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin çözümünd kullanılan işlml bi yönm, Pi-Simon aplac, Tüv, ingal v ü alma gibi işlmlin bai cbil işlml halin dönüşüüldüğü dönüşüm işlmli, Sinuoidal, önümlü inuoidal v ül onkiyonla gibi onkiyonla cbik onkiyon halin dönüşüülü, Opayonl mamaik; Zaman domni onkiyonu Komplk domn onkiyonu Bu yönml; imin dianiyl dnklmlini gçk anlamda çözmdn önc, im pomanı hakkında gaikl kniklin kullanılmaına imkan vmkdi. F

3 . APACE DÖNÜŞÜMERİ.. Giiş Zaman düzlmi Tim domain unknown, d/d, Di E Solv Dinial Euaion Tim domain known aplac Tanomaion aplac dönüşümü T aplac dönüşümü aplac vya kamaşık kan düzlmi Funcy domain unknown F, Alg E Solv Algbaic Euaion Funcy domain known F Inv aplac Tanom 3

4 . APACE DÖNÜŞÜMERİ.. Giiş Zaman düzlmi zo poblm y" y y y' Çöz? aplac dönüşümü aplac vya kamaşık kan düzlmi bai dnklm Y Cbik işlm y Çözüm y co T aplac dönüşümü Y Çözüm Y 4

5 . APACE DÖNÜŞÜMERİ.. Giiş Zamanın onkiyonu nin aplac dönüşümü için, bu onkiyonu iadi il çapıp ııdan onuza kada zamana bağlı olaak ing m işlmindn ibai; [ ] Buada ; ; aplac dönüşüm opaöü, ; aplac dönüşüm dğişknidi. Ancak izikl imli iad dn mamaikl işlm v iadlin aplac dönüşümli mvcu olup, aplac dönüşüml adc lin iml için kullanılı. d 5

6 . APACE DÖNÜŞÜMERİ.. aplac Dönüşüm Özllikli. inlik [ A. ] A. [ ]. Süppoziyon [ ] [ ] [ ] 3. Biinci kn kaydıma [ a ] F a 4. İkinci kn kaydıma [ T T. F 5. Zaman kalaının dğişimi 6. Tüvin aplac dönüşümü d [ d n n ] n F [ n n [ [ n d d / a] ] a. F a. F... n n n ] F 6

7 . APACE DÖNÜŞÜMERİ.. aplac Dönüşüm Özllikli 7. İngalin aplac dönüşümü 8. İlk dğ omi [ d F lim lim.f 9. Son dğ omi lim lim.f Pi-Simon aplac Mamaikçi v Aonom hp://www-hioy.mc.andw.ac.uk/biogaphi/aplac.hml 7

8 . APACE DÖNÜŞÜMERİ.3. Kamaşık Sayıla v İşlmli 8 Sanal kn-im jw Gçk kn R σ x y y acan y x z z x y z.in.co y x

9 . APACE DÖNÜŞÜMERİ.3. Kamaşık Sayıla v İşlmli j j j 9

10 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli. Baamak onkiyonu; için =A onkiyonudu. F [ ] A d A d A A u =u i biim baamak onkiyonu olu. A= olua; F [ ]. d

11 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli a. = i onkiyonu; a a a d F [ ] d a a 3. =inw i inüzoidal onkiyon; inw jw j jw F [in w] j wj wj j jw w w w

12 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli 4. =cow onkiyonu olun; cow jw F [co w] jw w 5. =A i Rampa onkiyonu oluşu; F [ A] u A d v A d d Kıımlaa ayılaak ingal alınıa;

13 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli Rampa onkiyonu; A= alınıa; F [ A] F [ ] Bu onuç gnllşiili; A d d A F [ n ] n! n 3

14 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli 6. Ölnmiş piyodik onkiyon; - - F [ ] d d d F [ ] d 4

15 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli Buada şklind dğişkn dönüşümü yapılıa; için aplac dönüşümü hhangi bi dğişkn için gçli olduğu için; Konol imlind Ölü zaman onkiyonudu. d d ] [ F d d d ] [ F. ] [ F 5

16 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli 7. Dab Pul onkiyonu; A = için =A.u baamak onkiyonu il = için Au. baamak onkiyonunun üppoziyonu şklind l alını. Buna gö; Au. Au. F [ ] [ Au. ] [ Au. ] A A A F. 6

17 . APACE DÖNÜŞÜMERİ.4. Bazı Fonkiyonlaın aplac Dönüşümli 8. İmpul anidab onkiyonu; - F d [ ] 7

18 . APACE DÖNÜŞÜMERİ.5. T aplac Dönüşümü Dnklml aplac domnin dönüşüüldükn v çıkış dğişknli nin onkiyonu olaak çözüldükn ona, bunlaın ka zaman domnin dönüşüülmi gkbili. Bu işlm T aplac Dönüşümü işlmi dni.. Tablo kullanılaak,. Kımi ki açılımı il, [F] 3. T aplac dönüşümü ingali alınaak bulunu. 8

19 . APACE DÖNÜŞÜMERİ.5. T aplac Dönüşümü aplac Dönüşüm Tablou 9

20 . APACE DÖNÜŞÜMERİ.6. T aplac Dönüşümü Kımi Kil Ayıma Yönmi; F onkiyonu çoğunlukla, aplac dönüşümü ablounda olduğu şkild oaya çıkmaz. Bu duumda, F kımi kil ayılmak uiyl nin bai onkiyonlaı şklind yazılı v böylc bilinn aplac dönüşümli yadımıyla ablodan yaalanaak bulunu. Konol imlind inclnmind F gnllikl; A F B şklind iad dili. Buada, A v B, dğişkninin bi polinomudu v B nin mbi A nin mbindn büyükü.

21 . APACE DÖNÜŞÜMERİ.6. T aplac Dönüşümü Kımi Kil Ayıma Yönmi; Yukaıdaki iadnin bai kil ayılmaı v onunda nin bulunmaında mümkün olan üç duum vadı.. Faklı Gçk Kök Bai Poll Duumu Eğ F onkiyonu bai kökl ahip şu şkild yazılabili: A K K Kn F... B Buada K la abi olup şöyl anımlanı: K lim n A B K K... K n n n

22 . APACE DÖNÜŞÜMERİ.6. T aplac Dönüşümü. Kalı vya Tkalı Kök Duumu Eğ B şklind çapanlaa ayılıyoa; kökü da kalanıyo dmki. y; F... n A B nin kalı kökü dni. O hald F nin bai kökli; F A B C C C... K K... K n n

23 . APACE DÖNÜŞÜMERİ.6. T aplac Dönüşümü Kalı imlin C abili şöyl bulunu; K abili bai kökl şklind haplandıkan ona dönüşüm ağlanı. B A C lim n n K K K C C C C...!...!! 3 B A d d C lim B A d d k C k k k! lim

24 . APACE DÖNÜŞÜMERİ.6. T aplac Dönüşümü 3. Kamaşık Eşlnik Kök Duumu B y ai kamaşık kökl şlnik çil halind bulunu. Bu kökl a+jb v a-jb şklinddi. Eğ B a jb a jb i; Bai gçk kök için uygulanan yönml bai kil ayıaak; A a jb F B a jb Yazılı v dönüşüml aşağıdaki, iad ld dili: a a co b b a in b 4

25 ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli SORUAR, CEVAPAR, YORUMAR 5

NOKTA TEMASLI TRANSĐSTÖR(Bipolar Junction Transistor-BJT) ÖZEĞRĐLERĐ ve KÜÇÜK SĐNYAL MODELLENMESĐ

NOKTA TEMASLI TRANSĐSTÖR(Bipolar Junction Transistor-BJT) ÖZEĞRĐLERĐ ve KÜÇÜK SĐNYAL MODELLENMESĐ DNY NO: NOKTA TMASL TRANSĐSTÖR(ipola Junction TansistoJT ÖZĞRĐLRĐ v KÜÇÜK SĐNYAL MODLLNMSĐ DNYĐN AMA: JT lin özğilinin dnysl olaak ld dilmsinin öğnilmsi v bu ğildn mlz paamtlinin çıkaılması. DNY MALZMSĐ

Detaylı

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur.

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur. Düzlmd ğisl haktin üçüncü tanımı pola koodinatlada yapılı; buada paçacık sabit bi başlangıç noktasından msaf uzaktadı bu adyal doğu açısıyla ölçülmktdi. Hakt adyal bi msaf açısal bi konum il kısıtlı olduğunda

Detaylı

KYM363 MÜHENDİSLİK EKONOMİSİ L17 KARLILIK ANALİZİ. İNDİRGENMİŞ NAKİT AKIMI ve NET BUGÜNKÜ DEĞER

KYM363 MÜHENDİSLİK EKONOMİSİ L17 KARLILIK ANALİZİ. İNDİRGENMİŞ NAKİT AKIMI ve NET BUGÜNKÜ DEĞER KYM363 MÜHENDİSLİK EKONOMİSİ L17 KARLILIK ANALİZİ İNDİRGENMİŞ NAKİT AKIMI v NET BUGÜNKÜ DEĞER Pof.D.Hasip Yniova E Blok 1.kat no.113 www.yniova.info yniova@ankaa.du.t yniova@gmail.com Poj Ömü Boyunca indignmiş

Detaylı

KANGAL AKIM OPTİMİZASYON YÖNETİMİ İLE GEMİNİN MANYETİK İZİNİN AZALTILMASI REDUCING SHIP S MAGNETIC SIGNATURE WITH METHOD OF COIL CURRENT OPTIMIZATION

KANGAL AKIM OPTİMİZASYON YÖNETİMİ İLE GEMİNİN MANYETİK İZİNİN AZALTILMASI REDUCING SHIP S MAGNETIC SIGNATURE WITH METHOD OF COIL CURRENT OPTIMIZATION KNGL K OPTİİZSYON YÖNETİİ İLE GEİNİN NYETİK İZİNİN ZLTLS REDUCNG SHP S GNETC SGNTURE WTH ETHOD OF COL CURRENT OPTZTON Yusuf İgi Edinç Çkli ua Kulu Ean Usal TÜİTK- Enji Ensiüsü Güç Elkoniği v Konol ölüü,

Detaylı

ANLIK BASINÇ YÜKÜ ETKİSİ ALTINDAKİ KONSOL BİR PLAĞIN DİNAMİK ANALİZİ

ANLIK BASINÇ YÜKÜ ETKİSİ ALTINDAKİ KONSOL BİR PLAĞIN DİNAMİK ANALİZİ Anlık Basınç Yükü Ekisi Alındaki Konsol Bi Plağın Dinamik Analizi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 4 CİLT SAYI 3 (9-7 ANLIK BASINÇ YÜKÜ ETKİSİ ALTINDAKİ KONSOL BİR PLAĞIN DİNAMİK ANALİZİ Hayda

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

HİBRİT ÖLÇÜMLERLE HEDEF KESTİRİM ALGORİTMASI TASARIMI

HİBRİT ÖLÇÜMLERLE HEDEF KESTİRİM ALGORİTMASI TASARIMI Hibit Hdf Kstiim Algitması asaımı HAVACILIK VE UZAY EKNOLOJİLERİ DERGİSİ EMMUZ 14 CİL 7 SAYI (13-11 HİBRİ ÖLÇÜMLERLE HEDEF KESİRİM ALGORİMASI ASARIMI Suzan KALE* Rktsan A.Ş. skal@ktsan.cm.t Ali ük KUAY

Detaylı

KALİTE ARAŞTIRMA DANIŞMANLIK VE EĞİTİM MERKEZİ TS EN ISO 9001:2008 (1.3-KYS) TEMEL EĞİTİM NOTLARI

KALİTE ARAŞTIRMA DANIŞMANLIK VE EĞİTİM MERKEZİ TS EN ISO 9001:2008 (1.3-KYS) TEMEL EĞİTİM NOTLARI TS EN ISO 9001:2008 (1.3-KYS) TEMEL EĞİTİM NOTLARI ADRES : Ziyaby caddsi 6. sokak No:8/1 Balga/ANKARA Sayfa 1 / 19 ISO 9001:2008 KALİTE YÖNETİM SİSTEMLERİ DOĞASINDA OLAN (KALICI) ÖZELLİKLERİN ŞARTLARI

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

TEMEL DENKLEMLER. = a v. sin cos ) = = r h h = ( 1+ Uzayda eğrisel hareket (Kürsel takım) v= r. Doğrusal hareket. Sabit ivmeli doğrusal hareket

TEMEL DENKLEMLER. = a v. sin cos ) = = r h h = ( 1+ Uzayda eğrisel hareket (Kürsel takım) v= r. Doğrusal hareket. Sabit ivmeli doğrusal hareket Doğusal hak = = x a= a= = x ax= Sabi imli oğusal hak = + a = + a ( x- x o x = x + + a o o o o o o o Düzlm ğisl hak (Kazyn akım = s = xi+ y j a= i+ j= xi+ yj x y EMEL DENKLEMLER = x + y a= x + y Düzlm ğisl

Detaylı

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p VİDALA VE CIVAALA d : Miniu, inö yada diş dibi çapı (=oot) d : Otalaa, noinal çap yada böğü çapı (=ean) d : Maksiu, ajö çap, diş üstü çapı λ : Helis açısı p : Adı (p=pitch) l (hatve): Civatanın bi ta dönüşüne

Detaylı

Sonlu Elemanlar Yöntemiyle Yumuşak Polietilen Bir Silindirik Borunun Gerilme Analizi

Sonlu Elemanlar Yöntemiyle Yumuşak Polietilen Bir Silindirik Borunun Gerilme Analizi Uludag.Üniv.Zi.Fak.Deg., 25) 19: 23-36 Sonlu Elemanla Yöntemiyle Yumuşak Polietilen Bi Silindiik Bounun Geilme Analizi Muhaem ZEYTİNOĞLU * ÖZET Taım, anayii ve konut ektöünde kullanılan, ıvı ve gaz iletim

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi Sitm Diamiği v Modllmi aplac Traformayou v Trafr Fokiyou aplac Traformu : Bir itmi diamik davraışı, o itmi matmatikl modlii ifad d difraiyl dklmlri çözümüd kullaıla bir matmatikl yötmdir. f(t foiyouu aplac

Detaylı

Yard. Doç. Dr. (Mimar) Şahabettin OZTURK. Bitlis Merkez Meydan Camii

Yard. Doç. Dr. (Mimar) Şahabettin OZTURK. Bitlis Merkez Meydan Camii Yad. Doç. D. (Mima) Şahabettin OZTURK Bitlis Mekez Meydan Camii YARD. DOC. DR. fmimar) SAHABETTİN ÖZTIJRK bi keme içinde ye alan yuvalak bi ozet ye almaktadı. Minae güney cephede zeminden 2.21 cm. diğe

Detaylı

y xy = x şeklinde bir özel çözümünü belirleyerek genel

y xy = x şeklinde bir özel çözümünü belirleyerek genel Difransil Dnklmlr I / 94 A Aşağıdaki difransil dnklmlrin çözümlrini bulunuz d d -( + ) 7 + n( ) +, () + n ( + ) 4 + - + 5 6 - ( - ) + 8 9 - - + + - ( -) d- ( + ) d + Not: Çözüm mtodu olarak: Tam difdnk

Detaylı

AC Makinaların armatüründe endüklenen gerilim hesabı:

AC Makinaların armatüründe endüklenen gerilim hesabı: AC Makinalaın amatüünde endüklenen geilim heabı: E m f N temel fmülünü bi iletken için uygulaken N / laak düşünülü ve he hamnik için ayı ayı heaplanı: E nm /iletken f n n lup, buadaki n. hamnik fekanı

Detaylı

ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME ANALİZİ

ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME ANALİZİ Gazi Üniv. Müh. Mim. Fak. De. J. Fac. Eng. Ach. Gazi Univ. Cilt 8, No 4, 33-44, 003 Vol 8, No 4, 33-44, 003 ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals Ç.Ü Fen e Mühendislik Bilimlei Deisi Yıl:0 Cilt:8-3 ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eienfequency Contous of ZnX (X=S, Se, Te) Photonic Cystals Utku ERDİVEN, Fizik Anabilim

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

ELEKTROMEKANİK GERGİ DENETİM SİSTEMİ

ELEKTROMEKANİK GERGİ DENETİM SİSTEMİ ELEKTROMEKANİK GERGİ DENETİM SİSTEMİ Güel Şefkat, İahim Yükel, Meut Şeniin U.Ü. Mühendilik-Mimalık Fakültei, Göükle / BURSA ÖZET Kağıt, kumaş, ac, platik ii şeit halindeki malzemelein, ulo olaak endütiyel

Detaylı

Kayıplı Dielektrik Cisimlerin Mikrodalga ile Isıtılması ve Uç Etkileri

Kayıplı Dielektrik Cisimlerin Mikrodalga ile Isıtılması ve Uç Etkileri Kayıplı Dilktrik Cisimlrin Mikrodalga il Isıtılması v Uç Etkilri Orhan Orhan* Sdf Knt** E. Fuad Knt*** *Univrsity of Padrborn, Hinz ixdorf Institut, Fürstnall, 3302 Padrborn, Almanya orhan@hni.upb.d **Istanbul

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

GELECEĞİ DÜŞÜNEN ÇEVREYE SAYGILI % 70. tasarruf. Sokak, Park ve Bahçelerinizi Daha Az Ödeyerek Daha İyi Aydınlatmak Mümkün

GELECEĞİ DÜŞÜNEN ÇEVREYE SAYGILI % 70. tasarruf. Sokak, Park ve Bahçelerinizi Daha Az Ödeyerek Daha İyi Aydınlatmak Mümkün www.urlsolar.com S L D-S K -6 0 W ile 1 5 0 W St an d art S o kak L a m ba sı F iya t K arşılaşt ırm a sı kw h Ü c reti Yıllık Tü ke tim Ü cre ti Y ıllık T ü ketim Fa rkı kw Sa at G ü n A y Stan d art

Detaylı

MİLLİ MÜCADELE ERZURUM UNDAN MÜHİM BİR MEKTUP AN IMPORTANT LETTER FROM ERZURUM IN NATIONAL STRUGGLE PERIOD

MİLLİ MÜCADELE ERZURUM UNDAN MÜHİM BİR MEKTUP AN IMPORTANT LETTER FROM ERZURUM IN NATIONAL STRUGGLE PERIOD Doi: 10.18795/ma.60558 Research Article Murat KÜÇÜKUĞURLU Prof. Dr. Prof. Dr. E zu u T n Ün v, Ed b y F ü, T h Bö ü ü, E zu u -Tü y Erzurum Technical University, Faculty of Letters, Department of History,

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

JT 369 www.whirlpool.com

JT 369 www.whirlpool.com JT 369.hilpool.com 1 KURULUM BAĞLANTIYI YAPMADAN ÖNCE AYAR LEVHASI ÜZERINDE BELIRTILEN VOLTAJIN, vinizd mvcut voltaj il aynı olduğundan min olunuz. FIRININ IÇ KISMINDAKI KENARDA BULUNAN MIKRODALGA GIRIŞ

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = 0.100 mm T = 70 C l d. olduğu biliniyor. Buradan

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = 0.100 mm T = 70 C l d. olduğu biliniyor. Buradan ÖRNEK 00 mm çapında, 00 mm uzunluğundaki bi kaymalı yatakta, muylu 900 d/dk hızla dönmekte kn bi adyal yükle zolanmaktadı. Radyal boşluğu 0.00 mm alaak AE 0, 0, 0 40 yağlaı güç kayıplaını hesaplayınız.

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Ü İ İ İ Ğ öğ İ İ öğ İ Ü İ ö ç ö ö Ü ö Ö ö ö ö ç ö ö ö ç ö ö ö İ ç ö ç ö ç ö ö ö ö ç ç ö ç ç ç ö Ç ç ç ö ö ç ç ö ö ç ö ç ö Ö ö ö ö ö Ç ö ç ç ç ö ö Ö Ö Ö ö ö ç Ç Ö ö ö ö ç ö ç ö ç ö ö ö ç ç ç ö ö ö Ü ç Ö

Detaylı

Beş Seviyeli Kaskat İnverter İle Beslenen 3-Fazlı Asenkron Motorun V/f Kontrolü

Beş Seviyeli Kaskat İnverter İle Beslenen 3-Fazlı Asenkron Motorun V/f Kontrolü Fıat Üniv. Fen ve Müh. Bil. De. Science and Eng. J of Fıat Univ. 18 (1), 69-8, 26 18 (1), 69-8, 26 Beş Seviyeli Kakat İnvete İle Belenen 3-Fazlı Aenkon Motoun V/f Kontolü Ekan DENİZ ve Hüeyin ALTUN Fıat

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Engineeing and Naual Sciences Mühendislik ve Fen Bilimlei Degisi Sigma 5/4 ENERGY DECAY FOR KIRCHHOFF EQUATION Müge MEYVACI Mima Sinan Güzel Sanala Ünivesiesi, Fen-Edebiya Fakülesi, Maemaik Bölümü,Beşikaş-İSTANBUL

Detaylı

ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö

ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö ç ö çö ö çö ö ğ ç ğ ğ ğ ğ ğ ğ ğ ö ö ö ğ ç ö ğ ö ç ğ ğ ö ğ ğ ğ ğ ğ ç ğ ö ö ç ç ğ ç ğ ö ğ ğ ğ çö çö ö ö ğ ö ğ ö ö ğ ç

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ

ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ (Dny Yürüücüsü: Arş. Gör. Doğan ERDEMİR) Dnyin Amacı v Dny Hakkında Gnl Bilgilr Dnyin amacı sı gri kazanımı (çapraz akış) sismlrind;. Sıcaklık dğişimlrinin ölçümü

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ DENEY ADI RADYAL KAYMALI YATAKLARDA SÜRTÜNME KUVVETİNİN ÖLÇÜLMESİ DERSİN ÖĞRETİM ÜYESİ YRD.DOÇ.DR.

Detaylı

MODEL SORU - 2 DEKİ SORULARIN ÇÖZÜMLERİ MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ. Yalnız K anahtarı kapatılırsa;

MODEL SORU - 2 DEKİ SORULARIN ÇÖZÜMLERİ MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ. Yalnız K anahtarı kapatılırsa; 1. BÖÜ EESTROSTATİ ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ ODE SORU - DEİ SORUARIN ÇÖZÜERİ 1.. 1. Z. yatay üzlem 8 yatay üzlem ve küeleinin ve küeciğinin yükleinin işaeti I., II. ve III. satılaaki gibi olabili.

Detaylı

BÖLÜM 2 D YOT MODELLER

BÖLÜM 2 D YOT MODELLER BÖLÜM YOT MOELLER.1. Bi diyodu liee olmaya davaıı lei yöde kutulamı bi joksiyouu akım-geilim kaakteistii gei bi bölgede ekil-.1 deki gibi üstel bi deiim göstei. cak, geek küçük geekse büyük akımlaa dou

Detaylı

İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö

İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö Ğ ö ö ö «ö Ğ Ö ö Ç ö ö Ö ö ö İ ö İ ö İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö İ ö Ç ö ö ö ö ö ö Ç ö Ö Ç ö İ Ç ö Ü Ş ö ö İ ö ö Ş ö İ Ü Ş ö ö ö ö Çö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 3. BÖÜ GAZ BASINCI ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ 3. ı ı Z ı 1. I II III,, muslukları açıldığında: I düzeneğinde: aptaki yüksekliği arttığından, kabın tabanına yapılan toplam basınç artar. Borudaki

Detaylı

BTZ Kara Deliği ve Grafen

BTZ Kara Deliği ve Grafen BTZ Kaa Deliği ve Gafen Ankaa YEF Günlei 015 1-14 Şubat 015, ODTÜ Ümit Etem ve B. S. Kandemi BTZ Kaa Deliği Gafen ve Eği Uzay-zamanla Beltami Tompeti ve Diac Hamiltonyeni Eneji Değelei ve Gafen Paametelei

Detaylı

Ğ Ü Ç Ç ç ö ç ö ç ö ç ö ç ö ö ç ç ç ç ç ç çö ç

Ğ Ü Ç Ç ç ö ç ö ç ö ç ö ç ö ö ç ç ç ç ç ç çö ç Ğ Ğ Ğ Ğ Ğ Ğ Ç ç ö ö Ğ Ü Ç Ç ç ö ç ö ç ö ç ö ç ö ö ç ç ç ç ç ç çö ç ö ö ç ç ç ç ö ö Ü Ö ç ö ç ç ç ç ç ç ç ö ö ç ö ö ö ö ö ç ö ç ö ç ç ç ç ç ç ö ç ç ç ç ç ç ç ö ç ç ç ç ç ö ç ç ç ç ö ç ö ö ö ç ç ç ç ç ç

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

Ü Ğ ç Ğ ç ö ç ö

Ü Ğ ç Ğ ç ö ç ö Ü Ğ ç Ğ ç ö ö ç Ğ Ü Ğ ç Ğ ç ö ç ö Ğ ç ç ö ö ç ç ç ö ç ç Ç ç ç ç Ş ç ç ö ç Ü ç ç ç ö ö ç ö Ş ö Ğ ç ç ö ç ö Ü ç ö ç ç ö ö ç ç Ü ç çö ö ç ö ç ö ö ö ö Ü ç ö Ö ö Ü ö ö Ü Ş ö ö Ü Ş ç Ş ö Ğ ö Ö ö Ğ ç ç Ö ç ç

Detaylı

DERS 11. Belirsiz İntegral

DERS 11. Belirsiz İntegral DERS Blirsiz İnral.. Blirsiz İnral. B rs ürvi bilinn bir onksiyonn ynin inşasını l alacağız. Türvi bilinn bir onksiyonn ynin inşası işlmin rs ürv işlmi aniirniaion nir. v F onksiyonlar, F is, F y nin rs

Detaylı

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan 1 YARI İLETKENLER Enstrümantal Analiz ir yarı iltkn, iltknliği bir iltkn il bir yalıtkan arasında olan kristal bir malzmdir. Çok çşitli yarıiltkn malzm vardır, silikon v grmanyum, mtalimsi bilşiklr (silikon

Detaylı

Türkiye deki Özürlü Grupların Yapısının Çoklu Uyum Analizi ile İncelenmesi *

Türkiye deki Özürlü Grupların Yapısının Çoklu Uyum Analizi ile İncelenmesi * Uludağ Üniveitei Tıp Fakültei Degii 3 (3) 53-57, 005 ORİJİNAL YAI Tükiye deki Guplaın Yapıının Çoklu Uyum Analizi ile İncelenmei * Şengül CANGÜR, Deniz SIĞIRLI, Bülent EDİ, İlke ERCAN, İmet KAN Uludağ

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

İŞLEM KURALLARI BİLDİRİM FORMU

İŞLEM KURALLARI BİLDİRİM FORMU İŞLEM KURALLARI BİLDİRİM FORMU SERMAYE PİYASASI KURULU'NUN YAPTIĞI DEĞERLENDİRME SONUCUNDA, BORSA İSTANBUL A.Ş. DE İŞLEM GÖREN PAYLAR A, B, C v D GRUBU OLMAK ÜZERE DÖRT GRUBA AYRILMIŞ OLUP, GRUPLAR İLE

Detaylı

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması Evensel kuvvet - haeket eşitliklei ve güneş sistemi uygulaması 1. GİRİŞ Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com

Detaylı

D G D G www 1309 1/ - 08 www Gö www Ğ j Ğ ö j Ğ D ö ö j Ğ Ğ Ğ ö Ğ Ğ Ğ Ğ j Ğ j j ö ö Ğ Ğ Ğ ö j Ğ Ğ Ğ ö Ğ Ğ Ğ j Ğ ö j Ğ ö ö Ğ j Ğ Ğ ö Ğ Ğ Ğ ö Ğ Ğ j Ğ Ğ j ö j ö Ğ Gö Ğ Ğ G D İ D www Gö D G 1 ZÇL S F G P Ö

Detaylı

IŞINIM VE DOĞAL TAŞINIM DENEYİ

IŞINIM VE DOĞAL TAŞINIM DENEYİ IŞINIM VE DOĞAL TAŞINIM DENEYİ MAK-LAB005 1. DENEY DÜZENEĞİNİN TANITILMASI Dny düznği, şkild görüldüğü gibi çlik bir basınç kabının içind yatay olarak asılı duran silindirik bir lman ihtiva dr. Elman bakırdan

Detaylı

Yasemin Öner 1, Selin Özçıra 1, Nur Bekiroğlu 1. Yıldız Teknik Üniversitesi yoner@yildiz.edu.tr, sozcira@yildiz.edu.tr, nbekir@yildiz.edu.tr.

Yasemin Öner 1, Selin Özçıra 1, Nur Bekiroğlu 1. Yıldız Teknik Üniversitesi yoner@yildiz.edu.tr, sozcira@yildiz.edu.tr, nbekir@yildiz.edu.tr. Düşük Güçlü Uygulamala için Konvansiyonel Senkon Geneatöle ile Süekli Mıknatıslı Senkon Geneatölein Kaşılaştıılması Compaison of Conventional Synchonous Geneatos and emanent Magnet Synchonous Geneatos

Detaylı

TÜRK EKONOMİSİNDE PARA İKAMESİNİN BELİRLEYİCİLERİNİN SINIR TESTİ YAKLAŞIMI İLE EŞ-BÜTÜNLEŞME ANALİZİ

TÜRK EKONOMİSİNDE PARA İKAMESİNİN BELİRLEYİCİLERİNİN SINIR TESTİ YAKLAŞIMI İLE EŞ-BÜTÜNLEŞME ANALİZİ TÜRK EKONOMİSİNDE PARA İKAMESİNİN BELİRLEYİCİLERİNİN SINIR TESTİ YAKLAŞIMI İLE EŞ-BÜTÜNLEŞME ANALİZİ Cünyt DUMRUL * ÖZ Bu çalışma ticarî dışa açıklık, bklnn döviz kuru, bklnn nflasyon oranı v Türkiy il

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

IV. BÖLÜM SULARIN DERLENMES (KAPTAJ)

IV. BÖLÜM SULARIN DERLENMES (KAPTAJ) IV. BÖLÜM SULARIN DERLENMES (KAPTAJ) 4.1 MENBA SULARININ DERLENMES Menbala (pına) yealtı sulaını taıyan tabakanın hehangi bi ekilde ye yüzeyine çıkması sonucu oluu. Böylece yealtı suyu kendiliinden yeyüzüne

Detaylı

SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com DEĞİŞİME AÇIK OLUN 1 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 2 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 3 sjbslmsivi@gmilm 1 Bir işlmi bzı bilgilri şğıdki gibidir: (Bi TL) Öki Döm Cri Döm Alıılr 940 610 Alk Slri

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

EĞİTİM YAPILARI GÜÇLENDİRME VE ONARIM İNŞAATI SÖZLEŞME PAKETİ (EIB-WB3-GUCL-ONAR-18)

EĞİTİM YAPILARI GÜÇLENDİRME VE ONARIM İNŞAATI SÖZLEŞME PAKETİ (EIB-WB3-GUCL-ONAR-18) TÜRKİYE CUMHURİYETİ İSTANBUL VALİLİĞİ İSTANBUL PROJE KOORDİNASYON BİRİMİ (İPKB) İSTANBUL SİSMİK RİSKİN AZALTILMASI VE ACİL DURUM HAZIRLIK PROJESİ (ISMEP) Kredi No: 24383 EĞİTİM YAPILARI GÜÇLENDİRME VE

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi 84 lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s lkk alann valğndan dola = akm akacak Bu duumda;

Detaylı

DNS temelleri ve BIND DNS sunucusu. Devrim GÜNDÜZ. TR.NET devrim@oper.metu.edu.tr. http://seminer.linux.org.tr http://belgeler.linux.org.

DNS temelleri ve BIND DNS sunucusu. Devrim GÜNDÜZ. TR.NET devrim@oper.metu.edu.tr. http://seminer.linux.org.tr http://belgeler.linux.org. DNS temellei ve sunucusu Devim GÜNDÜZ TR.NET devim@ope.metu.edu.t http://semine.linux.og.t http://belgele.linux.og.t Giiş Bu seminede, aşağıdaki konula anlatılacaktı: DNS Nedi? DNS Yapısı nasıldı? Ne zaman

Detaylı

KULLANMA KILAVUZU MC 200E

KULLANMA KILAVUZU MC 200E KULLANMA KILAVUZU MC 00E ÖNEMLİ GÜVENLİK UYARILARI Bu dikiş makinsi oyuncak dğildi. Çocuklaın bu makin il oynamalaına izin vmyin. Bu makin uygun dntlm olmadan cocukla v zihni sakat kişl taafından kullanılmamalıdıı.

Detaylı

01.04.2010. Tambur dişlisinin tambura montajı

01.04.2010. Tambur dişlisinin tambura montajı 01.04.0 TAMBURLAR Kaldırma makinalarında kullanılan tamburların yapısı aşağıdaki şkild görülmktdir. 1 4 Tambur dişlisinin tambura montajı 5 6 1 01.04.0 Tamburların yataklanma v tahrik skillri aşağıdaki

Detaylı

DENEY 5 RL ve RC Devreleri

DENEY 5 RL ve RC Devreleri UUDAĞ ÜNİVESİTESİ MÜHENDİSİK FAKÜTESİ EEKTİK-EEKTONİK MÜHENDİSİĞİ BÖÜMÜ EEM2103 Elekrik Devreleri aborauarı 2014-2015 DENEY 5 ve Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı : Deney Sonuçları (40/100)

Detaylı

ARDIŞIL DEVRELER FLIP FLOP (İKİLİ DEVRELER)

ARDIŞIL DEVRELER FLIP FLOP (İKİLİ DEVRELER) AIŞIL EVELE TANIM: ÇIKIŞLAIN BELİLİ Bİ ANAKİ EĞEİ, GİİŞLEİN YANLIZA O ANKİ EGEİNE EĞİL, AYNI ZAMANA GİİŞLEİN ÖNEKİ EĞELEİNİN IAINA A BAĞLI OLAN EVELEE AIŞIL EVELE AI VEİLİ. GEÇMİŞ GİİŞ EĞELEİNİN IAI HAFIZA

Detaylı

Boru İçerisindeki Bir Akış Problemine Ait Analitik ve Nümerik Çözümler

Boru İçerisindeki Bir Akış Problemine Ait Analitik ve Nümerik Çözümler Afyon Kocatepe Üniesitesi Fen Bililei Degisi Afyon Kocatepe Uniesity Jounal of Sciences AKÜ FEBİD () 59 (-9) AKU J. Sci. () 59 (-9) Bou İçeisindeki Bi Akış Pobleine Ait Analitik e Nüeik Çözüle Eine Ceyan,Muhaet

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

YENİLENEBİLİR ENERJİ KAYNAKLARI AÇISINDAN RÜZGAR ENERJİSİNİN TÜRKİYE DEKİ KAPASİTESİ ÖZET

YENİLENEBİLİR ENERJİ KAYNAKLARI AÇISINDAN RÜZGAR ENERJİSİNİN TÜRKİYE DEKİ KAPASİTESİ ÖZET YENİLENEBİLİR ENERJİ KAYNAKLARI AÇISINDAN RÜZGAR ENERJİSİNİN TÜRKİYE DEKİ KAPASİTESİ LEVENT YILMAZ Istanbul Tknik Ünivrsitsi, İnşaat Fakültsi, Hidrolik v Su Yapıları Kürsüsü, 8626, Maslak, Istanbul. ÖZET

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 5 BÖÜ RENER 1 2 ODE SORU - 1 DEİ SORUARIN ÇÖÜERİ T aralığı yalnız, T aralığı ise yalnız kaynaktan ışık alabilir aralığı her iki kaynaktan ışık alabileceğinden, + ( + yeşil) = renkte görünür I II O IV III

Detaylı

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR Tüm aın haklaı Doç. D. Bülent Yeşilata a aitti. İinsi çoğaltılama. III/ 7. İSKOZ ( SÜTÜNMELİ ) AKIŞLA 7.. Giiş Bi akışta iskoite etkisi önemli ise bu akış isko (sütünmeli) akış adını alı. Akışkan iskoitesinden

Detaylı

GÖVDE BORULU ISI DEĞİŞTİRİCİLİ R404A KULLANILAN BİR SOĞUTMA SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ

GÖVDE BORULU ISI DEĞİŞTİRİCİLİ R404A KULLANILAN BİR SOĞUTMA SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ Iı Bilimi ve Tekniği Degii,,, -, J. of Themal Science and Technology TIBTD Pinted in Tukey ISSN - GÖVD BORULU ISI DĞİŞTİRİİLİ RA ULLANILAN BİR SOĞUTMA SİSTMİNİN NRJİ V SRJİ ANALİZİ Ahmet ABUL, Önde IZILAN,

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

Temel zemin etkileşmesi; oturma ve yapı hasarı

Temel zemin etkileşmesi; oturma ve yapı hasarı Temel emin etkileşmei; otuma ve yapı haaı Foundation oil inteaction; ettlement and tuctual damage Altay Biand Otadoğu Teknik Üniveitei, Ankaa, Tükiye ÖZET: Oganik eminlein valığı dışında yapı haaında genelde

Detaylı

3 FAZLI SİSTEMLER. şartlarda daha fazla güç nakli mümkündür. 26.05.2013 3 fazlı sistemler 1 3-FAZLI DENGELİ SİSTEMLER V OR V OS O V OT

3 FAZLI SİSTEMLER. şartlarda daha fazla güç nakli mümkündür. 26.05.2013 3 fazlı sistemler 1 3-FAZLI DENGELİ SİSTEMLER V OR V OS O V OT 3 FA İEME n Çok azlı sistemle, geilimleinin aasında az akı bulunan iki veya daha azla tek azlı sistemin bileştiilmiş halidi ve bu işlem simetik bi şekilde yapılı. n ek azlı sistemlede güç dalgalı olduğu

Detaylı