Tanımlayıcı İstatistikler

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tanımlayıcı İstatistikler"

Transkript

1 Dr. Mehmet AKSARAYLI MERKEZİ EĞİLİM ve DEĞİŞKENLİK ÖLÇÜLERİ Ders / Tanımayıcı İstatstker Yer Öçüer (Merkez Eğm Öçüer) Duyarı Ortaamaar Artmetk ort. Tartıı Artmetk Geometrk ort. Kare ort. Harmonk ort. Duyarı Omayan Ort. Mod Medyan Karter Değşkenk Öçüer Değşm Araığı (Range) Standart sapma Varyans Mutak sapma Değşkenk katsayısı Kart sapma katsayısı Ortaama sapma katsayısı Çarpıkık Öçüer Bowey asmetr öçüsü Pearson asmetr öçüsü Basıkık Öçüer Ders /

2 Tanımayıcı statstk: Br gruba at ber değşkenern değerer hakkında bgy özeteyen öçüter: - Merkez eğm öçüter (dağıımın yer gösteren öçüter) - Yayıma öçüter (dağıımın yaygınık öçüter) -Dağıımın şek öçüter Ders / Dağıımın yer gösteren öçüter (merkez eğm öçüter): - Artmetk ortaama (x, µ): Değerer topamı/denek sayısı. - Ortanca (medyan): Dağıımın orta noktasındak değer - Tepe değer (mod): Dağıımda en çok görüen değer -Çeyrek ve yüzdeker (persent): %5-%50- %75 Smetrk (norma) dağıımda artmetk ortaama, ortanca ve tepe değer brbrne eşttr. Ders /4

3 Dağıımın yaygınık öçüter (yayıma öçüter): -Değer araığı (range, w): En büyük değer en küçük değer - Standart sapma (s, σ): Kesnğ tanımar - Varyans (s, σ ) - Varyasyon katsayısı (Coecent o varaton, CV): Standart sapmanın ortaamaya göre % değşm [CV 00 (s/x)] - Standart hata (s/ n) Ders /5 Adı Semboü Bast verer Grupandırımış Verer Artmetk Ortaama X x Medyan (.kart,.çeyrek) Med x n Sıraı gözemerde orta eeman yada orta eemanarın artmetk ortaamasıdır. Mod Mod En çok tekrar eden değer, en sık rastanan değer veya durum. Formüü Sınıandırımış Verer m L+. med Δ L +. Δ +Δ Kuanım Yer Aks geçer omadıkça yer öçüsüdür. Uç değerern buunduğu gözemerde veya aşırı çarpık dağıımarda yada açık uçu sererde kuanıır. Ortaama sözcüğü en çok tekrar eden durumu ade edyorsa ve çarpıkığın öçümesnde. Ders /6

4 İstatstkte Bazı Teme kavramar Range Değşken Ders /7 İstatstkte Bazı Teme kavramar Artmetk ortaama d Sapma d Ders /8 4

5 Standart sapma: σ Br dz öçümün gösterdğ değşmn en güvenr öçüsüdür. Dağıım azaysa standart sapma büyük, dağıım dar aanda se küçüktür. Ders /9 Bast Verer İçn Beş kşnn yaşarı: 4, 6, 0, 8, 4 x Artmetk Ortaama X ( )/5.4 n Sıraı verer: 8, 0, 4, 4, 6 Mod 4 Medyan4 Ders /0 5

6 Grupandırımış Verer İçn 0 bayanın ayakkabı numaraarı: 5, 8, 6, 6, 7, 6, 8, 5, 9, 7, Grup Frekans x Top 0 67 x X 67/06.7 Medyan 0/5,5. Ver 6,5 Moden yüksek r.oan6 Ders / Sınıandırımış Verer İçn Sınıar m m Σ 0-0 dan az den az dan az dan az den az topam X m 65/ Ders / 6

7 Sınıandırımış Verer İçn Sınıar m m Σ 0-0 dan az den az dan az dan az den az topam 5 65 Medyan sınıından br öncek sınıın kümüat rekansı Med L 5 med Medyan sınıının at sınırı med Medyan sınıının rekansı Sını araığı Ders / M e d y a n S ı n ı ı Sınıandırımış Verer İçn Sınıar m m Σ 0-0 dan az den az dan az dan az den az topam 5 65 Δ Mod L mod +. Δ + Δ M o d S ı n ı ı Mod sınıının at sınırı Mod sınııya br öncek sını r. arasındak ark Mod sınııya br sonrak sını r. arasındak ark Ders /4 7

8 Mod Med A.O Ders /5 Sınıar m m Σ den az dan az den az den az dan az topam X m Med Lmed +. med ÖRNEK Δ Mod L mod +. Δ + Δ Ders /6 8

9 L + 4. Med L KARTİLLER +. L + 4. %5 %5 %5 %5 Ders /7 sınıar Σ 0-0 den az dan az dan az den az L Med L L sınıı sınıı sınıı Ders /8 9

10 Br tencere pazarama rmasına bağı çaışan 50 satış personenn ayık tencere satışarı aşağıdak gbdr. Bu verer kuanarak hstogramı çznz, artmetk ortaama, mod, medyan ve karter hesapayarak yorumayınız. sınıar m Σ m Σ topam r Hstogram x X m Ders /9 r Hstogram x %5 %5 %5 %5 Yorumama: : Gözemern % ten daha küçüktür. : Gözemern %5 6. den daha büyüktür. : Gözemern %50 s 5 ten daha küçük, %50 s 5 ten daha büyüktür Mod4.4 A.O5. Ders /0 0

11 sınıar m Σ m Σ topam L Med L + 6. Ders / sınıar m Σ m Σ topam Med L + 5 Mod Δ 4 L Δ + Δ mod 4.4 Ders /

12 DEĞİŞKENLİK ÖLÇÜLERİ Range - Değşm Araığı (R) : Range, br gözem sersnde en büyük gözem e en küçük gözem arasındak arktır. R X max -X mn R X max -X mn + Sürek verer çn Kesk verer çn Ortaama Mutak Sapma (MAD) : Br gözemn ortaamadan ortaama oarak ne kadar saptığının öçüsüdür. Bast verer çn: MAD Grupandırımış verer çn: MAD x x n x x Ders / Standart Sapma : Verern ortaama etraındak dağıımının br öçüsüdür. Bast verer çn: x x - x (x - x ) x 5 / 5 ( x x) s n Ders /4

13 4 Grupandırımış ve sınıandırımış verer çn standart sapma: x x x ( x x ) ( x x ) Top s ( x x) Ders /5 Varyasyon Katsayısı: Standart sapmanın artmetk ortaamanın kaçta kaçı oduğunu gösterr. C V Örnek: Buca ve Asancak çn ger dağıımıya g verer aşağıdak gbdr: s X X s C v Buca Asancak Yorum: Buca dak ger dağıımı Asancak takne göre daha değşkendr. Ders /6

14 Smetrk Dağıım A.O Med Mod Sağa çarpık dağıım A.O > Med > Mod Soa çarpık dağıım A.O < Med < Mod İk modu smetrk dağıım Modu omayan dağıım Tekdüzen dağıım Ders /7 PEARSON ÇARPIKLIK ÖLÇÜSÜ x mod Sk p veya s ( X med) Sk p s Sk p < --- Az çarpık dağıım Sk p > --- Çarpık dağıım Sk p <0 --- Negat çarpıkık Ders /8 4

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri Elektrk Akımı, Potansyel Fark ve Drenç Testlernn Çözümler 1 Test 1 n Çözümü. 1. Soruda verlen akım-potansyel farkı grafğnn eğmnn ters drenc verr. 8 X 5 8 8 Z Ohm kanunu bağıntısıyla verlr. Bu bağın- k

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ II, POTNSİYE F E DİENÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma 1.. Ünte. onu (Elektrk kımı) nın Çözümler ampul 3. Şekl yenden aşağıdak gb çzeblrz.

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

http://acikogretimx.com

http://acikogretimx.com 09 S 0- İstatistik sorularının cevaplanmasında gerekli olabilecek tablolar ve ormüller bu kitapçığın sonunda verilmiştir.. şağıdakilerden hangisi istatistik birimi değildir? ) Doğum B) ile C) Traik kazası

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

2013 SBS (ORTAÖĞRETİME GEÇİŞTE TEK SINAV YENİ SİSTEM)

2013 SBS (ORTAÖĞRETİME GEÇİŞTE TEK SINAV YENİ SİSTEM) 2013 SBS (ORTAÖĞRETİME GEÇİŞTE TEK SINAV YENİ SİSTEM) (Şubat 2011-2641 Miî Eğitim Bakanığı Tebiğer Dergisi 113 Değişikikeri ie) 2012-2013 öğretim yıından itibaren 8. sınıfta uyguanacak oan yeni sistemde

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

KOMBİNASYON - PERMÜTASYON Test -1

KOMBİNASYON - PERMÜTASYON Test -1 KOMİNSYON - PERMÜTSYON Test -. kişi arka arkaya sıralanacaktır. u kişiler kaç farklı sıra oluşturabilir?. kişilik bir sıraya, öğrenci kaç farklı dizilişte yan yana oturabilir?. farklı çatal, farklı kaşık

Detaylı

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler Kütle Merkez ve Merkezler Konular: Kütle/ğırlık merkezler Merkez kavramı Merkez hesabına önelk öntemler ğırlıklı Ortalama Merkez kavramının brçok ugulama alanı vardır. Öncelkle ağırlıklı ortalama kavramına

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II. Nokta Grafikleri İçin Koşullar

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II. Nokta Grafikleri İçin Koşullar ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Nokta Grafikleri Nokta grafikleri örnek veri dağılımlarını değerlendirmek ve karşılaştırmak için kullanılır. Bir nokta grafiği örneklem verilerini gruplandırır

Detaylı

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

GÜÇLENDİRME PERDELERİNDE BOŞLUKLARIN KAPASİTEYE OLAN ETKİSİ

GÜÇLENDİRME PERDELERİNDE BOŞLUKLARIN KAPASİTEYE OLAN ETKİSİ 2. Türkiye Deprem Müendisiği ve Sismooji Konferansı 25-27 Eyü 213 MKÜ HATAY GÜÇLENDİRME PERDELERİNDE BOŞLUKLARIN KAPASİTEYE OLAN ETKİSİ ÖZET: K. Pençereci 1, S. Yıdırım 1, Y.İ. Tonguç 1 1 İnş. Yük. Mü.,Promer

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

6.6. Korelasyon Analizi. : Kitle korelasyon katsayısı

6.6. Korelasyon Analizi. : Kitle korelasyon katsayısı 6.6. Korelasyon Analizi : Kitle korelasyon katsayısı İki ya da daha çok değişken arasındaki ilişkiyi gösterir. Korelasyon çözümlemesinin amacı değişkenler arasındaki ilişkinin derecesini ve yönünü belirlemektir.

Detaylı

Alsancakıizmir/TÜRKiYE Tel :+90(232)464 30 40 (PBX) Fax:+90(232)464 39 19. Web site : http://www.hlbsaygin.com.lre-posta:mailbox@hlbsaygin.com.

Alsancakıizmir/TÜRKiYE Tel :+90(232)464 30 40 (PBX) Fax:+90(232)464 39 19. Web site : http://www.hlbsaygin.com.lre-posta:mailbox@hlbsaygin.com. ID!B Saygın Yemini Mai Müşavirik ve Bağımsız Denetim A.Ş. Rapor N : SYMM 116/1795-184 BÜYÜME AMAÇLI HİsSE SENEDİ EMEKLİLİK YATIRIM FONU'NUN YATIRIM PERFORMANSI KONUSUNDA KAMUYA AÇIKLANAN BİLGİLERE İLİşKİN

Detaylı

Hipotez Testinin Temelleri

Hipotez Testinin Temelleri Hipotez Testleri Hipotez Testinin Temelleri Tanımlar: Hipotez teori, önerme yada birinin araştırdığı bir iddiadır. Boş Hipotez, H 0 popülasyon parametresi ile ilgili şu anda kabul edilen değeri tanımlamaktadır.

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI 10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI KONULAR 1. SERİ DEVRE ÖZELLİKLERİ 2. SERİ BAĞLAMA, KİRŞOFUN GERİLİMLER KANUNU 3. PARALEL DEVRE ÖZELLİKLERİ 4. PARALEL BAĞLAMA, KİRŞOF UN AKIMLAR KANUNU

Detaylı

VERİ ANALİZİ GÖRSEL SAYISAL SÖZEL

VERİ ANALİZİ GÖRSEL SAYISAL SÖZEL VERİ ANALİZİ VERİ ANALİZİ GÖRSEL SAYISAL SÖZEL GÖRSEL ANALİZ ARAÇLARI İKİ BOYUTLU GÖSTERİM GRAFİK RENK Koyuluk/açıklık; Renk kümeleri (soğuk; sıcak) ÇİZGİ Nitelik (sürekli; kesintili vb.) Kalınlık Alan

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Alıştırma Toleransı -TERMİNOLOJİ

Alıştırma Toleransı -TERMİNOLOJİ Alıştırma Toleransı -TERMİNOLOJİ Mil: Dış şekli belirtir. Silindirik olmayan şekilleri de kapsar. Normal Mil (Esas Mil): Bir alıştırma ş sisteminde esas olark seçilen mil. Delik: İç şekli belirtir. Silindirik

Detaylı

Örnek 2.1: Tablo 1.1 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 2.1: Tablo 1.1 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. BÖLÜM 2. MERKEZİ EĞİLİM ve DAĞILIM ÖLÇÜLERİ Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KISA DÖNEMLİ AMAÇLAR (ünite-konu amaçları)

BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KISA DÖNEMLİ AMAÇLAR (ünite-konu amaçları) UZUN DÖNEMLİ AMAÇLAR (yıl sonunda) RİTMİK SAYMALAR BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KISA DÖNEMLİ AMAÇLAR (ünite-konu amaçları) 100 e kadar ikişer ritmik sayar. ÖĞRETİMSEL AMAÇLAR BAŞ. BİTİŞ (Kazanımlar)

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

Şekil 2. Azalan f fonksiyonunun grafiği

Şekil 2. Azalan f fonksiyonunun grafiği 3. ÖLÇÜLEBİLİR FONKSİYONLAR SORU 1: f : R R azalan fonksiyon ise f fonksiyonu Borel ölçülebilir midir? ÇÖZÜM 1: Şekil 2. Azalan f fonksiyonunun grafiği α R için f 1 ((α, )) := {x R : f (x) > α} B (R) olduğunu

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

TEST - 1 ELEKTR K AKIMI. ε X = 2V. ε Y = 4V. K anahtar kapal iken: 4R R. i = R R CEVAP B. = 4 Ω dur. R x. I. yarg do rudur.

TEST - 1 ELEKTR K AKIMI. ε X = 2V. ε Y = 4V. K anahtar kapal iken: 4R R. i = R R CEVAP B. = 4 Ω dur. R x. I. yarg do rudur. EET M TEST - 1 1. 6 1 x Ω dur. 1 1 X anahtar kapal ken: Σ 8. 8. 1 CEP B. yarg do rudur.. 8 voltu gösterr.. yarg yanl flt r. mpermetre 1 amper gösterr.. yarg do rudur. CEP C. X + X 1 1Ω Y Y P. M N P ESEN

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

KPSS AKADEMİ PUANLAR ÜZERİNDE İŞLEM YAPILMASI ÖLÇME VE DEĞERLENDİRME. Ölçme ve değerlendirme ÖLÇME SONUÇLARI ÜZERİNDE İSTATİSTİKSEL İŞLEMLER

KPSS AKADEMİ PUANLAR ÜZERİNDE İŞLEM YAPILMASI ÖLÇME VE DEĞERLENDİRME. Ölçme ve değerlendirme ÖLÇME SONUÇLARI ÜZERİNDE İSTATİSTİKSEL İŞLEMLER ÖLÇME VE DEĞERLENDİRME Ölçme ve değerlendirme 1 ÖLÇME SONUÇLARI ÜZERİNDE İSTATİSTİKSEL İŞLEMLER KPSS AKADEMİ PUANLAR ÜZERİNDE İŞLEM YAPILMASI PUANLARIN BÜYÜKLÜK SIRASINA KONULMASI 3 Bir testten elde edilen

Detaylı

Maddenin Ayırtedici Özellikleri

Maddenin Ayırtedici Özellikleri Maddenin Ayırtedici Özellikleri Bir maddeyi diğer maddelerden ayırmaya yarayan özellikleri Ayırtedici Özellikler denir. Bunlar; Özkütle (Yoğunluk) Erime Noktası Kaynama Noktası Çözünürlük Esneklik İletkenlik

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

I.BÖLÜM (Toplam 35 soru bulunmaktadır.)

I.BÖLÜM (Toplam 35 soru bulunmaktadır.) I.BÖLÜM (Toplam 35 soru bulunmaktadır.) 1. ve B ise aşağıdakilerden hangisi daima doğrudur? )B=B B)B=B )(B) D)(B) E)(B) 5. 19 4 B5 7 Bölme işleminde ve B sıfırdan farklı birer rakam olmak üzere +B kaç

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

irket Riski (Çeşitlendirilebilir) Hisse Senedi Riski, σ p Piyasa Riski (Çeşitlendirilemez) 10 20 30 40 2,000+ Doç. Dr.

irket Riski (Çeşitlendirilebilir) Hisse Senedi Riski, σ p Piyasa Riski (Çeşitlendirilemez) 10 20 30 40 2,000+ Doç. Dr. σ p (%) 35 irket Riski (Çeşitlendirilebilir) Hisse Senedi Riski, σ p 20 0 Piyasa Riski (Çeşitlendirilemez) 10 20 30 40 2,000+ Portföydeki Hisse # Hisse Senedi Piyasa Çeşitlendirilebilir riski = riski +

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Özel sektör tasarrufları Hanehalkı Şirketler kesimi Kamu sektörü tasarrufları

Özel sektör tasarrufları Hanehalkı Şirketler kesimi Kamu sektörü tasarrufları Türkiye Ülke Ekonomik Raporu Özel sektör tasarrufları Hanehalkı Şirketler kesimi Kamu sektörü tasarrufları 1. Tasarruf ve büyüme ilişkisi 2. Tasarruf trendleri 3. Tasarrufun belirleyicileri 4. Mali piyasaların

Detaylı

ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ

ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ 2009 ATAUZEM ŞABLON 28. HAFTA KONU BAġLIĞI Neler Öğrendik, Bilgilerimizi PekiĢtirelim AMAÇ Biyoistatistik dersinin 15-23. haftalarda öğrenilen konularını tekrarlamak

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

3. Bölüm. DA-DA Çevirici Devreler (DC Konvertörler) Doç. Dr. Ersan KABALCI AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ

3. Bölüm. DA-DA Çevirici Devreler (DC Konvertörler) Doç. Dr. Ersan KABALCI AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 3. Bölüm DA-DA Çevirici Devreler (D Konvertörler) Doç. Dr. Ersan KABA AEK-207 GÜNEŞ ENERJİSİ İE EEKTRİK ÜRETİMİ Dönüştürücü Devreler Gücün DA-DA dönüştürülmesi anahtarlamalı tip güç konvertörleri ile yapılır.

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 3. Konu ELEKTRİK ENERJİSİ VE ELEKTRİKSEL GÜÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 3. Konu ELEKTRİK ENERJİSİ VE ELEKTRİKSEL GÜÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ ENEJİSİ E EETİSE GÜÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma. Ünte. onu (Elektrk Enerjs ve Elektrksel Güç) nın Çözümler 1. Noktalama sstemyle Şekl

Detaylı

MUTLAK DEÐER TEST / 1

MUTLAK DEÐER TEST / 1 MUTLAK DEÐER TEST / 1 1. Aþaðýdaki sayýlardan hangisinin mutlak deðeri en küçüktür? 5. 3 + 6 4 +1 A) 7 B) 19 C) 3 D) 1 E) 4 A) 4 B) 6 C) 8 D) 10 E) 14 2. Aþaðýdaki karþýlaþtýrmalardan hangisi yanlýþtýr?

Detaylı

13.11.2010 ÖLÇME VE DEĞERLENDĠRMEDE TEMEL ĠSTATĠSTĠKĠ HESAPLAMLAR ĠSTATĠSTĠK? İstatistik, verileri analiz ve organize etmekle uğraşan bir disiplindir.

13.11.2010 ÖLÇME VE DEĞERLENDĠRMEDE TEMEL ĠSTATĠSTĠKĠ HESAPLAMLAR ĠSTATĠSTĠK? İstatistik, verileri analiz ve organize etmekle uğraşan bir disiplindir. 13.11. Ġstatistik ĠSTATĠSTĠK? Ölçekler Verilerin Düzenlenmesi Merkezi Eğilim Ölçüleri Dağılım Ölçüleri ĠliĢki Ölçüleri (Korelasyon) Örnek Uygulama ÖLÇME VE DEĞERLENDĠRMEDE TEMEL ĠSTATĠSTĠKĠ HESAPLAMLAR

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

... 2.Adım 3. Adım 4. Adım

... 2.Adım 3. Adım 4. Adım 1-.... 2.Adım 3. Adım 4. Adım Yukarıda verilen şekillerdeki üçgen sayısı ile örüntülü bir sayı dizisi oluşturulmuştur. İki basamaklı doğal sayılardan rastgele seçilen bir sayının bu sayı dizisinin elemanı

Detaylı

A. Sürüklenme hızı artar. B. Sürüklenme hızı azalır. C. Sürüklenme hızı değişmez. D. Yeterli bilgi yok.

A. Sürüklenme hızı artar. B. Sürüklenme hızı azalır. C. Sürüklenme hızı değişmez. D. Yeterli bilgi yok. Q25.1 Farklı yarıçapta iki bakır tel uç uca bağlanıyor ve akım bu tellerden geçiriliyor; Elektronlar büyük yarıçaplı telden küçük yarıçaplı tele geçerken sürüklenme hızı ne olur. A. Sürüklenme hızı artar.

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

HACİM HESAPLARI. Toprak İşlerinde Karşılaşılan Hacim Hesapları

HACİM HESAPLARI. Toprak İşlerinde Karşılaşılan Hacim Hesapları 03..04 İnşaat Mühendisiği Böümü HACİM HEAPLARI Hacim hesabı, İnşaat Mühendisiğinde apıan toprak işerinin temeini ouşturur. Zira, toprak işeri ödemeeri, hacim (m 3 ) bazında apıır. oprak İşeri ers Notarı

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

ÖRNEK SAYISAL UYGULAMALAR

ÖRNEK SAYISAL UYGULAMALAR ÖRNEK SAYISAL UYGULAMALAR 1-Vidalı kriko: Şekil deki kriko için; Verilenler Vidalı Mil Malzemesi: Ck 45 Vidalı mil konumu: Düşey Somun Malzemesi: Bronz Kaldırılacak en büyük (maksimum) yük: 50.000 N Vida

Detaylı

Bükme sonrasında elde edilmeye çalışılan parça şekli için geri yaylanma durumu dikkate alınmalıdır.

Bükme sonrasında elde edilmeye çalışılan parça şekli için geri yaylanma durumu dikkate alınmalıdır. Bükme Sonrası Geri Yaylanma Bükme işlemi uygulanmış bir malzeme üzerinden bükme yükü kaldırıldığında, d parça bükülmüş haldeki şeklinde d kalmaz. Malzemedeki artık elastikiyet, bükülmüş durumdaki parçanın

Detaylı

5/21/2015. Transistörler

5/21/2015. Transistörler Transistörler İki polarmalı yüzey temaslı transistörler, teknik ifadelerde BJT ( Bipolar Junction Transistör) olarak adlandırılmaktadır. Transistör birçok elektronik devrede uygulama bulan işaret yükseltme

Detaylı

Türk Deri Hazır Giyim Sektöründeki Küçük Ölçekli İşletmelerin Markalaşma Düzeylerinin Araştırılması Grafik 1. İşletmelerin Sahip Oldukları Marka Sayılarının Dağılımı Grafik 2. İşletmelerin Markalara Sahip

Detaylı

ORTAOKULU 2014 2015 ÜNİTİLENDİRİLMİŞ YILLIK BİREYSEL DERS PLANI (BEP)

ORTAOKULU 2014 2015 ÜNİTİLENDİRİLMİŞ YILLIK BİREYSEL DERS PLANI (BEP) ORTAOKULU 2014 2015 ÜNİTİLENDİRİLMİŞ YILLIK BİREYSEL DERS PLANI (BEP) AY EYLÜL EKİM SÜRE SINIF:8 DERS: MATEMATİK HAFTA DERS SAATİ UZUN DÖNEMLİ AMAÇ KISA DÖNEMLİ AMAÇ ÖĞRETİMSEL AMAÇLAR AMAÇ 30: Dört basamaklı

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

Volkan Karamehmetoğlu

Volkan Karamehmetoğlu 1 Doğal Sayılar Tanımlar Rakam: Sayıları yazmaya yarayan sembollere denir. {1,2,3,4,5,6,7,8,9} Sayı: Rakamların çokluk belirten ifadesine denir. 365 sayısı 3-6-5 rakamlarından oluşmuştur. 2 Uyarı: Her

Detaylı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı 1 BÖLÜM 11 Z DAĞILIMI Z dağılımı; ortalaması µ=0 ve standart sapması σ=1 olan Z puanlarının evren dağılımı olarak tanımlanabilmektedir. Z dağılımı olasılıklı bir normal dağılımdır. Yani Z dağılımının genel

Detaylı

ISI TRANSFERĠ-1 DÖNEM SONU ÖRNEK SORU ÇÖZÜMÜ

ISI TRANSFERĠ-1 DÖNEM SONU ÖRNEK SORU ÇÖZÜMÜ ISI RANSFERĠ- DÖNEM SONU ÖRNEK SORU ÇÖZÜMÜ B.Ü. Makine Mühendisiği Böümü Vokan Asan 04/05 Güz Dönemi Sınır ġartarı - ISI AġINIMLI SINIR ġari: h, 0 d ( r0 ) k h0 ( r0) ( aşınım Sınır Şartı) dr - IġINIMLI

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

DENEY 7: Darbe Kod ve Delta Modülasyonları (PCM, DM)

DENEY 7: Darbe Kod ve Delta Modülasyonları (PCM, DM) DENEY 7: Darbe Kod ve Delta Modülasyonları (PCM, DM) AMAÇ: Darbe Kod (Pulse Code) ve Delta Modülasyonlarının temel işleyişlerinin MATLAB ortamında incelenmesi. ÖN HAZIRLIK 1) Bit, Bps, BER, Kanal, Kanal

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

8. Sınıf Fen ve Teknoloji. KONU: Sıvılarda ve Gazlarda Basınç

8. Sınıf Fen ve Teknoloji. KONU: Sıvılarda ve Gazlarda Basınç Sıvılar bulundukları kabın her yerine aynı basıncı uygulamazlar. Katılar zemine basınç uygularken sıvılar kabın her yerine basınç uygularlar. Sıvı basıncı, kapta bulunan sıvının hacmine, kabın şekline

Detaylı

ELS ELS SEVİYE ŞALTERİ. ELS B10p, ELS B10x, ELS B101x ELS K01, ELS K02, ELS K03 ELS P01, ELS P03, ELS P04 ELS B035, ELS P52, ELS P65 ELS ML2, ELS ML5

ELS ELS SEVİYE ŞALTERİ. ELS B10p, ELS B10x, ELS B101x ELS K01, ELS K02, ELS K03 ELS P01, ELS P03, ELS P04 ELS B035, ELS P52, ELS P65 ELS ML2, ELS ML5 ES Seviye sensörleri tank seviye kontrolü için kullanılmaktadır. Farklı muhafaza bağlantı, malzeme çeşitleri mevcuttur. Çalışma Prensibi: Sıvı seviyesine göre tüp boyunca hareket eden şamandıra içindeki

Detaylı

ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ

ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ ORT ÖĞRTİM KURUMLRI ÖĞRNİ SÇM V YRLŞTİRM SINVI MTMTİK TSTİ 1. K Şemadaki K \ (L M) kümesinin belirttiği L bölge kesilerek çıkartılıyor. Çıkartılan bölgeyi gösteren şekil M aşağıdakilerden hangisidir? )

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

Genel Yetenek ve Eğilim Belirleme Sınavı

Genel Yetenek ve Eğilim Belirleme Sınavı Türkiye Geneli Genel Yetenek ve Eğilim Belirleme Sınavı Aynı Günı Aynte Saat Sınav tarihi 9 Son basvuru tarihi 1 Nisan Nisan CUMARTESİ CUMA 16 16 3. sınıf 4, 5, 6,7 ve 8.sınıf Saat.00 Saat 14.00 Sözel

Detaylı

KÜRESEL TAVUK ETİ TİCARETİ

KÜRESEL TAVUK ETİ TİCARETİ KÜRESEL TAVUK ETİ TİCARETİ Asya ve Orta Doğu: Önemli tavuk eti ithal eden ülkeler Asya ülkelerindeki tavuk eti ticaret eğilimlerini inceleyen Terry Evans, Asya ülkelerinin tavuk eti ithalat eden ülkeler

Detaylı

OBEB - OKEK Test -1. 6. OKEK( 14, 20) kaçtır? 1. OBEB(16, 20, 48) kaçtır? 7. OBEB, 2. OBEB(56, 140, 280) kaçtır? 3. OKEK(10, 15, 25) kaçtır?

OBEB - OKEK Test -1. 6. OKEK( 14, 20) kaçtır? 1. OBEB(16, 20, 48) kaçtır? 7. OBEB, 2. OBEB(56, 140, 280) kaçtır? 3. OKEK(10, 15, 25) kaçtır? OE - OKEK Test -1 1. OE(16, 0, 8) kaçtır? A) ) ) ) 6 E) 8 6. OKEK( 1, 0) kaçtır? A) 10 ) 160 ) 180 ) 10 E) 0. OE(56, 10, 80) kaçtır? 7. OE, 15 5 kaçtır? A) 1 ) 0 ) ) 8 E) A) 75 ) 75 ) 5 ) 5 E) 5. OKEK(10,

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

2) ÇELİK YAPILARDA BİRLEŞİMLER

2) ÇELİK YAPILARDA BİRLEŞİMLER ) ÇELİK YAPILARDA BİRLEŞİMLER Çeik yapıarda kuanıan hadde ürüneri için, aşağıdaki sebepere bireşimer yapıması gerekmektedir. Farkı taşıyıcı eemanarın (koon-koon, koon-kiriş, diyagona-koon, kiriş-kiriş,

Detaylı