Depo operatörü lojistik firmasının seçimi için bulanık VIKOR ve bulanık TOPSIS yöntemlerinin uygulanması

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Depo operatörü lojistik firmasının seçimi için bulanık VIKOR ve bulanık TOPSIS yöntemlerinin uygulanması"

Transkript

1 İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Clt/Vol:42, /No:2, 2013, ISSN: wwwfdergsorg 2013 Depo operatörü lostk frmasının seçm çn bulanık VIKOR ve bulanık TOPSIS yöntemlernn uygulanması Al Görener 1 Uluslararası Lostk Bölümü, Uygulamalı Blmler Fakültes İstanbul Tcaret Ünverstes, İstanbul, Türkye Özet Günümüzün rekabet ortamında, lostk faalyetler çersnde depolamanın önem gttkçe artmaktadır İşletmenn hedeflerne uygun depo operatörü frmanın seçm, rekabette büyük rol oynamaktadır Depolama faalyetlernde dış kaynak kullanımı analz edldğnde, uygulamanın öneml derecede malyet avantaı sağladığı ortaya çıkmaktadır Bu çalışmanın amacı, depo operatörü olarak görev alacak üçüncü part lostk servs sağlayıcı alternatflernn değerlendrlmes çn, çok krterl karar verme model oluşturmaktır Değerlendrme şablonun oluşturulmasında, bulanık mantık yaklaşımı le VIKOR metodu brlkte kullanılmıştır VIKOR, Sırp dlnde çok krterl optmzasyon ve uzlaşık çözüm anlamına gelen, görecel yen br metottur Ayrıca, oluşturulan yaklaşımın gıda sektöründe uygulanmasına yönelk br örnek sunulmuştur Elde edlen sonuçlar, yaygın kullanılan br yöntem olan bulanık TOPSIS metodunun sonuçları le karşılaştırılmıştır Anahtar Sözcükler: Depolama, Depo Operatörü, Mantık, VIKOR, TOPSIS Applcaton of fuzzy VIKOR and fuzzy TOPSIS methods for warehouse logstcs operator selecton Abstract In today s compettve envronment, the mportance of warehousng wthn logstcs has been growng The role of workng wth the rght warehouse operator frm n achevng the enterprses' goals s gettng more mportant Analyss of outsourcng warehouse actvtes or thrd party warehousng reveal that contract warehousng costs are sgnfcantly lower than stand-alone warehousng The am of ths study s to propose a mult-crtera decson makng model to evaluate the thrd party logstcs provder optons as a warehouse operator Relatvely new method, called VIKOR (VlseKrterumska Optmzaca I Kompromsno Resene n Serban, means Mult-crtera Optmzaton and Compromse Soluton) s used n the evaluaton procedure supported by fuzzy logc approach Addtonally, a real case study n food sector s presented to llustrate the applcaton of the suggested approach Obtaned results were compared wth fuzzy TOPSIS method whch s a wdely used approach for mult-crtera decson makng problems Keywords: Warehousng, Warehouse Operator, Fuzzy Logc, VIKOR, TOPSIS 1 Grş Modern şletme yönetmnn öneml yaklaşımlarından br, tedark zncr çersndek öneml lostk faalyetlern yürütülmesnde dış kaynak kullanımına başvurulmasıdır [1] Çok sayıda şletme uzmanlaştıkları alanlara, br başka deyşle temel yetknlklerne 1 (A Görener) 198

2 odaklanmak çn, lostk ve bununla lşkl fonksyonların gerçekleştrlmesn üçüncü part lostk (3PL) frmalarına bırakmaktadır [2] Tedark zncr operasyonları açısından, dış kaynak kullanımı; hem malyet avantaı sağlaması, hem de şletmenn kend alanındak faalyetlerne yoğunlaşablmes bakımından frmaların rekabet gücünü arttırablecek öneml br yaklaşım olarak kabul edlmektedr [3] Geçtğmz yrm yıla bakıldığında lostk aktvteler çersnde depolama faalyetler kapsamındak dış kaynak kullanımının gderek arttığı görülmektedr [4] Tedark zncr operasyonlarının verml ve daha uygun malyetlerle sürdürülmes hedeflendğnde, gerekl değerlendrmeler yapılarak üçüncü part depolama terch edleblr [5] İşletmelern depolama faalyetlern, üçüncü part lostk frmalara yaptırma nedenler Tablo 1 de sıralanmıştır Frmalar, Tablo 1 de belrtlen veya bunlara benzer sebeplerle depo operatörü ntelğndek kuruluşlarla stratek ortaklıklar kurmaktadırlar Tablo 1 Depolamada Dış Kaynak Kullanımı Nedenler - Lostk malyetlern azaltılması - Operasyon hızının arttırılması - Depolama operasyonlarını yapacak uzman personeln ve kaynakların olmayışı - Hzmet kaltesnn arttırılması - Depo, araç, ekpman, blşm vb yatırımların stenmemes - Coğraf açıdan daha genş ölçekte müşterlere ulaşma steğ - İşletmenn çekrdek faalyetlerne yoğunlaşmak stemes - Depolama ve dağıtım merkez operasyonlarındak rskn paylaşımı - İşletmede, operasyonları verml bçmde yürütecek deneymn eksk olması - Rekabet avantaı sağlamak çn profesyonel desteğe olan htyaç - Üçüncü part frmanın yetknlklernn kullanılmak stenmes - Mevsmsel veya geçc proeler çn konusunda uzmanlaşmış partner htyacı - Depolama, dağıtım ve katma değerl servslern bütünleşk olarak yapılması htyacı Elektronk tcaretn ve müşter beklentlernn arttığı küresel üretm ve pazarlama ortamında, depoların ve depolama sstemlernn yönetm daha da karmaşık hale gelmştr [6] Mevcut rekabet ortamında, depolama hzmet veren frmaların faalyetlern teknolo destekl yapmaları gerekmektedr [7] Depolarda modern raf yapılarının ve malzeme taşıma sstemlernn yer alması operasyonların daha verml ve hızlı gerçekleştrlmesn sağlayacaktır Yrm brnc yüzyılın etkn depoları; elektronk pazarların steklerne ve katma değerl faalyetlere yoğunlaşan, malyetlern azaldığı ve hzmet kaltesnn arttığı depolar olacaktır [8] Tedark zncrnn farklı noktalarında htyaç duyulablecek temel depolama faalyetler Tablo 2 de fade edlmştr İşletmeler, depolama eksenl operasyonları üçüncü part lostk frmalarına bırakma sürecnde, bu frmaların sektörel tecrübes ve pyasadak konumundan başlayarak depoların yapısına, hzmet kaltesne, malyet unsurlarına, esneklğe, teknolok alt yapıya, genşleme mkânına, operasyon yoğunluğunun karşılanablmesne kadar brçok farklı karar verme krteryle karşı karşıya kalmaktadırlar Sektöre ve ürüne göre, belrtlen krterlern önem ağırlıklarının doğru analz edlmes ve alternatf seçeneklern bu kapsamda değerlendrlmes gerekldr 199

3 Tablo 2 Depolama Faalyetler Ürünlern depoya alınması Ürünlern kontrolü Yanlış, eksk, bozuk ürünlern tespt ve gerekl şlemlern yapılması Ürünlern raflara yerleştrlmes Stok yönetm Sparşlern raflardan toplanması Etketleme-barkodlama Depolama performansının ölçümü Elleçleme-konsoldasyon Çapraz sevkyat operasyonları Ambalalama-paketleme Müşterlern özel steklernn gerçekleştrlmes Katma değer oluşturan dğer faalyetler Paydaşlarla elektronk ver değşm faalyetler Hazırlanan ürünlern araçlara atanması Çalışma yapısına bağlı olarak tedarkç yönetmnde envanter (VMI) faalyetler Lteratür ncelendğnde, genel olarak 3PL frma seçmne lşkn çalışmalar mevcut olmakla brlkte, özel olarak depolama tabanlı faalyetler gerçekleştrecek frmanın seçm çn, br başka deyşle depolamada dış kaynak kullanım kararları konusunda yapılan çalışmaların sınırlı sayıda olduğu görülmektedr Moberg ve Speh [1], yapmış oldukları çalışmada üçüncü part depolama frmalarının seçm krterlern ve bölgesel-ulusal servs sağlayıcıların terch edlme nedenlern araştırmışlardır Çalışma kapsamında frmaların lostk yönetcler le yüz yüze görüşmeler yaparak, eğlmlern belrlemeye çalışmışlardır Depolama frmasının seçmnde öneml krterler; esneklk, hzmet yeterllğ, düşük malyet, katma değer oluşturan şlemler yapablme yeteneğ, kapaste ve teknolo olarak fade etmşlerdr Maltz [3], yapmış olduğu çalışmada, depolamada dış kaynak kullanımında hzmet kaltes ve malyet lşksn ncelemştr Farklı sektörlerden yönetclere anketler yaparak, deponun şletme tarafından yönetlmes veya dış kaynak kullanılmasının nedenlern araştırmıştır Aynı yazar farklı br çalışmasında [9] se dış kaynak kullanımı açısından, malyetler le kurumsal strate arasındak lşky araştırmıştır Tompkns ve Smth [4] çalışmalarında depolama faalyetlernde dış kaynak kullanımı konusunu açıklamışlar, dkkat edlmes gereken krterler fade etmşlerdr Değerlendrme krterlern; kapaste, konum, stok yönetm, sparş şleme ve toplama, ambalalamapaketleme, katma değer oluşturan şlemler, operasyonel yeterllk, fnansal stablte, müşter hzmetler, kalte, blşm sstem ve rsk yönetm olarak fade etmşlerdr Korpela ve Lehmusvaara [10], müşter merkezl br yaklaşımla gerçekleştrdklern fade ettkler alternatf depo operatörlernn seçmne lşkn çalışmalarında; analtk hyerarş sürec (AHP) ve karma tamsayılı programlama teknklern kullanarak seçenekler değerlendrmşlerdr Değerlendrmede; kalte, kapaste, malyet, kârlılık, operasyonel yeterllk, güvenlrlk, esneklk, acl sevkyatlar ve özel stekler gb faktörler dkkate almışlardır Colson ve Dorgo [11], yapmış oldukları çalışmada depo seçm çn br yazılım gelştrmşlerdr Yazılım yardımıyla elde ettkler sonuçları, oluşturmuş oldukları memnunyet ve güvenlrlk ndeksleryle brlkte değerlendrmşlerdr Kullanmış oldukları ana krterler; depo yapılarının özellkler ve konumu, gümrükleme faalyetler, lostk ve taşıma şlemlerdr Korpela ve dğerler [12] çalışmalarında, depo operatörü seçmnde analtk hyerarş sürec ve ver zarflama analzn kullanmışlardır Güvenlrlk ve esneklk ana krterlern dkkate aldıkları çalışmalarında; kalte, mktar, teslmat, acl teslmatlar, özel stekler ve kapaste krterlern değerlendrmşlerdr Oluşturmuş oldukları br örnekle, beş alternatf deponun krterler kapsamında etknlğn ölçerek seçm yapmışlardır Jarzemsks [13] yapmış olduğu çalışmada; küçük, orta ve büyük ölçekl şletmelern depolamada dış kaynak kullanımı stratelern karşılaştırmıştır Melachrnouds ve Mn [14], depolama ağının yenden tasarımı konusunda yapmış oldukları çalışmada; malyet, hzmet düzey, rsk, depo kullanım oranı, esneklk ve kapaste gb faktörler dkkate almışlar, karma tamsayılı programlama le analz gerçekleştrmşlerdr Ho ve 200

4 Emrouznead [15], lostk dağıtım ağı tasarımına değndkler çalışmalarında en uygun deponun seçm çn; güvenlrlk ve sparş şleme, temn süres, toplam temn süres, kalte, kapaste esneklğ, değer katan hzmet gb krterler kullanmışlardır AHP ve hedef programlama le en y depo grubunu tespt etmeye çalışmışlardır Depolamanın, tedark zncr çersnde en fazla dış kaynak kullanılan lostk aktvtelerden br olması dolayısıyla [1], bunun yanı sıra depolamada dış kaynak kullanımı odaklı araştırmaların görecel olarak az sayıda olması sebebyle çalışmada bu konuya odaklanılmıştır Depo operatörü seçm problem kapsamında, krterlern bulanık karar ortamında analz, farklı depo operatörlernn değerlendrlmes ve seçm aşamalarında bulanık mantık destekl VIKOR yöntem kullanılmıştır VIKOR yöntemnn; poztf ve negatf deal çözümler dkkate alarak, krter ağırlıkları le grup kararını bütünleşk olarak sonuca yansıtablmes açısından üstünlüğü lteratürde de fade edlmektedr [16] Ayrıca yöntem, depo operatörü lostk frmasının seçm konusunda daha önce kullanılmamıştır Yapılan çalışmanın bu yönüyle lteratüre katkı sağlayacağı düşünülmektedr Çalışmada, gıda sektöründe faalyet gösteren büyük ölçekl br üretc frmanın, özellkle depolama tabanlı lostk operasyonlarını gerçekleştrecek, depo operatörü ntelğnde görev yapacak alternatf lostk frmalarının değerlendrlmes ve uygun olanının seçm şlemler gerçekleştrlmştr Beş farklı depo operatörü alternatfnn, krterler kapsamında değerlendrlmes netcesnde elde edlen verler, bulanık VIKOR yöntem le analz edlerek en uygun depo operatörü tespt edlmştr Sonuçların geçerllğnn kontrol edlmes amacıyla, çok krterl karar problemlernn çözümünde kullanılan daha esk ve temel metotlardan olan bulanık TOPSIS metodu da uygulanmıştır Bu yöntemle elde edlen sonuçların da bulanık VIKOR yöntemyle elde edlen sonuçlarla paralellk gösterdğ belrlenmştr 2 VIKOR Yöntem Lteratür ncelendğnde VIKOR yöntemnn farklı karar verme krterlernn bulunduğu problemlern çözümünde kullanımının, 2004 yılındak Oprcovc ve Tzeng n [17] çalışmasından tbaren başladığı söyleneblr VIKOR yöntemnde, karar alternatfler çn br sıralama ndeks oluşturulması amaçlanmaktadır Alternatflern deal duruma yakınlık değerler kıyaslanarak, öncelk sıralaması oluşturulur [18, 19] VIKOR yöntem yen sayılablecek br yöntem olduğundan dolayı, yöntemn çok krterl karar verme alanında uygulamaları dğer karar verme metotları le karşılaştırıldığında daha azdır Oprcovc ve Tzeng [17] yapmış oldukları çalışmada, TOPSIS ve VIKOR yöntemlern karşılaştırmışlardır Araştırmacılar VIKOR yöntemnn karar verme grubunun görüşlern daha y yansıtabldğn fade etmşlerdr Chu ve dğerler [18], OPSIS, SAW ve VIKOR yöntemlern kullanarak blg yönetm alanında performansı etkleyen faktörler analz etmşlerdr Oprcovc ve Tzeng [19], hdroelektrk santral alternatflernn değerlendrlmes amacıyla VIKOR yöntemn kullanmışlardır Elde ettkler sonuçları farklı çok krterl karar verme yöntemleryle (TOPSIS, PROMETHEE ve ELECTRE) karşılaştırmışlardır Tzeng vd [20], VIKOR ve TOPSIS yöntemlern kullanarak gerçekleştrdkler çalışmada toplu taşıma çn kullanılacak farklı yakıt türleryle çalışan otobüs seçeneklern; ener tüketm, vermllk, çevreye verlen zarar, hız, bakım kolaylığı gb krterler kapsamında değerlendrmşlerdr Yang ve Wang [21] VIKOR yöntemn tcaret poltkalarının oluşturulması konusuna uygulamışlardır Ön analz aşamasında AHP yöntemn kullanmışlardır Lxn ve dğerler [22], lostk servs sağlayıcı seçm konusunda yaptıkları çalışmalarında VIKOR yöntemn analtk ağ sürec (ANP) yöntem le brlkte uygulamışlardır Ertuğrul ve Karakaşoğlu [23], bankacılık sektöründe yaşanan rekabete değndkler çalışmalarında, şube performanslarını ölçmek amacıyla VIKOR yöntemne dayalı br model önermşlerdr Oprcovc [24], gerçekleştrdğ farklı br çalışmasında se yöntem, bölgesel su tedarğ konusunu ele alarak uygulamıştır Lou ve 201

5 Chuang [25], dış kaynak kullanılacak frmanın belrlenmes amacıyla yapmış oldukları analzde; VIKOR yöntemn, DEMATEL ve ANP teknkleryle brlkte uygulamışlardır Datta ve dğerler [26] yapmış oldukları çalışmada VIKOR yöntemn, tedarkç seçm problemne uygulamışlardır El-Santawy [27] se yöntem, nsan kaynakları yönetm alanında, eğtm süreçlernn değerlendrlmes konusunda kullanmıştır VIKOR yöntemnn aşamaları aşağıdak gb özetleneblr: 1 Adım: Alternatflern değerlendrlmesnde kullanılacak krterlere at, en y ( f *) ve en kötü ( f - ) skorlar tespt edlr krter, fayda sağlayacak ntelkte br krter se; f * ve f, (1) numaralı eştlktek gb gösterleblr f * max f f mn f = 1,2,,n 2 Adım: Değerlendrlecek brmler çn S ve R değerler hesaplanır w, krter ağırlıklarını göstermektedr (1) S n 1 w ( f * f ) /( f * f ) (2) R max[ w ( f f ) /( f f * * )] 3 Adım: Tüm alternatflern Q değerler (4) numaralı denklem yardımıyla hesaplanır Q * * * * v ( S S ) /( S S ) (1 v)( R R ) /( R R ) (4) numaralı denklemde, S* = mn S ; S - = max S ; R* = mn R ; R - = max R değerlern fade etmektedr v, maksmum grup faydasını temsl etmektedr Brçok çalışmada, v değernn 0,5 olarak kullanıldığı görülmektedr [17, 22, 25] 4 Adım: Hesaplanan Q, S, R değerler küçükten büyüğe doğru sıralanır Düşük Q değern alan seçenek, alternatfler arasındak en uygun seçenek olarak fade edlr 5 Adım: Ortaya çıkan sonuçların kabul edleblmes çn k farklı koşul vardır Koşullar sağlanırsa en düşük Q değerne sahp alternatf, problemn çözümü olarak ortaya çıkmaktadır Koşul 1 (C1)- Kabul edleblr avanta olması: Alternatfler arasında belrl oranda farklılık (üstünlük-zayıflık) olduğunu gösteren durumu fade etmektedr Q(P 2 ) - Q(P 1 ) D(Q) (5) numaralı eştszlkte P 1, en y alternatf fade ederken, P 2 se knc en y alternatf fade etmektedr D(Q)= 1 / ( -1) ) formülü uygulanmaktadır Alternatf sayısı, değer le gösterlmektedr [21] Koşul 2 (C2)- İstkrar durumu: P 1 alternatf S ve R değerler açısından da üstün durumda olmalıdır Seçlen alternatfn S ve R değerlernn herhang brnde en y konumda olması gerekldr edlen k koşuldan br sağlanamaz se çözüm kümes aşağıdak gb fade edleblr: - 2 Koşul sağlanmıyorsa P 1 ve P 2 alternatfler, - 1 Koşul sağlanmıyorsa P 1, P 2,, P M alternatfler Q(P M ) - Q(P 1 ) D(Q) eştszlğ göz önünde bulundurulur Bu durumun gerçekleşmemes, alternatflern bazıları arasında kabul edleblr br farklılık gerçekleşmedğn fade etmektedr [28] (3) (4) (5) 202

6 3 Mantık ve VIKOR Yöntemnn Brlkte Uygulanablrlğ Günlük hayatta karşılaşılan brçok durumda olduğu gb, şletmelerdek karar süreçlernde ortaya çıkan yorum ve değerlendrmeler de kesn olmayablr Karar verme problemlernde lgl brmlern değerlendrlmesnde, mutlak sayısal değerler veya net yargılar kullanılamıyorsa, sözel fadelere başvurulmaktadır Bunun yanı sıra, kesn değerler gerçekte karşılaşılan durumları modellemede yetersz kalablmektedr Gerçek hayatta karşılaşılan problemlerde, kesn verlere ulaşmanın her koşulda mümkün olmadığı durumlar da söz konusudur [29] mantık, belrszlkler açıklama kablyet bakımından üstünlüğü le öne çıkmaktadır Zadeh e [30] göre klask sstem kuramının matematksel yöntemler, gerçek dünyadak özellkle nsan yargılarını çeren problemlerle uğraşırken yetersz kalmaktadır [31] Zadeh bu durumu çözümleyeblmek çn ntelklern üyelk fonksyonlarıyla fade edldğ bulanık kümeler tanımlamasını ortaya koymuştur [32] kümelerde, br brmn değer 0-1 rakamları arasında br değerdr Br başka deyşle, üyelk dereces 0-1 arasındadır Klask(normal) kümelerde se bu değer ya 0 dır, ya da 1 dr teorde buna, üyelk fonksyonu da denr Lteratür ncelendğnde bulanık VIKOR metodunun uygulandığı farklı çalışmalara rastlamak mümkündür İnce [33], yapmış olduğu çalışmada, bulanık VIKOR yöntemyle kurumsal kaynak planlama yazılımı seçmn gerçekleştrmştr Sanaye ve dğerler [34] gerçekleştrdkler çalışmada, tedarkç seçm problemnn çözümü çn bulanık VIKOR yöntemn kullanmışlardır Wua ve dğerler [35], performans ölçümü konusu kapsamında, VIKOR yöntem le üç bankayı bulanık karar ortamında analz etmştr Büyüközkan ve Ruan [36] se yapmış oldukları çalışmada, kurumsal kaynak planlama yazılımlarının değerlendrlmesnde bulanık VIKOR yöntemn kullanmışlardır Chen ve Wang [37], blşm sstemler le lgl dış kaynak kullanımı proelernde, frma seçm çn bulanık VIKOR yöntemn uygulamışlardır Wu ve dğerler [38], entellektüel ve novatf sermaye konusuna odaklanmış, bulanık VIKOR yöntemn AHP le brlkte kullanarak Tayvan da bulunan ünverstelern yapısal stratelern rdelemşlerdr Kuo ve Lang [39] çalışmalarında, hava alanlarındak servs kaltesn değerlendrmek çn bulanık VIKOR le gr lşk analzn brlkte kullanmışlardır Wang ve dğerler [40] se yaptıkları çalışmada, yazılım seçmnde bulanık VIKOR yöntemne dayalı br analz gerçekleştrmşlerdr Yücenur ve Demrel [41] sgorta şrket seçm konusunu ele aldıkları çalışmalarında bulanık VIKOR yöntemn kullanmışlardır Akyüz [42] se çalışmasında, moblya üreten br frmanın Antalya dak üretm tessler çn ambala tedarkçs seçm kapsamında bulanık VIKOR yöntemn uygulamıştır çok krterl karar verme uygulamalarında en sık karşılaşılan bulanık sayı yapısı, üçgensel bulanık sayılardır Herhang br üçgensel bulanık sayı, Ã ( l, m, u) olarak fade edleblr Klask sayılar kümesnn elemanlarından olan l, m, u değerler arasında u> m> l lşks mevcuttur VIKOR yöntem uygulanırken, değerlendrme krterlernn önem derecelernn belrlenmes aşamasında kullanılacak sözel fadeler ve karşılığı olan bulanık üçgensel sayılar Tablo 3 te verlmştr Alternatflernn değerlendrlmesnde dkkate alınacak olan sözel fadeler ve bunların karşılığı olan bulanık üçgensel sayılar se Tablo 4 te gösterlmştr [37, 43] 203

7 Tablo 3 Krterlern Ağırlıklandırılmasında Kullanılan Sözel ler Sözel Çok Düşük (CD) Düşük (D) Orta Derecede (OD) Yüksek (Y) Oldukça Yüksek (OY) (0,00; 0,00, 0,25) (0,00; 0,25; 0,50) (0,25; 0,50; 0,75) (0,50; 0,75; 1,00) (0,75; 1,00; 1,00) Tablo 4 Alternatflern Değerlendrlmesnde Kullanılan Sözel ler Sözel Çok Zayıf (CZ) Zayıf (Z) Normal Düzeyde (ND) İy (I) Çok İy (CI) (0; 0; 2,5) (0; 2,5; 5,0) (2,5; 5,0;7,5) (5; 7,5; 10) (7,5; 10; 10) 4 En Uygun Depo Operatörünün Seçm Bu çalışmada, perakende mağazalara ve süpermarketlere ürün tedark eden, gıda sektöründe uluslararası ölçekte faalyet gösteren üretc br frmanın, Türkye dek operasyonları çn hzmet vereblecek depo operatörü lostk frmasının seçm yapılmıştır Lostk sorumlusu, pazarlama sorumlusu ve akademsyenlerden oluşan uzman karar verme grubu oluşturularak, beş farklı lostk frması alternatf değerlendrlmştr Çalışma kapsamında, değerlendrlen lostk frmaların smler verlmeyerek, frmalar A 1, A 2, A 3, A 4 ve A 5 olarak fade edlmştr 41 VIKOR Yöntemne Göre Seçm Depo operatörü seçmnde öncelkle bulanık VIKOR yöntem kullanılmış ve elde edlen sonuçlar br sonrak bölümde ele alınan bulanık TOPSIS yöntemnn sonuçlarıyla karşılaştırılmıştır VIKOR yöntemnde zlenen adımlar aşağıdak gbdr Adım 1: Bu aşamada problem fade edlerek çözüm model oluşturulmuştur Çalışmada farklı depo operatörlernn, karar verme metodları kullanılarak değerlendrlmes ve uygun olan kuruluşun seçlmes hedeflenmştr Öncelkle frmadak lgl brm sorumluları ve akademsyenlerden oluşan karar verc çalışma grubu oluşturulmuştur Adım 2: Alternatflern belrlenmes aşamasıdır Karar verme grubu tarafından, htyacı karşılayableceğ düşünülen beş frma değerlendrmeye alınmıştır Frmalar; A 1, A 2, A 3, A 4 ve A 5 olarak kodlanmıştır Adım 3: Alternatflern değerlendrlmesnde kullanılacak krterlern tespt edlmes safhasıdır Çalışma kapsamında, depolama faalyetler çn lostk servs sağlayıcı seçm amacıyla yrm adet krter belrlenmştr Krterlern belrlenmes ve bunları zleyen aşamalarda lgl lteratür dkkate alınmış, karar verc uzman grubun fkrlernn değerlendrlmesnde se Delph metodu ve grup çalışması teknkler kullanılmıştır Delph metodunda, uzmanların görüşler tek tek toplanmakta ve bu görüşler uzmanlara belrl br düzende tekrar letlerek, br öncek turdak fkrler gözden geçrmeler stenmektedr Bu yapı, konsensüs-uzlaşma sağlanana kadar devam etmektedr [44] Çalışma sonucunda ortaya çıkan, seçm aşamasında kullanılacak yrm değerlendrme krter Tablo 5 te fade edlmş, tabloyu takben krter açıklamaları sunulmuştur 204

8 Tablo 5 Depo Operatörü Seçm Krterler Krter Depolama - Raf sstem (K1) Kapaste (K2) Malzeme Taşıma Sstem (K3) Operasyonel Yeterllk (K4) Genel Temzlk (K5) Hyen (K6) İş Güvenlğ (K7) Özel İstekler (K8) Ürün Esneklğ (K9) Ölçek Esneklg (K10) Fnansal Durum (K11) Gıda Sektöründe Tecrübe (K12) Gıda Sektöründek Referanslar (K13) Konum (K14) Güvenlrlk (K15) Teknk Yeterllk (K16) Süreç Kontrol Uygulamaları (K17) Sparş Doğruluğu (K18) Ana Malyet (K19) Ek Malyetler (K20) Depolama - Raf sstem: Hzmet verecek lostk frmasının düzgün şleyen, lk gren lk çıkar yöntemnn uygulanableceğ br raf sstemne sahp olması gerekldr Sstemn ntelğ ve modern br yapıda olması öneml br terch nedendr Kapaste: Ürünlern stoklanmasında kullanılacak depo veya depoların yeterl kapastede olması gerekldr Malzeme Taşıma Sstem: Depo çersnde kullanılan mekank sstemlern ve araçların yeterl mktar ve stenen özellkte olması, raflara ürün yerleştrme ve sparş toplama süreçlernn hatasız ve hızlı olmasını sağlayacaktır Operasyonel Yeterllk: Depolama yapısı çersnde rol alan şgörenlern (çalışan operatörler, şefler) ve yönetclern belrl br operasyonel blg brkmne, tecrübeye sahp olması faalyetlern stenen kalte ve vermllkte yürütülmesne yardımcı olacaktır Genel Temzlk: Deponun genel temzlğ, dkkate alınması gereken değerlendrme krterlernden brdr Temz olmayan ortamlarda, daha sonra kazaya neden olablecek; kr, korozyon, yağ brknts gb unsurların tespt edlmes oldukça zordur Hyen: Gıda ürünler söz konusu olduğundan, ortam hyennn sağlanması önemldr Sadece ürün bazlı hyen değl, zemnn, raf sstemlernn ve dğer ekpmanların ürünlere hyen açısından zarar vermemesn sağlayacak dezenfektan sstemlern oluşturulması önemldr İş güvenlğ: Ürünlern raflara konulması ve taşınması esnasında, çalışanları koruyacak tedbrlern alınması gerekldr Rafların kontrollernn yapılması, temel ve peryodk eğtmlern gerçekleştrlp gerçekleştrlmedğ, koruyucu kullanımı, şç sağlığı ve güvenlğne lşkn talmat veya prosedürlern varlığı rdelenmeldr Özel İstekler: Mevcut ş akışının dışında oluşablecek taleplern, belrl koşullar çerçevesnde karşılanablmes depolama operatörü açısından değerlendrmede avanta 205

9 sağlayacaktır Etketleme, ürün brleştrme, yenden paketleme vb katma değer oluşturan hzmetler örnek olarak verleblr Ürün Esneklğ: Sözleşmede belrtlen ürünlern dışında, boyut veya ağırlık olarak farklı olablecek ürünlern belrl toleranslar dâhlnde depolanablmes terch nedendr Ölçek Esneklğ: Depolanması stenen ürünlern mktarının belrl toleranslar dâhlnde artması sonucu ortaya çıkablecek depolama talebnn, depo operatörü tarafından karşılanablmes stenen br durumdur Fnansal Durum: Sözleşmenn gerçekleştrleceğ frmanın mal yapısı önemldr Uzun sürel sözleşme yapılması stendğnden, fnansal durumu güçlü olan kuruluşlar terch edlecektr Gıda Sektöründe Tecrübe: Operatör frmanın sektörel tecrübes dkkate alınması gereken br krterdr Gıda Sektöründek Referanslar: Daha önce lgl sektörde, brlkte çalışılan kuruluşların varlığı ve gerçekleştrlen uygulamalar seçm aşamasında göz önünde bulundurulmalıdır Konum: Lostk frmasına at depoların, teslmat lokasyonlarına yakınlığı ulaştırma rsknn azalmasına yardımcı olacaktır Güvenlrlk: Depoların şleyş açısından öneml br krter olup, değerlendrmede arızalar arası ortalama süreler, arıza türler, bakım raporları gb faktörler dkkate alınmalıdır Teknk Yeterllk: İşletmenn teknolok altyapısı ve bu sstemler stenen düzeyde kullanablme yeteneğ önemldr Süreç Kontrol Uygulamaları: Kalte beklentlernn karşılandığının ve gerekl takbn yapıldığının somut gösterges olarak, statstksel süreç kontrol uygulamalarının gerçekleştrlyor olması öneml br terch edlme nedendr Sparş Doğruluğu: Depolarda en fazla zaman alan operasyonlar olan sparş toplama faalyetler sonucunda, toplama bölgesne getrlen ürünlerde hataların (yanlış, eksk veya hasarlı ürün) oluşması stenmeyen br durumdur Hem sparş toplama operasyonunun hem de stok takbnn hedeflenen doğrulukta gerçekeleştrlmes gerekldr Ana Malyet: Yapılan sözleşme karşılığında ortaya çıkan ana malyet kalemlern çermektedr Ek Malyetler: Sözleşmede belrtlmek şartıyla, depo operatörü tarafından verleblecek ek hzmetlere lşkn malyetler fade etmektedr Adım 4: Krterlern bulanık ortamda ağırlıklandırılmasının ve alternatflern değerlendrlmelernn gerçekleştrldğ aşamadır Bunun çn öncelkle karar verme ekbnn bulanık yapıdak değerlendrmeler alınmıştır Alternatflern belrtlen krterler kapsamındak değerlendrmeler çn Tablo 3 ve 4 tek sözel fadeler le buna karşılık gelen üçgensel sayılar kullanılmıştır Karar verc grup çersndek her br uzmanın krterler kapsamındak bulanık değerlendrmeler alınarak, alternatflern genel bulanık değerlendrme tablosu oluşturulmuştur m alternatf, n değerlendrme krter çn, t sayıda uzmanın bulunduğu br karar verme ortamında, bulanık karar matrsnn yapılandırılması çn (8) ve (9) numaralı fadeler kullanılmıştır Her br uzmanın değerlendrmelerne lşkn üçgensel bulanık sayılar, (6) ve (7) numaralı eştlklerle grup kararına dönüştürülmüştür w t u 1/ t w u1 (6) 206

10 x t u 1/ t x u1 W w, w,, 1 2 w n (7) (8) D A A A 1 2 m x x xm x x x m2 x 1n x2n xmn Tablo 6 da krterlern bulanık ağırlıkları, Tablo 7 de alternatfler çn bulanık değerlendrme matrs gösterlmştr Belrtlen tablolardak verler, üç farklı karar vercnn görüşler alınarak oluşturulmuştur Bu üç karar vercden elde edlen matrsler, Ek1 de gösterlmştr Alternatflern değerlendrmes aşamasında elde edlen matrsler se, Ek2, 3 ve 4 te sunulmuştur Bu aşamada elde edlen VIKOR yöntemne lşkn değerler, TOPSIS yöntemnde de aynı şeklde kullanıldığı çn TOPSIS çn ayrıca ek tablo oluşturulmamıştır Adım 5: Tüm alternatflern, krterler kapsamındak bulanık en y ( kötü ( f * f (9) ) ve bulanık en ) değerler tespt edlmştr Tablo 8 de bulanık en y ve bulanık en kötü değerler gösterlmektedr Sonrasında alternatfler çn S J, R J ve Q J değerler hesaplanmıştır Lteratür dkkate alınarak, v = 0,5 değer kullanılmıştır [22, 33, 36, 37] v değer maksmum grup faydasını oluşturan stratenn ağırlığını fade etmektedr Uzlaşma çoğunluk oyu (v>0,5) le konsensüs (v=0,5) veya veto (v<0,5) le gerçekleşeblmektedr [42, 45] Tablo 9 ve 10 da alternatfler çn hesaplanan Q J değerler fade edlmştr Adım 6: Durulaştırma şlemnn yapıldığı aşamadır Çalışmada k farklı durulaştırma yapılmıştır Brncs, üçgensel bulanık sayı elemanlarının artmetk ortalamasının alınmasıdır [33, 37] Tablo 9 ve 10 da (o) le fade edlmştr Dğer se ağırlıklı ortalama yöntemdr [46-49] C = ( l, m, u ) le fade edlen bulanık üçgensel sayının ağırlıklı ortalama le durulaştırma şlem çn (10) nolu fade kullanılablr Bu yöntemle yapılan durulaştırma Tablo 9 ve 10 da, (a) le fade edlmştr P( C) C ( l 4m u) / 6 S, J R, J (10) 207

11 Tablo 6 Krterlern Ağırlıkları Krter le Edlen Krter Ağırlığı Depolama-Raf Sstem 0,42 0,67 0,92 Kapaste 0,50 0,75 0,92 Malzeme Taşıma Sstem 0,25 0,50 0,75 Operasyonel Yeterllk 0,42 0,67 0,92 Genel Temzlk 0,17 0,42 0,67 Hyen 0,42 0,67 0,92 İş Güvenlğ 0,50 0,75 1,00 Ozel İstekler 0,08 0,25 0,50 Ürün Esneklğ 0,25 0,50 0,75 Ölçek Esneklğ 0,33 0,58 0,83 Fnansal Durum 0,42 0,67 0,92 Gıda Sektöründe Tecrübe 0,50 0,75 1,00 Gıda Sektöründek Referanslar 0,42 0,67 0,92 Konum 0,17 0,42 0,67 Güvenlrlk 0,25 0,50 0,75 Teknk Yeterllk 0,33 0,58 0,83 Süreç Kontrol Uygulamaları 0,33 0,58 0,83 Sparş Doğruluğu 0,50 0,75 0,92 Ana Malyet 0,67 0,92 1,00 Ek Malyetler 0,42 0,67 0,92 Tablo 7 Alternatf Depo Operatörler İçn Değerlendrme Matrs Krter A 1 A 2 A 3 A 4 A 5 K1 5,83 8,33 10,00 6,67 9,17 10,00 5,00 7,50 10,00 3,33 5,83 8,33 2,50 5,00 7,50 K2 4,17 6,67 9,17 6,67 9,17 10,00 5,00 7,50 10,00 2,50 5,00 7,50 1,67 4,17 6,67 K3 3,33 5,83 8,33 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 2,50 5,00 7,50 K4 5,00 7,50 10,00 5,00 7,50 10,00 4,17 6,67 9,17 2,50 5,00 7,50 3,33 5,83 8,33 K5 7,50 10,00 10,00 5,00 7,50 10,00 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 K6 5,00 7,50 10,00 3,33 5,83 8,33 2,50 5,00 7,50 0,00 2,50 5,00 0,00 2,50 5,00 K7 5,00 7,50 10,00 5,00 7,50 10,00 5,00 7,50 10,00 2,50 5,00 7,50 3,33 5,83 8,33 K8 4,17 6,67 9,17 5,00 7,50 10,00 4,17 6,67 9,17 2,50 5,00 7,50 2,50 5,00 7,50 K9 4,17 6,67 9,17 5,00 7,50 10,00 4,17 6,67 9,17 2,50 5,00 7,50 2,50 5,00 7,50 K10 2,50 5,00 7,50 2,50 5,00 7,50 5,00 7,50 10,00 0,00 2,50 5,00 2,50 5,00 7,50 K11 5,00 7,50 10,00 5,00 7,50 10,00 2,50 5,00 7,50 1,67 4,17 6,67 1,67 4,17 6,67 K12 4,17 6,67 9,17 1,67 4,17 6,67 0,00 2,50 5,00 0,83 3,33 5,83 0,00 0,00 2,50 K13 4,17 6,67 9,17 1,67 4,17 6,67 0,00 1,67 4,17 0,83 3,33 5,83 0,00 0,00 2,50 K14 4,17 6,67 9,17 5,00 7,50 10,00 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 K15 4,17 6,67 9,17 5,00 7,50 10,00 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 K16 5,00 7,50 10,00 5,00 7,50 10,00 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 K17 2,50 5,00 7,50 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 0,83 3,33 5,83 K18 2,50 5,00 7,50 5,00 7,50 10,00 2,50 5,00 7,50 2,50 5,00 7,50 2,50 5,00 7,50 K19 2,50 5,00 7,50 0,00 2,50 5,00 2,50 5,00 7,50 0,83 3,33 5,83 2,50 5,00 7,50 K20 2,50 5,00 7,50 0,00 2,50 5,00 2,50 5,00 7,50 0,00 2,50 5,00 2,50 5,00 7,50 Adım 7: Uzlaşma koşullarının (C1 ve C2) kontrolü ve terch sıralamasının fade edlmes aşamasıdır C1 koşulunun rdelenmes çn karar alternatflernn Q skorlarına ve karar alternatf sayısına dayalı br hesaplama yapılmıştır Beş alternatf çn (5) numaralı eştszlk dkkate alınarak; 0,334 0,282 0,25 yazılablr Belrtlen eştszlk nedenyle C1 koşulu geçerl değldr 208

12 C2 koşulunun karşılanması kapsamında; en y Q değern alan karar alternatfnn, S ve R skorlarının brnde veya her ksnde en y değer almış olması gerekmektedr C2 koşulu rdelendğnde, A 1 alternatfnn (en y Q değern elde eden alternatfn) S değer bakımından knc, R değerler bakımından da A 3 alternatf le brlkte en y skoru elde ettğ söyleneblr Tablo 8 En İy ( f * ) ve En Kötü ( f ) Değerler Krter * f f K1 6,67 9,17 10,00 2,50 5,00 7,50 K2 6,67 9,17 10,00 1,67 4,17 6,67 K3 5,00 7,50 10,00 2,50 5,00 7,50 K4 5,00 7,50 10,00 2,50 5,00 7,50 K5 5,00 10,00 10,00 2,50 5,00 7,50 K6 5,00 7,50 10,00 0,00 2,50 5,00 K7 5,00 7,50 10,00 2,50 5,00 7,50 K8 5,00 7,50 10,00 2,50 5,00 7,50 K9 5,00 7,50 10,00 2,50 5,00 7,50 K10 5,00 7,50 10,00 0,00 2,50 5,00 K11 5,00 7,50 10,00 1,67 4,17 6,67 K12 4,17 6,67 9,17 0,00 2,50 5,00 K13 4,17 6,67 9,17 0,00 0,00 2,50 K14 5,00 7,50 10,00 2,50 5,00 7,50 K15 5,00 7,50 10,00 2,50 5,00 7,50 K16 5,00 7,50 10,00 2,50 5,00 7,50 K17 5,00 7,50 10,00 0,83 3,33 5,83 K18 5,00 7,50 10,00 2,50 5,00 7,50 K19 2,50 5,00 7,50 0,00 2,50 5,00 K20 2,50 5,00 7,50 0,00 2,50 5,00 Koşulların kontrolü yapıldığında, bulanık VIKOR karar verme teknğ açısından tek br alternatfn mutlak üstün olarak kabul edlemeyeceğ görülmektedr Üçüncü bölümde fade edlen Q(P M ) - Q(P 1 ) D(Q) eştszlğne ve Q değerlerne göre oluşturulan, uygun alternatflern uzlaşık çözüm kümes (A 1, A 3, A 2 ) şeklnde fade edleblr Lteratürde uzlaşık çözümün ortaya çıktığı vakalarda, eğer tek br alternatf seçlmes stenyorsa, lk sıradak alternatfn seçlmes gerektğ fade edlmştr [42] Fakat uzlaşık çözüm kümesndek alternatflern brbrne mutlak üstünlük sağlamadığı da analz sonucu ortaya çıkan br bulgudur Depo operatörü seçm problemnde tek br alternatfn seçlmes stendğnden, A 1 alternatf, çok krterl karar verme problemnn çözümü olarak karşımıza çıkmaktadır Seçm şlemnn geçerllğn rdelemek maksadıyla farklı br karar verme metodu le problemn çözümü tekrar gerçekleştrlmştr Karşılaştırma çn kullanılan karar verme yöntem olan bulanık TOPSIS metodu takp eden başlıkta açıklanmış, elde edlen sonuçlar karşılaştırılmıştır 209

13 Tablo 9 S J ve R J Değerler S S J (o) S J (a) J R R J J (o) R J (a) A 1 1,45 2,79 3,45 2,56 2,68 0,50 0,75 0,92 0,72 0,74 A 2 1,94 3,00 3,58 2,84 2,92 0,67 0,92 1,00 0,86 0,89 A 3 2,97 4,88 5,72 4,53 4,70 0,50 0,75 1,00 0,75 0,75 A 4 6,63 10,97 15,06 10,89 10,93 0,50 0,75 1,00 0,75 0,75 A 5 5,78 10,35 14,55 10,23 10,29 0,50 1,20 1,60 1,10 1,15 Tablo 10 VIKOR Yöntemyle Depo Operatörü Seçmne İlşkn Sonuçlar Alternatfler Q (o) Q (a) Terch Sırası A 1 0,00 0,00 0,00 0,00 0,00 1 A 2 0,55 0,20 0,07 0,27 0,23 3 A 3 0,15 0,13 0,16 0,14 0,14 2 A 4 0,50 0,50 0,56 0,52 0,51 4 A 5 0,42 0,96 0,98 0,79 0,87 5 Q J 42 TOPSIS Yöntemne Göre Seçm Bu bölümde, bulanık VIKOR yöntemyle elde edlen sonuçların geçerllğnn değerlendrlmesn yapablmek amacıyla kullanılacak olan bulanık TOPSIS metodu açıklanmıştır [50, 51] TOPSIS metodu, çok krterl karar problemlernn analznde kullanılan temel metotlardan brdr TOPSIS, değerlendrlen alternatflern deal çözümlere yakınlıklarını göz önünde bulunduran br çözüm sstematğn kullanmaktadır [52] Klask ve bulanık mantık tabanlı uygulamaları bulunan metot, farklı alanlardak brçok çalışmada kullanılmıştır TOPSIS metodunun kullanıldığı alanlara örnek olarak; fabrka yer seçm [51, 53], malzeme seçm [54], bakım stratelernn değerlendrlmes [55], tedarkç seçm [56], güneş eners teknololernn değerlendrlmes [57], yerel havacılık endüstrsnde rekabet analz [58] ve tedark zncr yönetm [59] verleblr Kesn verlern elde edlemedğ veya doğası gereğ net rakamlarla fade edlmes zor olan nsan yargılarının değerlendrlmesnn arzu edldğ ortamlarda TOPSIS, bulanık mantık le bütünleştrlerek kullanılablmektedr [50] TOPSIS metodunun aşamaları şu şeklde fade edleblr [57, 58, 60]: (1) Alternatflern Belrlenmes: Çok krterl karar verme problemnn çözümü kapsamında dkkate alınacak alternatflern belrlendğ aşamadır (2) Değerlendrme Krterlernn Tespt: Alternatflern değerlendrlmesnde dkkate alınacak krterlern tespt edlmes aşamasıdır Seçm sürecne etk eden faktörler sıralanır (3) Sözel Değerlendrmelere İlşkn lern Tanımlanması: Lteratürde en sık kullanılan bulanık mantık yapısı olması dolayısıyla çalışmamızda üçgensel bulanık sayılar kullanılmıştır [50, 53, 59, 61] TOPSIS le lgl lteratür ncelendğnde, krter ağırlıklandırmaları çn genellkle Tablo 11 dek sözel fadeler ve bulanık sayı karşılıklarının kullanıldığı görülmektedr 210

14 Tablo 11 TOPSIS Metodunda Krterlern Ağırlıklandırılmasında Kullanılan Sözel ler Sözel Çok Düşük (CD) (0; 0,1; 0,3) Düşük (D) (0,1; 0,3; 0,5) Orta Derecede (OD) (0,3; 0,5; 0,7) Yüksek (Y) (0,5; 0,7; 0,9) Oldukça Yüksek (OY) (0,7; 0,9; 1) Karar alternatflernn sözel olarak değerlendrlmes aşamasında kullanılan fadeler ve üçgensel sayı karşılıkları se Tablo 12 de gösterlmştr Tablo 12 TOPSIS Metodunda Alternatflern Değerlendrlmesnde Kullanılan Sözel ler Sözel Çok Zayıf (CZ) (0; 1; 3) Zayıf (Z) (1; 3; 5) Normal Düzeyde (ND) (3; 5; 7) İy (I) (5; 7; 9) Çok İy (CI) (7; 9; 10) (4) Karar Matrsnn Oluşturulması: n adet değerlendrme krter m adet alternatf çn bulanık karar matrs oluşturulur w krter ağırlığını fade etmektedr alternatfn krter karşısındak değern fade etmektedr A W = C 1 C 2 C n A 1 A 2 A m w, w,, w 1 2 x x xm n x x x m2 x 1n x2n xmn x se her br (5) Karar Matrsnn Normalze Edlmes: Her br değerlendrme krternn ağırlığı dkkate alınarak, ağırlıklandırılmış ve normalze edlmş karar matrs oluşturulur R, normalze edlmş bulanık karar matrsn göstermektedr normalze bulanık karar matrsn fade etmektedr r mn R = 1,2, m ; = 1,2, n V v r v mn w = 1,2, m ; = 1,2, n * A V (11) se, ağırlıklandırılmış (6) İdeal Çözümlern Oluşturulması: Poztf bulanık ( ) ve negatf bulanık ( deal çözümlern belrleneblmes amacıyla ağırlıklandırılmış karar matrsndek sütunlara lşkn değerlern en yüksek olanları tespt edlr Değerlendrlen faktör fayda yönlü değl se, en küçük değer dkkate alınır İdeal ve negatf deal bulanık çözümler (12) ve (13) numaralı denklemlerde fade edlmştr A ) 211

15 * A v *, v * * 1 2 A v 1, v, v (max v 1, 2,, m), 1, 2,, 2, v (mn v 1, 2,, m), 1, 2,, n n (12) (13) (7) Alternatflere İlşkn Uzaklıkların Hesaplanması: Değerlendrlen alternatflern deal çözümden ne kadar saptığını fade eden d * değernn hesaplanışı, (14) numaralı denklemde, negatf deal çözüme at d - değernn hesaplanışı da (15) numaralı denklemde gösterlmştr d * n 1 ( v v ) * 2 (14) d n 1 ( v v ) 2 (15) (8) Görecel Yakınlıkların Belrlenmes: Bu aşamada, tüm alternatflern deal çözüme görecel yakınlık değerlern gösteren C C değerler, (16) numaralı denklemle hesaplanır En yüksek C C değern alan alternatf, deal çözüme en yakın seçenek olarak kabul görmektedr 0 le 1 arasında olablen bu değer, alternatfn karar verme problem kapsamındak uygunluğunu temsl etmektedr Hesaplanan bulanık fade durulaştırılır En yüksek değer elde eden alternatf, uygun çözüm olarak ntelendrlmektedr CC d d * d Ele alınan karar verme problem verler dkkate alınarak, bulanık TOPSIS metodu kapsamında tüm alternatflern deal çözüme görecel yakınlık değerler ( ) hesaplanarak, karar alternatflernn sıralaması yapılmıştır Tablo 13 te TOPSIS metodu le depo operatörü seçmne lşkn sonuçlar görülmektedr Bu çalışma kapsamında, bulanık VIKOR yöntemnde kullanılan durulaştırma teknkler bulanık TOPSIS metodunda da uygulanmıştır Tablo 13 TOPSIS Metoduyla Depo Operatörü Seçmne İlşkn Sonuçlar Alternatfler C C CC (o) CC (a) (16) C C Terch Sırası A 1 0,69 0,73 0,78 0,74 0,73 1 A 2 0,44 0,47 0,48 0,46 0,47 3 A 3 0,59 0,61 0,65 0,62 0,61 2 A 4 0,31 0,34 0,38 0,34 0,34 4 A 5 0,29 0,33 0,36 0,33 0,33 5 TOPSIS yöntem sonucu ortaya çıkan sonuçlar ncelendğnde, depo operatörü olarak A 1 alternatfnn seçlmes gerektğ görülmektedr Tüm alternatflere lşkn terch sıralamaları, VIKOR yöntem le elde edlen sonuçlarla karşılaştırıldığında se sadece A 4 ve A 5 alternatflernn sıralamalarında br değşklk olduğu gözlenmektedr 212

16 5 Sonuç İşletmelern çekrdek faalyetlernn dışarısında kalan operasyonlarını, konusunda uzman frmalara sözleşmeler karşılığında bırakması, öneml derecede operasyon ve malyet avantaı sağlamaktadır mantık tabanlı depo operatörü seçm modelnn oluşturulduğu bu çalışmayla, depolama faalyetler çn uygun lostk frmasının seçm yapılmıştır Gerçek yaşamda karşılaşılan uygulamaların büyük br çoğunluğunda karar vercler, fkrlern net sayısal rakamlarla fade edememektedrler VIKOR tabanlı yöntem temel alınarak oluşturulan seçm model; belrszlğ dkkate alablmes, alternatflern üstünlük durumunu fade edeblmes ve uzlaşık çözüm oluşturablmes açısından avantaları le ön plana çıkmaktadır Tedark zncr operasyonlarının stenen vermllkte devam ettrlmes hususunda, htyaca yönelk analzler yapılarak uygun olduğu düşünülen safhalarda dış kaynak kullanımına başvurulması terch edlen br seçenektr Lostk alanında dış kaynak kullanımı kararları, br seferlk hzmet alımları olarak değl, uzun sürel ortaklık hedef göz önünde bulundurularak yapılmalıdır Uygun frmanın seçm ve sözleşmenn yapılmasından sonra, ortaklık gerekllklernn kontrolüne lşkn planlama yapılmalı ve performans ölçümünü yerne getrecek br sstem gelştrlmeldr Bundan sonrak çalışmalarda, değerlendrme krterlernn ve alternatflern sayısı arttırılarak daha hassas br analz yapılableceğ gb, dğer bulanık çok krterl karar verme metotları le de problem rdelenerek kurulan modeller ve sonuçları karşılaştırılablr Ayrıca, oluşturulan modeller farklı karar verme problemlernn çözümünde de kullanılablr Kaynakça [1] C R Moberg, T W Speh, Thrd-Party Warehousng Selecton: A Comparson of Natonal and Regonal Frms Md-Amercan Journal of Busness, 19, 2, (2004) [2] A Aguezzoul, The Thrd Party Logstcs Selecton: A Revew of Lterature, Proceedngs of Int Logstcs and Supply Chan Congress 2007 (CD), İstanbul, Türkye, 1-7 (2007) [3] A B Maltz, The Relatve Importance of Cost and Qualty n the Outsourcng of Warehousng Journal of Busness Logstcs, 15, 2, (1994) [4] J A Tompkns, J D Smth, The Warehouse Management Handbook, Tompkns Publcatons, USA, 1998 [5] E Frazelle, World-Class Warehousng and Materal Handlng, Mc-Graw Hll, USA, 2002 [6] A Brewer, K J Button, D A Hensher, Handbook of Logstcs and Supply-Chan Management, Pergamon-Elsever Ltd, Oxford, UK, 2001 [7] P Obal, Selectng Warehouse Software from WMS and ERP Provders, IDII, USA, 2004 [8] D F Ross, Dstrbuton Plannng and Control: Managng n the Era of Supply Chan Management, Second Edton, Kluwer Academc Publshers, USA, 2004 [9] A B Maltz, Outsourcng the Warehousng Functon: Economc and Strategc Consderatons Logstcs and Transportaton Revew, 30, 3, (1994) [10] J Korpela, A Lehmusvaara, A Customer Orented Approach To Warehouse Network Evaluaton and Desgn Internatonal Journal of Producton Economcs, 59, 1-3, (1999) 213

17 [11] G Colson, F Dorgo, A Publc Warehouses Selecton Support System European Journal of Operatonal Research, 153, (2004) [12] J Korpela, A Lehmusvaara, J Nsonen, Warehouse Operator Selecton By Combnng AHP and DEA Methodologes Internatonal Journal of Producton Economcs, 108, (2007) [13] A Jarzemsks, Determnaton and Evaluaton of The Factors of Outsourcng Logstcs Transport, 21, 1, (2006) [14] E Melachrnouds, H Mn, Redesgnng a Warehouse Network European Journal of Operatonal Research, 176, (2007) [15] W Ho, A Emrouznead, Mult-Crtera Logstcs Dstrbuton Network Desgn Usng SAS/OR Expert Systems wth Applcatons, 36, (2009) [16] M Amr, S A Ayaz, L Olfat, J S Morad, Group Decson Makng Process for Suppler Selecton wth VIKOR under Fuzzy Crcumstance Internatonal Bulletn of Busness Admnstraton, 10, (2011) [17] S Oprcovc, G H Tzeng, Compromse Soluton by MCDM Methods: A Comparatve Analyss of VIKOR and TOPSIS European Journal of Operatonal Research, 156, 2, (2004) [18] M T Chu, J Shyu, G H Tzeng, R Khosla, Comparson Among Three Analytcal Methods for Knowledge Communtes Group Decson Analyss Expert Systems wth Applcatons, 33, 4, (2007) [19] S Oprcovc, G H Tzeng, Extended VIKOR Method n Comparson wth Other Outrankng Methods European Journal of Operatonal Research, 178, 2, (2007) [20] G H Tzeng, C W Ln, S Oprcovc, Mult-Crtera Analyss of Alternatve-Fuel Buses for Publc Transportaton Energy Polcy, 33, (2005) [21] C Yang, T Wang, VIKOR Method Analyss of Interactve Trade n Polcy-Makng The Busness Revew, 6, 2, (2006) [22] D Lxn, L Yng, Z Zhguang, Selecton Of Logstcs Servce Provder Based On Analytc Network Process and VIKOR Algorthm, Networkng, Sensng and Control, ICNSC 2008-IEEE Internatonal Conference Proceedngs, (2008) [23] İ Ertuğrul, N Karakaşoğlu, Banka Şube Performanslarının VIKOR Yöntem İle Değerlendrlmes Endüstr Mühendslğ Dergs, 20, 11, (2009) [24] S Oprcovc, A Compromse Soluton n Water Resources Plannng Water Resources Management, 23, (2009) [25] J J H Lou, Y T Chuang, Developng a Hybrd Mult-Crtera Model for Selecton of Outsourcng Provders Expert Systems wth Applcatons, 37, (2010) [26] S Datta, S S Mahapatra, S Baneree, A Bandyopadhyay, Comparatve Study on Applcaton of Utlty Concept and VIKOR Method for Vendor Selecton, Proceedngs of AIMS Internatonal Conference on Value-based Management, (2010) [27] M F El-Santawy, A VIKOR Method for Solvng Personnel Tranng Selecton Problem Internatonal Journal Of Computng Scence, 1, 2, 9-12 (2012) [28] J W Lee, S H Km, Usng ANP and Goal Programmng for Interdependent Informaton System Proect Selecton Computers & Operatons Research, 27, 4, (2001) 214

18 [29] O Kulak, C Kahraman, Fuzzy Mult-Attrbute Selecton Among Transportaton Companes Usng Axomatc Desgn and AHP Informaton Scences, 170, 2-4, (2005) [30] L A Zadeh, Fuzzy Sets Informaton and Control, 8, (1965) [31] G Akman, A Alkan, Tedark Zncr Yönetmnde AHP Yöntem Kullanılarak Tedarkçlern Performansının Ölçülmes: Otomotv Yan Sanaynde Br Uygulama İstanbul Tcaret Ünverstes Fen Blmler Dergs, 5, 9, (2006) [32] A Öztürk, İ Ertuğrul, N Karakaşoğlu, Naklye Frması Seçmnde AHP ve TOPSIS Yöntemlernn Karşılaştırılması Marmara Ünverstes İİBF Dergs, 15, 2, (2008) [33] Ö İnce, Selecton of an ERP Software System by Usng Fuzzy VIKOR, Informaton Scences 2007-Proceedngs of the 10th Jont Conference CD, Salt Lake Cty, Utah, USA (2007) [34] A Sanaye, S F Mousav, A Yazdankhah, Group Decson Makng Process For Suppler Selecton Wth VIKOR Under Fuzzy Envronment Expert Systems wth Applcatons, 37, 1, (2010) [35] H Y Wua, G H Tzeng, Y H Chen, A Fuzzy MCDM Approach For Evaluatng Bankng Performance Based On Balanced Scorecard Expert Systems wth Applcatons, 36, 6, (2009) [36] G Büyüközkan, G D Ruan, Evaluaton of Software Development Proects Usng a Fuzzy Mult-Crtera Decson Approach Mathematcs and Computers n Smulaton, 77, (2008) [37] L Y Chen, T Wang, Optmzng Partners Choce n IS/IT Outsourcng Process: The Strategc Decson of Fuzzy VIKOR Internatonal Journal of Producton Economcs, 120, 1, (2009) [38] H Y Wu, J K Chen, I S Chen, Innovaton Captal Indcator Assessment of Tawanese Unverstes: A Hybrd Fuzzy Model Applcaton Expert Systems wth Applcatons, 37, (2010) [39] M S Kuo, G S Lang, Combnng VIKOR wth GRA Technques to Evaluate Servce Qualty of Arports under Fuzzy Envronment Expert Systems wth Applcatons, 38, (2011) [40] T C Wang, J L Lang, C Y Ho, Mult-Crtera Decson Analyss by Usng Fuzzy VIKOR, Servce Systems and Servce Management Internatonal Conference Proceedngs, (2006) [41] G N Yücenur, N Ç Demrel, Group Decson Makng Process For Insurance Company Selecton Problem wth Extended VIKOR Method Under Fuzzy Envronment Expert Systems Wth Applcatons, 39, 3, (2012) [42] G Akyüz, VIKOR Yöntem le Tedarkç Seçm Atatürk Ünverstes İktsad ve İdar Blmler Dergs, 26, 1 (2012) [43] S J Chen, G H Huang, Fuzzy Multple Attrbute Decson Makng, Sprnger, NY, 1992 [44] D Vehland, Research Applcatons of the Delph Method, CIS Group Research Semnar Seres, 2007, tur-www1masseyacnz/hryu/delph%20methodpdf, 02 Eylül

19 [45] F H Tool, A Omdan, M R Fath, Applyng Fuzzy AHP and VIKOR to Research Supervsor Selecton: A Case Study Amercan Journal of Scentfc Research, 30, (2011) [46] D Yong, Plant Locaton Selecton Based on Fuzzy TOPSIS Internatonal Journal of Advanced Manufacturng Technologes, 28, 7-8, (2006) [47] E Özgörmüş, Ö Mutlu, H Güner, AHP le Personel Seçm, V Ulusal Üretm Araştırmaları Sempozyumu Bldrler Ktabı, İstanbul, (2005) [48] T Kaya, C Kahraman, Multcrtera Renewable Energy Plannng Usng an Integrated Fuzzy VIKOR & AHP Methodology: The Case Of Istanbul Energy, 35, , (2010) [49] M Yavuz, Fuzzy Inventory Management, n Producton Engneerng and Management under Fuzzness Book, Sprnger-Verlag Berln Hedelberg, 2010, [50] C T Chen, Extensons of the TOPSIS for Group Decson-Makng under Fuzzy Envronment Fuzzy Sets and Systems, 114, 1, 1-9 (2000) [51] T C Chu, Faclty Locaton Selecton Usng Fuzzy TOPSIS Under Group Decsons Int Journal of Uncertanty, Fuzzness and Knowledge-Based Systems, 10, (2002) [52] C L Hwang, K Yoon, Multple Attrbute Decson Makng: Methods and Applcaton, Sprnger Publcatons, Berln, 1981 [53] P Alcan, H Baslgl, A Faclty Locaton Selecton Problem by Fuzzy TOPSIS, Proceedngs of 15th Internatonal Research/Expert Conference Trends n the Development of Machnery and Assocated Technology TMT 2011, (2011) [54] A Shanan, O Savadogo, TOPSIS Multple-Crtera Decson Support Analyss for Materal Selecton of Metallc Bpolar Plates for Polymer Electrolyte Fuel Cell Journal of Power Sources, 159, (2006) [55] K Shyth, M Ilangkumaran, S Kumanan, Mult-Crtera Decson-Makng Approach to Evaluate Optmum Mantenance Strategy n Textle Industry Journal of Qualty n Mantenance Engneerng, 14, 4, (2008) [56] K Shahanagh, S A Yazdan, Vendor Selecton Usng a New Fuzzy Group TOPSIS Approach Journal of Uncertan Systems, 3, 3, (2009) [57] F Cavallaro, Fuzzy TOPSIS Approach for Assessng Thermal-Energy Storage n Concentrated Solar Power (CSP) Systems Appled Energy, 87, (2010) [58] G Torlak, M Sevkl, M Sanal, S Zam, Analyzng Busness Competton by Usng Fuzzy TOPSIS Method: An Example of Turksh Domestc Arlne Industry Expert Systems wth Applcatons, 38, (2011) [59] S Apak, Ö Vayvay, O Feyzoğlu, A Decson Makng Model for the Evaluaton of Supply Chan Executon and Management Systems Internatonal Journal of Computatonal Intellgence Systems, 6, 2, (2013) [60] R K Sngh, L Benyoucef, A Fuzzy TOPSIS Based Approach for E-Sourcng Engneerng Applcatons of Artfcal Intellgence, 24, (2011) [61] J F Dng, An Integrated Fuzzy TOPSIS Method for Rankng Alternatves and Its Applcaton Journal of Marne Scence and Technology, 19, 4, (2011) 216

20 Ek 1 Değerlendrme Krterler İçn Karar Verclere At Değerlendrmeler Karar Verc-1 Karar Verc-2 Karar Verc-3 K1 Y 0,5 0,75 1 Y 0,5 0,75 1 OD 0,25 0,5 0,75 K2 Y 0,5 0,75 1 OD 0,25 0,5 0,75 OY 0, K3 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 K4 Y 0,5 0,75 1 OD 0,25 0,5 0,75 Y 0,5 0,75 1 K5 D 0 0,25 0,5 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 K6 OD 0,25 0,5 0,75 Y 0,5 0,75 1 Y 0,5 0,75 1 K7 Y 0,5 0,75 1 Y 0,5 0,75 1 Y 0,5 0,75 1 K8 D 0 0,25 0,5 CD 0 0 0,25 OD 0,25 0,5 0,75 K9 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 K10 OD 0,25 0,5 0,75 Y 0,5 0,75 1 OD 0,25 0,5 0,75 K11 OD 0,25 0,5 0,75 Y 0,5 0,75 1 Y 0,5 0,75 1 K12 Y 0,5 0,75 1 Y 0,5 0,75 1 Y 0,5 0,75 1 K13 Y 0,5 0,75 1 Y 0,5 0,75 1 OD 0,25 0,5 0,75 K14 D 0 0,25 0,5 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 K15 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 K16 Y 0,5 0,75 1 OD 0,25 0,5 0,75 OD 0,25 0,5 0,75 K17 OD 0,25 0,5 0,75 Y 0,5 0,75 1 OD 0,25 0,5 0,75 K18 Y 0,5 0,75 1 OD 0,25 0,5 0,75 OY 0, K19 OY 0, Y 0,5 0,75 1 OY 0, K20 Y 0,5 0,75 1 Y 0,5 0,75 1 OD 0,25 0,5 0,75 Ek 2 Alternatflern Değerlendrlmeler (Karar Verc-1) Krter Alternatf 1 Alternatf 2 Alternatf 3 Alternatf 4 Alternatf 5 K1 CI 7, CI 7, I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K2 I 5 7,5 10 CI 7, I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K3 ND 2,5 5 7,5 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 ND 2,5 5 7,5 K4 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K5 CI 7, I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K6 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 Z 0 2,5 5 Z 0 2,5 5 K7 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K8 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K9 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K10 ND 2,5 5 7,5 ND 2,5 5 7,5 I 5 7,5 10 Z 0 2,5 5 ND 2,5 5 7,5 K11 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 ND 2,5 5 7,5 K12 I 5 7,5 10 ND 2,5 5 7,5 Z 0 2,5 5 Z 0 2,5 5 CZ 0 0 2,5 K13 I 5 7,5 10 ND 2,5 5 7,5 CZ 0 0 2,5 Z 0 2,5 5 CZ 0 0 2,5 K14 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K15 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K16 I 5 7,5 10 I 5 7,5 10 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 K17 ND 2,5 5 7,5 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 Z 0 2,5 5 K18 ND 2,5 5 7,5 I 5 7,5 10 ND 2,5 5 7,5 ND 2,5 5 7,5 ND 2,5 5 7,5 K19 ND 2,5 5 7,5 Z 0 2,5 5 ND 2,5 5 7,5 Z 0 2,5 5 ND 2,5 5 7,5 K20 ND 2,5 5 7,5 Z 0 2,5 5 ND 2,5 5 7,5 Z 0 2,5 5 ND 2,5 5 7,5 Ek 3 Alternatflern Değerlendrlmeler (Karar Verc-2) 217

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 29, 244-260, 2011 Research Artcle / Araştırma Makales PERFORMANCE EVALUATION USING AHP - VIKOR AND AHP - TOPSIS APPROACHES: THE

Detaylı

Bulanık TOPSIS ve Bulanık VIKOR Yöntemleriyle Alışveriş Merkezi Kuruluş Yeri Seçimi ve Bir Uygulama

Bulanık TOPSIS ve Bulanık VIKOR Yöntemleriyle Alışveriş Merkezi Kuruluş Yeri Seçimi ve Bir Uygulama EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 14 Sayı: 3 Temmuz 2014 ss. 463-479 Bulanık TOPSIS ve Bulanık VIKOR Yöntemleryle Alışverş Merkez Kuruluş Yer Seçm ve Br Uygulama Selecton of Shoppng Center

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and atural Scences Mühendslk ve Fen Blmler Dergs Sgma 9, -4, 0 Research Artcle / Araştırma Makales FUZZY TOPSIS METHODS I GROUP DECISIO MAKIG AD A APPLICATIO FOR BAK BRACH LOCATIO

Detaylı

AHP-TOPSIS YÖNTEMİNE DAYALI TEDARİKÇİ SEÇİMİ UYGULAMASI *

AHP-TOPSIS YÖNTEMİNE DAYALI TEDARİKÇİ SEÇİMİ UYGULAMASI * Ekonometr ve İstatstk Sayı:13 (12. Uluslararası Ekonometr, Yöneylem Araştırması, İstatstk Sempozyumu Özel Sayısı) 2011 1 22 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ AHP-TOPSIS

Detaylı

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Araştırma Makaleler TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Dr., Dokuz Eylül Ünverstes, İİBF İşletme Bölümü erhan.demrel@deu.edu.tr ÖZET Ekonomk faalyetlern

Detaylı

Çok ölçütlü karar verme yaklaşımlarına dayalı tedarikçi seçimi: elektronik sektöründe bir uygulama

Çok ölçütlü karar verme yaklaşımlarına dayalı tedarikçi seçimi: elektronik sektöründe bir uygulama 346 Çok ölçütlü karar verme yaklaşımlarına dayalı tedarkç seçm: elektronk sektöründe br uygulama Murat ARIKAN 1, Berat GÖKBEK 1 1 Endüstr Mühendslğ Bölümü, Mühendslk Fakültes, Gaz Ünverstes, Maltepe-Ankara

Detaylı

Çok Kriterli Karar Verme Teknikleriyle Lojistik Firmalarında Performans Ölçümü

Çok Kriterli Karar Verme Teknikleriyle Lojistik Firmalarında Performans Ölçümü EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 3 Sayı: 4 Ekm 03 ss. 449-459 Çok Krterl Karar Verme Teknkleryle Lostk Frmalarında Performans Ölçümü Performance Measurement of Logstcs Frms wth Mult-Crtera

Detaylı

AN IMPLEMENTATION OF INTEGRATED MULTI-CRITERIA DECISION MAKING TECHNIQUES FOR ACADEMIC STAFF RECRUITMENT

AN IMPLEMENTATION OF INTEGRATED MULTI-CRITERIA DECISION MAKING TECHNIQUES FOR ACADEMIC STAFF RECRUITMENT Journal of Management, Marketng and Logstcs (JMML), ISSN: 48-6670 Year: 04 Volume: Issue: AN IMPLEMENTATION OF INTEGRATED MULTI-CRITERIA DECISION MAKING TECHNIQUES FOR ACADEMIC STAFF RECRUITMENT Kemal

Detaylı

BALİ KHO BİLİM DERGİSİ CİLT:23 SAYI:2 YIL:2013. BULANIK BOYUT ANALİZİ ve BULANIK VIKOR İLE BİR ÇNKV MODELİ: PERSONEL SEÇİMİ PROBLEMİ.

BALİ KHO BİLİM DERGİSİ CİLT:23 SAYI:2 YIL:2013. BULANIK BOYUT ANALİZİ ve BULANIK VIKOR İLE BİR ÇNKV MODELİ: PERSONEL SEÇİMİ PROBLEMİ. BULANIK BOYUT ANALİZİ ve BULANIK VIKOR İLE BİR ÇNKV MODELİ: PERSONEL SEÇİMİ PROBLEMİ Özkan BALİ ÖZET Personel seçm organzasyonların başarısını etkleyen en öneml problemlerden brdr. Bu seçm, belrszlk çeren

Detaylı

NAKLĠYE FĠRMASI SEÇĠMĠNDE BULANIK AHP VE BULANIK TOPSIS YÖNTEMLERĠNĠN KARġILAġTIRILMASI

NAKLĠYE FĠRMASI SEÇĠMĠNDE BULANIK AHP VE BULANIK TOPSIS YÖNTEMLERĠNĠN KARġILAġTIRILMASI Marmara Ünverstes Ġ.Ġ.B.F. Dergs YIL 008, CĠLT XX, AYI NAKLĠYE FĠRMAI EÇĠMĠNDE BULANIK AHP E BULANIK TOPI YÖNTEMLERĠNĠN KARġILAġTIRILMAI Prof. Dr. Ahmet ÖZTÜRK * Yrd. Doç. Dr. Ġrfan ERTUĞRUL ** ArĢ. Grv.

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 31, 203-213, 2013 Research Artcle / Araştırma Makales ANALYTIC NETWORK PROCESS AND TOPSIS METHODS WITH SELECTION OF OPTIMAL INVESTMENT

Detaylı

TEDARİKÇİ SEÇİMİNDE ANALİTİK HİYERARŞİ PROSESİ VE HEDEF PROGRAMLAMA YÖNTEMLERİNİN KOMBİNASYONU: OTEL İŞLETMELERİNDE BİR UYGULAMA

TEDARİKÇİ SEÇİMİNDE ANALİTİK HİYERARŞİ PROSESİ VE HEDEF PROGRAMLAMA YÖNTEMLERİNİN KOMBİNASYONU: OTEL İŞLETMELERİNDE BİR UYGULAMA TEDARİKÇİ SEÇİMİNDE ANALİTİK HİYERARŞİ PROSESİ VE HEDEF PROGRAMLAMA YÖNTEMLERİNİN KOMBİNASYONU: OTEL İŞLETMELERİNDE BİR UYGULAMA Yrd. Doç. Dr. Meltem KARAATLI * Yrd. Doç. Dr. Gonca DAVRAS ** ÖZ Otel şletmelernde,

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

KURUMSAL FİRMALAR İÇİN BİR FİNANSAL PERFORMANS KARŞILAŞTIRMA MODELİNİN GELİŞTİRİLMESİ

KURUMSAL FİRMALAR İÇİN BİR FİNANSAL PERFORMANS KARŞILAŞTIRMA MODELİNİN GELİŞTİRİLMESİ Gaz Ünv. Müh. Mm. Fak. Der. Journal of thefaculty of Engneerngand Archtecture of Gaz Unversty Clt 30, No 1, 71-85, 2015 Vol 30, No 1, 71-85, 2015 KURUMSAL FİRMALAR İÇİN BİR FİNANSAL PERFORMANS KARŞILAŞTIRMA

Detaylı

Bulanık Analitik Hiyerarşi Süreci ve İdeal Çözüme Yakınlığa Göre Sıralama Yapma Yöntemleri ile Tekstil Sektöründe Finansal Performans Ölçümü

Bulanık Analitik Hiyerarşi Süreci ve İdeal Çözüme Yakınlığa Göre Sıralama Yapma Yöntemleri ile Tekstil Sektöründe Finansal Performans Ölçümü Sosyal Blmler 8/1 (010) s 19516 SOSYAL BİLİMLER Yıl : 010 Clt :8 Sayı :1 Celal Bayar Ünverstes S.B.E. Bulanık Analtk Hyerarş Sürec ve İdeal Çözüme Yakınlığa Göre Sıralama Yapma Yöntemler le Tekstl Sektöründe

Detaylı

TOPSIS Metodu Kullanılarak Kesici Takım Malzemesi Seçimi

TOPSIS Metodu Kullanılarak Kesici Takım Malzemesi Seçimi Makne Teknolojler Elektronk Dergs Clt: 9, No: 3, 2012 (35-42) Electronc Journal of Machne Technologes Vol: 9, No: 3, 2012 (35-42) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn:1304-4141 Makale

Detaylı

AHP VE TOPSIS YÖNTEMLERİ İLE KURUMSAL PROJE YÖNETİM YAZILIMI SEÇİMİ

AHP VE TOPSIS YÖNTEMLERİ İLE KURUMSAL PROJE YÖNETİM YAZILIMI SEÇİMİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2015/1, Sayı:21 Journal of Süleyman Demrel Unversty Insttute of Socal Scences Year: 2015/1, Number:21 AHP VE TOPSIS YÖNTEMLERİ İLE KURUMSAL PROJE

Detaylı

ANALİTİK AĞ SÜRECİ VE TOPSIS YÖNTEMLERİ İLE BİLİMDALI SEÇİMİ Doç.Dr. Nuri ÖMÜRBEK Süleyman Demirel Üniversitesi, İİBF, İşletme Bölümü

ANALİTİK AĞ SÜRECİ VE TOPSIS YÖNTEMLERİ İLE BİLİMDALI SEÇİMİ Doç.Dr. Nuri ÖMÜRBEK Süleyman Demirel Üniversitesi, İİBF, İşletme Bölümü ANALİTİK AĞ SÜRECİ VE TOPSIS YÖNTEMLERİ İLE BİLİMDALI SEÇİMİ DoçDr Nur ÖMÜRBEK Süleyman Demrel Ünverstes, İİBF, İşletme Bölümü Nazlı DEMİRCİ Süleyman Demrel Ünverstes, SBE, İşletme ABD, YL Pınar AKALİN

Detaylı

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ Burak KARAHAN Burak PEKEL Neşet BEDİR Cavt CAN Kırıkkale -2014-

Detaylı

AHP AND GRA INTEGRATED APPROACH IN INNOVATION PERFORMANCE REVIEW PROCESS: AN APPLICATION IN DAIRY INDUSTRY

AHP AND GRA INTEGRATED APPROACH IN INNOVATION PERFORMANCE REVIEW PROCESS: AN APPLICATION IN DAIRY INDUSTRY Dumlupınar Ünverstes Sosyal Blmler Dergs / Dumlupınar Unversty Journal of Socal Scences İNOVASYON PERFORMANSI DEĞERLENDİRME SÜRECİNDE AHS VE GİA BÜTÜNLEŞİK YAKLAŞIMI: SÜT ÜRÜNLERİ SEKTÖRÜNDE BİR UYGULAMA

Detaylı

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI Mehmet Aktan Atatürk Ünverstes, Endüstr Mühendslğ Bölümü, 25240, Erzurum. Özet: Dövz kurlarındak değşmler,

Detaylı

YAZILIM GELİŞTİRME PROJELERİNİN GERÇEK OPSİYON DEĞERLEME MODELİYLE ÇOK ÖLÇÜTLÜ BULANIK DEĞERLEMESİ

YAZILIM GELİŞTİRME PROJELERİNİN GERÇEK OPSİYON DEĞERLEME MODELİYLE ÇOK ÖLÇÜTLÜ BULANIK DEĞERLEMESİ İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl: 8 Sayı: 5 Bahar 009/ s. 3-6 YAZILIM GELİŞTİRME PROJELERİNİN GERÇEK OPSİYON DEĞERLEME MODELİYLE ÇOK ÖLÇÜTLÜ BULANIK DEĞERLEMESİ A. Çağrı TOLGA, Cengz KAHRAMAN

Detaylı

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI Fath ÇİL GAZİ ÜNİVERSİTESİ Mühendslk Mmarlık Fakültes Endüstr Mühendslğ Bölümü 4. Sınıf

Detaylı

BIST da Demir, Çelik Metal Ana Sanayii Sektöründe Faaliyet Gösteren İşletmelerin Finansal Performans Analizi: VZA Süper Etkinlik ve TOPSIS Uygulaması

BIST da Demir, Çelik Metal Ana Sanayii Sektöründe Faaliyet Gösteren İşletmelerin Finansal Performans Analizi: VZA Süper Etkinlik ve TOPSIS Uygulaması EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 4 Sayı: Ocak 04 ss. 9-9 BIST da Demr, Çelk Metal Ana Sanay Sektöründe Faalyet Gösteren İşletmelern Fnansal Performans Analz: VZA Süper Etknlk ve TOPSIS Uygulaması

Detaylı

SELECTING THE SERVICE PROVIDER THROUGH MULTIPLE- CRITERIA DECISION MAKING TECHNIQUES

SELECTING THE SERVICE PROVIDER THROUGH MULTIPLE- CRITERIA DECISION MAKING TECHNIQUES ÇOK ÖLÇÜTLÜ KARAR VERME TEKNİKLERİ İLE HİZMET SAĞLAYICI SEÇİMİ Öz Aşır ÖZBEK a Tamer EREN b Hzmet sağlayıcılar ya da üçüncü part lojstk (3PL) frmalar, şletmenn ana faalyetler dışında kalan, geleneksel

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Admnstraton Clt/Vol:39, Sayı/No:2,, 310-334 ISSN: 1303-1732 www.fdergs.org Stokastk envanter model kullanılarak

Detaylı

SİMÜLASYON İLE BÜTÜNLEŞİK ÇOK KRİTERLİ KARAR VERME: BİR HASTANE ACİL DEPARTMANI İÇİN SENARYO SEÇİMİ UYGULAMASI

SİMÜLASYON İLE BÜTÜNLEŞİK ÇOK KRİTERLİ KARAR VERME: BİR HASTANE ACİL DEPARTMANI İÇİN SENARYO SEÇİMİ UYGULAMASI İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl: 11 Sayı: 22 Güz 2012 s. 1-18 SİMÜLASYON İLE BÜTÜNLEŞİK ÇOK KRİTERLİ KARAR VERME: BİR HASTANE ACİL DEPARTMANI İÇİN SENARYO SEÇİMİ UYGULAMASI Muhammet GÜL

Detaylı

KRİZ DÖNEMİNDE KÜRESEL PERAKENDECİ AKTÖRLERİN PERFORMANSLARININ TOPSİS YÖNTEMİ İLE DEĞERLENDİRİLMESİ

KRİZ DÖNEMİNDE KÜRESEL PERAKENDECİ AKTÖRLERİN PERFORMANSLARININ TOPSİS YÖNTEMİ İLE DEĞERLENDİRİLMESİ Atatürk Ünverstes İktsad ve İdar Blmler Dergs, Clt: 25, Sayı: 2, 2011 151 KRİZ DÖNEMİNDE KÜRESEL PERAKENDECİ AKTÖRLERİN PERFORMANSLARININ TOPSİS YÖNTEMİ İLE DEĞERLENDİRİLMESİ Nhan ÖZGÜVEN (*) Özet: Perakendeclk

Detaylı

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 109 125. TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ Yrd.Doç.Dr. Ahmet ERGÜLEN Nğde

Detaylı

FUZZY TOPSİS YÖNTEMİ İLE SANAL MAĞAZALARIN WEB SİTELERİNİN DEĞERLENDİRİLMESİ

FUZZY TOPSİS YÖNTEMİ İLE SANAL MAĞAZALARIN WEB SİTELERİNİN DEĞERLENDİRİLMESİ FUZZY TOPSİS YÖNTEMİ İLE SNL MĞZLRIN WEB SİTELERİNİN DEĞERLENDİRİLMESİ Süleyman DÜNDR (*) Fath EER (**) Şuayb ÖZDEMİR (***) Özet: Bu çalışmanın amacı, fuzzy TOPSİS yöntemn kullanarak sanal mağazaların

Detaylı

TÜRKİYE DEKİ ÖZEL BANKALARIN FİNANSAL PERFORMANSLARININ KARŞILAŞTIRILMASI: 2008-2011 DÖNEMİ. Fatih ECER *

TÜRKİYE DEKİ ÖZEL BANKALARIN FİNANSAL PERFORMANSLARININ KARŞILAŞTIRILMASI: 2008-2011 DÖNEMİ. Fatih ECER * AİBÜ Sosyal Blmler Ensttüsü Dergs, Güz 2013, Clt:13, Yıl:13, Sayı:2, 13:171-189 TÜKİYE DEKİ ÖZEL BANKALAIN FİNANSAL PEFOMANSLAININ KAŞILAŞTIILMASI: 2008-2011 DÖNEMİ Fath ECE COMPAISON OF PIVATE BANKS FINANCIAL

Detaylı

Çok Kriterli Karar Vermede TOPSIS ve VIKOR Yöntemleriyle Klima Seçimi

Çok Kriterli Karar Vermede TOPSIS ve VIKOR Yöntemleriyle Klima Seçimi Çankırı Karatekn Ünverstes İktsad ve İdar Blmler Fakültes Dergs Y.2014, Clt 4, Sayı 1, ss.267-282 Çankırı Karatekn Unversty Journal of The Faculty of Economcs and Admnstratve Scences Y.2014, Volume 4,

Detaylı

GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ

GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ 2. Ulusal Tasarım İmalat ve Analz Kongres 11-12 Kasım 21- Balıkesr GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ Esra YILMAZ*, Ferhat GÜNGÖR** *ylmazesraa@gmal.com

Detaylı

MALZEME TAŞIMA SİSTEMİ ALTERNATİFLERİNİN DEĞERLENDİRİLMESİNDE BULANIK-PROMETHEE YAKLAŞIMI

MALZEME TAŞIMA SİSTEMİ ALTERNATİFLERİNİN DEĞERLENDİRİLMESİNDE BULANIK-PROMETHEE YAKLAŞIMI Doğuş Ünverstes Dergs 12 (1) 2011 144-155 MALZEME TAŞIMA SİSTEMİ ALTERNATİFLERİNİN DEĞERLENDİRİLMESİNDE BULANIK-ROMETHEE YAKLAŞIMI EVALUATING MATERIAL HANDLING SYSTEM ALTERNATIVES USING FUZZY-ROMETHEE

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

20. ULUSAL PAZARLAMA KONGRESİ Anadolu Üniversitesi - Eskişehir

20. ULUSAL PAZARLAMA KONGRESİ Anadolu Üniversitesi - Eskişehir 20. ULUSL PZRLM KONGRESİ nadolu Ünverstes - Eskşehr Sgorta Ürün Planlarına İlşkn Ürün Cazplklernn Değerlendrlmes Evaluaton of Product ttractveness of Insurance Product Plans Habbe Yelda Şener 1 - Merve

Detaylı

MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ. SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ

MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ. SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ 2011-2012-2013 MALİ yılına İLİşKİN YÖNETİM KURULU FAALİYET RAPORU ("Şrket") 01012011-31 ı22013

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

DAĞITIM STRATEJİLERİNİN OLUŞTURULMASINA YÖNELİK MODEL OLUŞTURMA: BİR TÜRK FİRMASI ÜZERİNE ÖRNEK UYGULAMA

DAĞITIM STRATEJİLERİNİN OLUŞTURULMASINA YÖNELİK MODEL OLUŞTURMA: BİR TÜRK FİRMASI ÜZERİNE ÖRNEK UYGULAMA ZKÜ Sosyal Blmler Dergs, Clt 2, Sayı 4, 2006, ss. 123 145. DAĞITIM STRATEJİLERİNİN OLUŞTURULMASINA YÖNELİK MODEL OLUŞTURMA BİR TÜRK FİRMASI ÜZERİNE ÖRNEK UYGULAMA Yrd. Doç. Dr. Ahmet ERGÜLEN Nğde Ünverstes

Detaylı

BULUT TEKNOLOJ S F RMALARININ BULANIK AHP MOORA YÖNTEM KULLANILARAK SIRALANMASI

BULUT TEKNOLOJ S F RMALARININ BULANIK AHP MOORA YÖNTEM KULLANILARAK SIRALANMASI BULUT TEKNOLOJ S F RMALARININ BULANIK AHP MOORA YÖNTEM KULLANILARAK SIRALANMASI Bahad r Fath YILDIRIM.Ü. letme Fakültes Say sal Yöntemler ABD. Onur ÖNAY.Ü. letme Fakültes Say sal Yöntemler ABD. ÖZET Bulut

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ Eskşehr Osmangaz Ünverstes Sosyal Blmler Dergs Clt: 6 Sayı: 2 Aralık 2005 BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ İrfan ERTUĞRUL Pamukkale Ünverstes İİBF, Denzl ÖZET Günümüzde

Detaylı

BİR UN FABRİKASINDA HEDEF PROGRAMLAMA UYGULAMASI

BİR UN FABRİKASINDA HEDEF PROGRAMLAMA UYGULAMASI BİR UN FABRİKASINDA HEDEF PROGRAMLAMA UYGULAMASI Abdullah Oktay DÜNDAR * Muammer ZERENLER ** ÖZET İşletmeler günümüz rekabet ortamının çalkantılı doğasında faalyetlern sürdürürken, sahp oldukları kıt kaynakları

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

15 th ISEOS PROCEEDINGS BOOK

15 th ISEOS PROCEEDINGS BOOK 15 th ISEOS PROEEDINGS BOOK 15 th Internatonal Symposum on Econometrcs, Operatons Research and Statstcs 22-25 May 2014 Suleyman Demrel Unversty 15th Internatonal Symposum on Econometrcs, Operatons Research

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Fatih ECER*, Fatih GÜNAY**

Fatih ECER*, Fatih GÜNAY** Anatola: Turzm Araştırmaları Dergs, Clt 25, Sayı 1, Bahar: 35-48, 2014. Copyrght 2014 anatola Bütün hakları saklıdır ISSN: 1300-4220 (1990-2014) Borsa İstanbul da İşlem Gören Turzm Şrketlernn Fnansal Performanslarının

Detaylı

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA Gaz Ünv. Müh. Mm. Fak. Der. J. Fac. Eng. Arch. Gaz Unv. Clt 22, No 4, 855-862, 2007 Vol 22, No 4, 855-862, 2007 BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA İzzettn TEMİZ ve

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 28, 224-234, 2010 PhD Research Artcle / Doktora Çalışması Araştırma Makales APPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

PRODUCTION PLANNING BASED ON GOAL PROGRAMMING FOR MASS CUSTOMIZATION IN A COMPANY

PRODUCTION PLANNING BASED ON GOAL PROGRAMMING FOR MASS CUSTOMIZATION IN A COMPANY BİR İŞLETMEDE KİTLESEL ÖZEL ÜRETİME YÖNELİK HEDEF PROGRAMLAMA TABANLI ÜRETİM PLANLAMA PRODUCTION PLANNING BASED ON GOAL PROGRAMMING FOR MASS CUSTOMIZATION IN A COMPANY ESRA AKBAL Başkent Ünverstes Lsansüstü

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ Yrd. Doç. Dr. Murat ATAN - Araş. Gör. Gaye KARPAT ÇATALBAŞ 2 ÖZET Bu çalışma, Türk bankacılık sstem çnde faalyet gösteren tcar bankaların

Detaylı

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI YÜKSEK LİSANS TEZİ Müh. Ramadan VATANSEVER Anablm Dalı: İşletme Mühendslğ Programı: İşletme

Detaylı

VERİ ZARFLAMA ANALİZİ (VZA) VE MALMQUİST ENDEKSİ İLE TOPLAM FAKTÖR VERİMLİLİK ÖLÇÜMÜ: BİST TE İŞLEM GÖREN MEVDUAT BANKALARI ÜZERİNE BİR UYGULAMA

VERİ ZARFLAMA ANALİZİ (VZA) VE MALMQUİST ENDEKSİ İLE TOPLAM FAKTÖR VERİMLİLİK ÖLÇÜMÜ: BİST TE İŞLEM GÖREN MEVDUAT BANKALARI ÜZERİNE BİR UYGULAMA Atatürk Ünverstes İktsad ve İdar Blmler Dergs, Clt: 27,Sayı:4,2013 110 VERİ ZARFLAMA ANALİZİ (VZA) VE MALMQUİST ENDEKSİ İLE TOPLAM FAKTÖR VERİMLİLİK ÖLÇÜMÜ: BİST TE İŞLEM GÖREN MEVDUAT BANKALARI ÜZERİNE

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm Resm Gazetenn 29.12.2012 tarh ve 28512 sayılı le yayınlanmıştır. TEİAŞ Türkye Elektrk İletm Anonm Şrket Bu Doküman

Detaylı

EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATILI RESMİ GAZETEDE YAYINLANMIŞTIR.

EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATILI RESMİ GAZETEDE YAYINLANMIŞTIR. EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATL RESMİ GAETEDE YAYNLANMŞTR. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama

Detaylı

Maliyetlerinin Bulanık Mantık (Fuzzy Logıc) Yaklaşımı Đle Yönetilmesi ve Finansal Performans Üzerindeki Etkisinin Đncelenmesi

Maliyetlerinin Bulanık Mantık (Fuzzy Logıc) Yaklaşımı Đle Yönetilmesi ve Finansal Performans Üzerindeki Etkisinin Đncelenmesi Yrd. Doç. Dr. Al Deran Yrd. Doç. Dr. Ahmet Ergülen Taşıma Malyetlernn Bulanık Mantık (Fuzzy Logıc) Yaklaşımı Đle Yönetlmes ve Fnansal Performans Üzerndek Etksnn Đncelenmes Yrd. Doç. Dr. Ahmet ERGÜLEN Yrd.

Detaylı

Genetik Algoritma ile İki Boyutlu Şekil Yerleştirme ÖZET

Genetik Algoritma ile İki Boyutlu Şekil Yerleştirme ÖZET Genetk Algortma le İk Boyutlu Şekl Yerleştrme Metn Özşahn 1 ve Mustafa Oral 2 1) Çukurova Ünverstes Fen Blmler Ensttüsü Endüstr Mühendslğ Bölümü, Adana, Turkey 2 Çukurova Ünverstes Blgsayar Mühendslğ Bölümü,

Detaylı

GERİ DÖNÜŞÜM TESİSLERİNİN YERİNİN GUSTAFSON-KESSEL ALGORİTMASI-KONVEKS PROGRAMLAMA MELEZ MODELİ TABANLI SİMÜLASYON İLE BELİRLENMESİ

GERİ DÖNÜŞÜM TESİSLERİNİN YERİNİN GUSTAFSON-KESSEL ALGORİTMASI-KONVEKS PROGRAMLAMA MELEZ MODELİ TABANLI SİMÜLASYON İLE BELİRLENMESİ İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl:7 Sayı:13 Bahar 2008/1 s.1-20 GERİ DÖNÜŞÜM TESİSLERİNİN YERİNİN GUSTAFSON-KESSEL ALGORİTMASI-KONVEKS PROGRAMLAMA MELEZ MODELİ TABANLI SİMÜLASYON İLE BELİRLENMESİ

Detaylı

TÜRK KAMU İHALE KANUNUNDA FİYAT İLE BİRLİKTE FİYAT DIŞI UNSURLARIN DA DİKKATE ALINDIĞI İHALE VE KAZANAN TEKLİF

TÜRK KAMU İHALE KANUNUNDA FİYAT İLE BİRLİKTE FİYAT DIŞI UNSURLARIN DA DİKKATE ALINDIĞI İHALE VE KAZANAN TEKLİF TÜRK KAMU İHALE KANUNUNDA FİYAT İLE BİRLİKTE FİYAT DIŞI UNSURLARIN DA DİKKATE ALINDIĞI İHALE VE KAZANAN TEKLİF Necdet ÖZÇAKAR, 1 Istanbul Ünverstes İşletme Fakültes, Üretm Yönetm Ana Blm Dalı Halm YURDAKUL

Detaylı

T.C. KEÇiÖREN BELEDİYE BAŞKANLIGI Mali Hizmetler Müdürlüğü BAŞKANLIK MAKAMINA

T.C. KEÇiÖREN BELEDİYE BAŞKANLIGI Mali Hizmetler Müdürlüğü BAŞKANLIK MAKAMINA l!l KEÇÖREN BELEDİYE BAŞKANLIGI KEÇöREN BELeDYES SA YI : M.06.6.KEç.O-31/2009KONU: Yetk Devr bo f.!200fd 6.1. BAŞKANLIK MAKAMINA Blndğ üzere O 1.01.2006 tarhnden tbaren tüm yerel yönetmlerde 31.12.2005

Detaylı

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı *

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı * İMO Teknk Derg, 2013 6211-6231, Yazı 392 Şehrç Karayolu Ağlarının Sezgsel Harmon Araştırması Optmzasyon Yöntem le Ayrık Tasarımı * Hüseyn CEYLAN* Halm CEYLAN** ÖZ Bu çalışmada, şehrç ulaştırma ağlarının

Detaylı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı Sera İklmlendrme Kontrolü İçn Etkn Br Gömülü Sstem Tasarımı Nurullah Öztürk, Selçuk Ökdem, Serkan Öztürk Ercyes Ünverstes, Blgsayar Mühendslğ Bölümü, Kayser ozturk.nurullah@yahoo.com.tr,okdem@ercyes.edu.tr,

Detaylı

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için)

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için) Ders Kodu Teork Uygulama Lab. Uluslararası Muhasebe ve Fnansal Raporlama Standartları Ulusal Kred Öğretm planındak AKTS 344000000000510 3 0 0 3 6 Ön Koşullar : Bu dersn ön koşulu ya da yan koşulu bulunmamaktadır.

Detaylı

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi 01.01.2015 tarh ve 29223 sayılı Resm Gazetede yayımlanmıştır. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem

Detaylı

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001)

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001) ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 413-417 (1) TEKNK NOTrrECHNICAL NOTE ELEKTRK ARK FıRıNıNDA TERMODNAMGN KNC YASASıNıN

Detaylı

VERİ ZARFLAMA ANALİZİ İLE TIBBİ GÖRÜNTÜ, ARŞİV VE İLETİŞİM SİSTEMLERİNİN DEVLET HASTANELERİ PERFORMANSINA ETKİLERİNİN ARAŞTIRILMASI

VERİ ZARFLAMA ANALİZİ İLE TIBBİ GÖRÜNTÜ, ARŞİV VE İLETİŞİM SİSTEMLERİNİN DEVLET HASTANELERİ PERFORMANSINA ETKİLERİNİN ARAŞTIRILMASI Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü DergsYıl: 2013/1, Sayı:17 Journal of Süleyman Demrel Unversty Insttute of Socal ScencesYear: 2013/1, Number:17 VERİ ZARFLAMA ANALİZİ İLE TIBBİ GÖRÜNTÜ,

Detaylı

HAVA GÜCÜ MUKAYESESİ İÇİN BULANIK AHP MODELİ

HAVA GÜCÜ MUKAYESESİ İÇİN BULANIK AHP MODELİ HAVACILIK VE UZAY TEKOLOJİLERİ DERGİSİ OCAK 2007 CİLT 3 SAYI (7-82) HAVA GÜCÜ MUKAYESESİ İÇİ BULAIK AHP MODELİ Hv.Plt.Kur.Yzb. Hakan ÇALI 2 nc HİBM, Tekno.ve Ürt.K.lığı, 38095, Esenyurt, Kayser hakancanl@hotmal.com

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225 Atatürk Ünverstes İktsad ve İdar Blmler Dergs, Clt: 25, Sayı:, 20 225 FİNANSAL ANALİZDE KULLANILAN ORANLAR VE HİSSE SENEDİ GETİRİLERİ ARASINDAKİ İLİŞKİ: EKONOMİK KRİZ DÖNEMLERİ İÇİN İMKB İMALAT SANAYİ

Detaylı

Emrah 70 Ekim 2011. kat edilen mesafenin en. mizasyonu (PSO) sezgisel. (PSO), Genetik Algoritma (GA), Optimizasyon, Meta-Sezgisel

Emrah 70 Ekim 2011. kat edilen mesafenin en. mizasyonu (PSO) sezgisel. (PSO), Genetik Algoritma (GA), Optimizasyon, Meta-Sezgisel METAplam kat edlen mesafenn en mzasyonu (PSO) sezgsel k (PSO), Genetk Algortma (GA), Optmzasyon, Meta-Sezgsel 74 OPTIMIZATION OF MULTI- PROBLEM OF ISTANBUL HALK EKMEK A.S. (IHE) BY USING META-HEURISTIC

Detaylı

BELEDİYELERDE PERFORMANS ÖLÇÜMÜ İÇİN ÇOK ÖLÇÜTLÜ BULANIK BİR MODEL ÖNERİSİ

BELEDİYELERDE PERFORMANS ÖLÇÜMÜ İÇİN ÇOK ÖLÇÜTLÜ BULANIK BİR MODEL ÖNERİSİ İTANBUL TEKNİK ÜNİERİTEİ FEN BİLİMLERİ ENTİTÜÜ BELEDİYELERDE PERFORMAN ÖLÇÜMÜ İÇİN ÇOK ÖLÇÜTLÜ BULANIK BİR MODEL ÖNERİİ YÜKEK LİAN TEZİ Müh. Emre ALİOĞLU Anablm Dalı: AUNMA TEKNOLOJİLERİ Programı: TRATEJİ

Detaylı

Kar Payı Politikası ve Yaşam Döngüsü Teorisi: İMKB İmalat Sektöründe Ampirik Bir Uygulama

Kar Payı Politikası ve Yaşam Döngüsü Teorisi: İMKB İmalat Sektöründe Ampirik Bir Uygulama Anadolu Ünverses Sosyal Blmler Dergs Anadolu Unversy Journal of Socal Scences Kar Payı Polkası ve Yaşam Döngüsü Teors: İMKB İmalat Sektöründe Amprk Br Uygulama Dvdend Payout Polcy and Lfe Cycle Theory:

Detaylı

TEİAŞ Türkiye Elektrik İletim Anonim Şirketi. İletim Sistemi Sistem Kullanım ve Sistem İşletim Tarifelerini Hesaplama ve Uygulama Yöntem Bildirimi

TEİAŞ Türkiye Elektrik İletim Anonim Şirketi. İletim Sistemi Sistem Kullanım ve Sistem İşletim Tarifelerini Hesaplama ve Uygulama Yöntem Bildirimi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm EK-1 TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama

Detaylı

Heterojen Araç Filolu Zaman Pencereli Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemleri: Matematiksel Model

Heterojen Araç Filolu Zaman Pencereli Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemleri: Matematiksel Model Internatonal Journal of Research and Development, Vol.3, No.1, January 2011 19 Heteroen Araç Flolu Zaman Pencerel Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemler: Matematksel Model Suna ÇETİN, Cevrye

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

ÇOK KRİTERLİ KARAR VERME İLE AVRUPA BİRLİĞİ VE ADAY ÜLKELERİN YAŞAM KALİTESİNİN ANALİZİ

ÇOK KRİTERLİ KARAR VERME İLE AVRUPA BİRLİĞİ VE ADAY ÜLKELERİN YAŞAM KALİTESİNİN ANALİZİ Ekonometr ve İstatstk Sayı:13 (12. Uluslararası Ekonometr, Yöneylem Araştırması, İstatstk Sempozyumu Özel Sayısı) 2011 80 94 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ ÇOK

Detaylı

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME (JOB SHOP SCHEDULING WITH KRILL HERD ALGORITHM) İlker GÖLCÜK

Detaylı

Electronic Letters on Science & Engineering 2(1) (2006) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 2(1) (2006) Available online at www.e-lse.org Electronc Letters on Scence & Engneerng ) 6) Avalable onlne at www.e-lse.org An Approxmaton to Multsource Suppler Selecton Problem usng Extended Fuzzy AHP and GA Bars Yuce, Ibrahm Dokuzer Sakarya Unversty,

Detaylı

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI 1 TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI Metehan TOLON Nuray GÜNERİ TOSUNOĞLU Özet Tüketc tatmn araştırmaları özelde pazarlama yönetclernn, genelde

Detaylı

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 7 : 3 : 3 : 369-378

Detaylı