1-)Projenin Adı: Küre içinde gizemli piramit. 2-)Giriş ve Projenin Amacı : 9. Sınıf geometri dersinde üç bouytlu cisimlerin hacmini

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1-)Projenin Adı: Küre içinde gizemli piramit. 2-)Giriş ve Projenin Amacı : 9. Sınıf geometri dersinde üç bouytlu cisimlerin hacmini"

Transkript

1 1-)Projenin Adı: Küre içinde gizemli piramit 2-)Giriş ve Projenin Amacı : 9. Sınıf geometri dersinde üç bouytlu cisimlerin hacmini bulmayı,hacim formüllerini öğrenmiştik.bu yıl geometri dersimizin ilk konusu olan Öklit postulatlarını öğrenirken Öklit dışı geometrilerin varlığını ve bu geometrilerden birinin de Küresel Geometri olduğunu öğrendik.buradan yola çıkarak küre ve küre içinde yapılabilecek birtakım işlemler konusunda daha fazla bilgi edinmeye karar verdim.bu noktada daha önceki bilgilerimi kullanarak küre içine yerleştirilecek üç boyutlu cisimlerin alan ve hacim hesaplamalarında bazı kolay çözümler elde edip edemiyeceğimi düşündüm ve bir küre içinde bütün köşeleri kürenin en geniş arakesiti üzerinde olan bir kare piramidin hacmini ve alanını hesaplamaya yarayacak bir formül geliştirmeye karar verdim.. Amacım, oluşturacağım formülün bu şekilde verilen geometri hesaplamalarının daha az zamanda ve daha kolaylıkla yapılmasını sağlamaktır.. Bir küre içine üç boyutlu herhangi bir şekil yerleştirilebilinir. Eğer yerleştirilen cisimlerin her köşesi kürenin yüzeyine değiyorsa ve bu cisimler, içlerinde kürenin yarıçapı ya da çapı uzunluğunda bir doğru parçası oluşturuyorsa bu cisimlerin hacimleri ve alanları r cinsinden bulunabilir. Ben bu projede bir kare piramidin alanını ve hacmini kürenin yarıçapı türünden hesaplayarak, benzer soru çözümlerinde kullanılabilecek pratik bir kural geliştirmeyi amaçladım. 1

2 3-)Ana Bölüm: Aşağıdaki resimde görüldüğü gibi, dik üçgen oluşturulmuş ve pisagor kullanılarak karenin bir kenarı ve alanı bulunmuştur.karenin bir kenar uzunluğu x olmak üzere karenin alanının : Ifadesine eşit olduğu belirlenmiştir. Taban alanı r cinsinden dir. Bunun için piramidin yüksekliğide dir. Buna göre piramidin hacim formulunden yola çıkarak: küre içine yerleştirilen piramidin hacmi şeklinde sadeleştirilebilir. Bu sefer taban alanı herhangi bir ara kesite yerleştirilmiş bir piramidi ele aldığımızda: Yarıçapına dersek ve bu çemberin kürenin kutbuna uzaklığına dersek bu piramidin hacmini bulmak için arakesitlerin yarıçaplarının oranı, arakesitlerin kürenin kutuplarına olan uzaklıkları oranına eşit olduğundan 2

3 oranı elde edilir. Bu piramidin hacim formülü: Olarak belirtilebilir Tabi burada değişkenler olacaktır, mesela: Örnek 1: / Bir Kürenin yarıçapı 10 cm dir. Bu kürenin içine her köşesi kürenin yüzeyine değen ve tabanı da kürenin en geniş arakesitinde bulunan bir kare piramit yerleştirildiğinde bu piramidin hacmi kaç cm 3 olur? Çözüm: Çıkardığımız formule bakarsak sadece yarıçap yerine verilen değeri koymamız yeterlidir. Bu formülü kullanmak karşımıza çıkan sorularda oldukça zaman farkı sağlayacaktır. 3

4 Örnek 2: Yarıçapı 8 cm olan bir kürenin içine her köşesi kürenin yüzeyine değecek bir kare piramit yerleştirilecektir. Bu piramidin tabanı kürenin herhangi bir ara kesitine yerleştirilmiş ve tabanıyla kürenin kutbu arasında 3cm mesafe olduğuna gore bu piramidin hacmi kaç cm 3 tür? Çözüm: Öncelikle bu piramidin tabanının yerleştirildiği ara kesitin yarıçapını bulmak gerekir. Yarıçap bulunduktan sonra formula uyguladığımızda bu piramidin hacmi bulunacaktır. 4

5 Piramidin yüzey alanını bulmak için önce yanal üçgenin yüksekliğini bulmamız gerekir. Bunun için önce tabanın bir kenarının yarısını alarak ve yükseklikle bir pisagor kullanmamız gerekecektir. Bu şekilde bir yanal üçgenin yüksekliği bulunmuş oldu. Bu yanal üçgenin alanını bulmak için üçgen alanı kullanılır. Piramidin yüzey alanının bulmak için taban alanı ve yanal alanlarını toplamamız gerekmektedir. parantezine alırsak şeklinde hesaplanır. 5

6 Örnek 3: Bir kürenin yarıçapı 6 cm dir. Bu kürenin içine her köşesi kürenin yüzeyine değen bir piramit konulmaktadır. Bu piramidin tabanı piramidin en geniş ara kesitine yerleştirilmiştir. Bu piramidin yüzey alanı kaç cm 2 dir? Çözüm: Çıkardığımız alan formülünde yarıçap değerini yerine koymamız yetecektir. şeklinde 3 adımda hesaplanabilinir. ( ) ( ) 4-)Sonuç ve Tartışma: Bu formüller kullanılarak, karşımıza çıkan soruların çözümlerini daha kısa sürede gerçekleştirebileceğimize inanmaktayım.günümüzde özellikle üniversite sınavlarında zamanı doğru kullanmamızın önemi düşünülürse projemde oluşturduğum formullerin ne denli verimli olduğu da daha iyi anlaşılabilir. 6

7 5-)KAYNAKÇA 1-) MEB.12.Sınıf Geometri Ders Kitabı. 2-) Küresel Geometri Bedri Süer (Hacısalihoğlu Yayıncılık). 3-)Tüm geometri Halim Özen (Özen Yayınları). 4-)Liseler için geometri (3) H. Hilml Hacısalihoğlu,Rüstem Kaya,A. Sait Karataş (MEB). 7

Geometrik Cisimlerin Hacimleri

Geometrik Cisimlerin Hacimleri 1 Ülkemizin kongre ve fuar merkezlerinden biri, Antalya daki Cam Piramit Kongre ve Fuar Merkezi dir. Renkli ısıcamlı uzay çatı ile örülerek piramit şeklinde inşa edilmiştir. 2 Şekildeki piramidin tabanı

Detaylı

... 2.Adım 3. Adım 4. Adım

... 2.Adım 3. Adım 4. Adım 1-.... 2.Adım 3. Adım 4. Adım Yukarıda verilen şekillerdeki üçgen sayısı ile örüntülü bir sayı dizisi oluşturulmuştur. İki basamaklı doğal sayılardan rastgele seçilen bir sayının bu sayı dizisinin elemanı

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

III İÇİNDEKİLER ÜNİTE 1 ÜNİTE 2 ÜNİTE 3 FRAKTALLAR 2 YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 10 ÜSLÜ SAYILAR 14 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 18

III İÇİNDEKİLER ÜNİTE 1 ÜNİTE 2 ÜNİTE 3 FRAKTALLAR 2 YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 10 ÜSLÜ SAYILAR 14 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 18 MATEMATİK III İÇİNDEKİLER ÜNİTE FRAKTALLAR YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 0 ÜSLÜ SAYILAR 4 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 8 ÜSLÜ SAYILARLA BÖLME İŞLEMİ 8 BİLİMSEL GÖSTERİM 9 ÜNİTE OLASILIK, İSTATİSTİK

Detaylı

2004 ÖSS Soruları. 5. a, b, c pozitif tam sayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? işleminin sonucu kaçtır?

2004 ÖSS Soruları. 5. a, b, c pozitif tam sayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? işleminin sonucu kaçtır? 1. 1 1 1c + m 1 + 4 işleminin sonucu kaçtır? 0 16 6 ) ) ) ) ) 1 9 9 6. a, b, c pozitif tam sayılar, c asal sayı ve 1 1 1 + = y 6 olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? ) a < b < c )

Detaylı

Sınav : MATEMATİK (TÜRKÇE) ÖĞRETMENİ (GOÖD) Yarışma Sınavı A ) B ) C ) D ) E ) A ) B ) C ) D ) E ) 5 A ) B ) C ) A ) B ) C ) D ) E ) D ) E )

Sınav : MATEMATİK (TÜRKÇE) ÖĞRETMENİ (GOÖD) Yarışma Sınavı A ) B ) C ) D ) E ) A ) B ) C ) D ) E ) 5 A ) B ) C ) A ) B ) C ) D ) E ) D ) E ) 1 4 5 2 3 6 Bir sınıfın öğrencilerinden her biri matematik, fizik ve kimya derslerinin yalnız birinden 5 almıştır. Bu sınıftaki öğrencilerin 1/8'i kimyadan 5 almıştır. 15 öğrenci fizikten 5 alamamıştır.

Detaylı

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ 0 0 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ SÜRE Ay Hafta D. Saati ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR Geometri Örüntü Süslemeler. Doğru, çokgen çember modellerinden örüntüler

Detaylı

MALZEME BİLİMİ VE MÜHENDİSLİĞİ. Malzeme Üretim Laboratuarı I Deney Föyü NİCEL (KANTİTATİF) METALOGRAFİ. DENEYİN ADI: Nicel (Kantitatif) Metalografi

MALZEME BİLİMİ VE MÜHENDİSLİĞİ. Malzeme Üretim Laboratuarı I Deney Föyü NİCEL (KANTİTATİF) METALOGRAFİ. DENEYİN ADI: Nicel (Kantitatif) Metalografi DENEYİN ADI: Nicel (Kantitatif) Metalografi DENEYİN AMACI: Metal ve alaşımlarının ince yapılarının (=mikroyapı) incelenmesi ile hangi fazların var olduğu, bu fazların konumları ve düzenleri hakkında bilgiler

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BURKULMA HESABI Doç.Dr. Ali Rıza YILDIZ MAK 305 Makine Elemanları-Doç. Dr. Ali Rıza YILDIZ 1 BU SLAYTTAN EDİNİLMESİ BEKLENEN BİLGİLER Burkulmanın tanımı Burkulmanın hangi durumlarda

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ İT! SORU İTPÇIĞINIZIN TÜRÜNÜ OLR VP ÂĞIINIZ İŞRTLMYİ UNUTMYINIZ. MTMTİ SINVI GOMTRİ TSTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz.. u

Detaylı

MATEMATİK DERSİNİN İLKÖĞRETİM PROGRAMLARI VE LİSELERE GİRİŞ SINAVLARI AÇISINDAN DEĞERLENDİRİLMESİ

MATEMATİK DERSİNİN İLKÖĞRETİM PROGRAMLARI VE LİSELERE GİRİŞ SINAVLARI AÇISINDAN DEĞERLENDİRİLMESİ MATEMATİK DERSİNİN İLKÖĞRETİM PROGRAMLARI VE LİSELERE GİRİŞ SINAVLARI AÇISINDAN DEĞERLENDİRİLMESİ Ahmet ÇOBAN Cumhuriyet Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü, SİVAS ÖZET: Bu araştırma, Matematik

Detaylı

10. SINIF KONU ANLATIMLI. 1. ÜNİTE: MADDE ve ÖZELLİKLERİ 2. Konu KALDIRMA KUVVETİ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 1. ÜNİTE: MADDE ve ÖZELLİKLERİ 2. Konu KALDIRMA KUVVETİ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF KONU ANLAIMLI 1. ÜNİE: MADDE ve ÖZELLİKLERİ 2. Konu KALDIRMA KUVVEİ EKİNLİK ve ES ÇÖZÜMLERİ 2 Ünite 1 Madde ve Özellikleri 1. Ünite 2. Konu (Kaldırma Kuvveti) A nın Çözümleri 4. K 1. Suya batan

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Ölçülendirme

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Ölçülendirme TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi 2/33 nin Gereği ve Önemi Ölçekler Ölçek Çeşitleri Elemanları Ölçü Çizgisi Ölçü Rakamı Ölçü Sınır Çizgisi Açı ve Yay Ölçüleri Yay si

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

DÖĞRENCİLERİN DİKKATİNE!

DÖĞRENCİLERİN DİKKATİNE! D KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MATEMATİK 205 8. SINIF. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI 25 KASIM 205 Saat: 0.0 Adı

Detaylı

Maddenin Ayırtedici Özellikleri

Maddenin Ayırtedici Özellikleri Maddenin Ayırtedici Özellikleri Bir maddeyi diğer maddelerden ayırmaya yarayan özellikleri Ayırtedici Özellikler denir. Bunlar; Özkütle (Yoğunluk) Erime Noktası Kaynama Noktası Çözünürlük Esneklik İletkenlik

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) ÖSS MT- / 008 MTEMTİK TESTİ (Mat ). u testte sırasıla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. + = olduğuna

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

matematik Ahmet bugün 9 yaşındadır. Dört yıl sonra annesinin yaşı Ahmet'in yaşının üç katı olacaktır.

matematik Ahmet bugün 9 yaşındadır. Dört yıl sonra annesinin yaşı Ahmet'in yaşının üç katı olacaktır. matematik KOLEJ VE BİLSEM SINAVLARINA HAZIRLIK Aşağıda verilen sayılar en yakın onluğa ya da yüzlüğe yuvarlanmıştır. Ahmet bugün 9 yaşındadır. Dört yıl sonra annesinin yaşı Ahmet'in yaşının üç katı olacaktır.

Detaylı

T.C. BAKSAN MESLEKİ EĞİTİM MERKEZİ ORTAK ALAN TEKNİK RESİM VE ÇİZİM TEKNOLOJİLERİ DERSİ SORULARI

T.C. BAKSAN MESLEKİ EĞİTİM MERKEZİ ORTAK ALAN TEKNİK RESİM VE ÇİZİM TEKNOLOJİLERİ DERSİ SORULARI T.C. BAKSAN MESLEKİ EĞİTİM MERKEZİ ORTAK ALAN TEKNİK RESİM VE ÇİZİM TEKNOLOJİLERİ DERSİ SORULARI 1- İş parçalarını, belli kurallara göre tanımlayan çizgisel şekillere ne ad verilir? a) Teknik resim b)

Detaylı

ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ

ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ ORT ÖĞRTİM KURUMLRI ÖĞRNİ SÇM V YRLŞTİRM SINVI MTMTİK TSTİ 1. K Şemadaki K \ (L M) kümesinin belirttiği L bölge kesilerek çıkartılıyor. Çıkartılan bölgeyi gösteren şekil M aşağıdakilerden hangisidir? )

Detaylı

5. ÜNİTE ÜÇ FAZLI ALTERNATİF AKIMLAR

5. ÜNİTE ÜÇ FAZLI ALTERNATİF AKIMLAR 5. ÜNİTE ÜÇ FAZLI ALTERNATİF AKIMLAR KONULAR 1. Üç Fazlı Alternatif Akımların Tanımı Ve Elde Edilmeleri 2. Yıldız Ve Üçgen Bağlama, Her İki Bağlamada Çekilen Akımlar Ve Güçlerin Karşılaştırılması 3. Bir

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

Deney süresince tüketilen (kullanılan) 400-335= 65 ppm tüketilmiştir. Bu hacimce ppm dir. ppm i mg/m 3 e dönüştürürsek,

Deney süresince tüketilen (kullanılan) 400-335= 65 ppm tüketilmiştir. Bu hacimce ppm dir. ppm i mg/m 3 e dönüştürürsek, ÇEVRE MİKROBİYOLOJİSİ ÖRNEK SORULARI (Prof. Dr. Yaşar Nuhoğlu) S.1 Karbondioksit ölçüm yöntemi ile bir ekosistemin ilk kademe verimini belirlemek için yapılan bitki odası deneyleri sonucunda 150 m 2 lik

Detaylı

10 DÖNÜMLÜK DUT BAHÇESİ TESİS ETMEK

10 DÖNÜMLÜK DUT BAHÇESİ TESİS ETMEK DUT YETİŞTİRİCİLİĞİ 10 DÖNÜMLÜK DUT BAHÇESİ TESİS ETMEK İpekböceğinin tek gıdası dut yaprağı dır ve bir kutu ipekböceği için yaklaşık 500 kilogram dut yaprağına ihtiyaç vardır. Dutluklarda dikkat edilmesi

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATİK DENEMESİ-2 Muharrem ŞAHİN TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEŞİLYURT Gökhan KEÇECİ Saygın DİNÇER Mustafa YAĞCI İ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(015)-Ara Sınav S-1) Merkezi M(, 1) de olan ve 4y + 1 = 0 doğrusundan 4 birimlik bir kiriş ayıran çemberin S-) Merkezi M(,4) de olan ve + 5y 10 = 0 doğrusundan

Detaylı

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI ÖZEL EGE LİSESİ ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI HAZIRLAYAN ÖĞRENCİ: Toygar Çaparoğlu DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI...

Detaylı

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR 8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR KONULAR 1. TRİGONOMETRİ 2. Açı 3. Yönlü Açı 4. Yönlü Yaylar 5. Birim Çember 6. Açı Ölçü Birimleri 7. Derece 8. Radyan 9. Grad 10. Esas Ölçü 11. TRİGONOMETRİK FONKSİYONLAR

Detaylı

Fizik 101-Fizik I 2013-2014

Fizik 101-Fizik I 2013-2014 Fizik 101-Fizik I 2013-2014 Doğrusal Momentum ve Çarpışmalar Nurdan Demirci Sankır Ofis: 325, Tel:4331 1 Doğrusal Momentum ve Korunumu v hızı ile hareket eden m kütleli bir parçacığın doğrusal momentumu

Detaylı

MATEMATİK MODÜLÜ BİREYSEL EĞİTİM PLANI (1.ÜNİTE) SAYILAR

MATEMATİK MODÜLÜ BİREYSEL EĞİTİM PLANI (1.ÜNİTE) SAYILAR (1.ÜNİTE) SAYILAR KISA DÖNEMLİ MATERYAL YÖNTEM- Birer ritmik sayar. 1 1 den başlayarak 10 (20, 30, 40, 50, 60, 70, 80, 90, 100) a kadar birer ritmik sayar. 2 Verilen herhangi bir sayıdan başlayarak 10

Detaylı

Volkan Karamehmetoğlu

Volkan Karamehmetoğlu 1 Doğal Sayılar Tanımlar Rakam: Sayıları yazmaya yarayan sembollere denir. {1,2,3,4,5,6,7,8,9} Sayı: Rakamların çokluk belirten ifadesine denir. 365 sayısı 3-6-5 rakamlarından oluşmuştur. 2 Uyarı: Her

Detaylı

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 2011 PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 15.12.2011 ĠÇĠNDEKĠLER ÜNİTE HAKKINDA GENEL BİLGİ... 3 KONULAR... 4 PİRAMİTLER... 4 KARE PİRAMİT... 5 EŞKENAR ÜÇGEN PİRAMİT... 6 DÜZGÜN DÖRTYÜZLÜ... 6 DÜZGÜN

Detaylı

2016-2017 5.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

2016-2017 5.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Adı Soyadı İmza Adı Soyadı 8 0 6 7 Ömer Askerden İmza 06-07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK.SINIF

Detaylı

2. Örnek Ders Planı 1) Konu: Geometrik cisimler 2) Seviye: İlköğretim 7. sınıf 3) Süre:28 saat

2. Örnek Ders Planı 1) Konu: Geometrik cisimler 2) Seviye: İlköğretim 7. sınıf 3) Süre:28 saat EĞİTİCİLER İÇİN 1. Konunun Müfredattaki Yeri İlköğretim matematik yedinci sınıflara yönelik olan geometrik cisimler, öğrencilere dairesel silindirin ve küpün yakından tanımasına imkan sağlamaktadır. Bu

Detaylı

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI 10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI KONULAR 1. SERİ DEVRE ÖZELLİKLERİ 2. SERİ BAĞLAMA, KİRŞOFUN GERİLİMLER KANUNU 3. PARALEL DEVRE ÖZELLİKLERİ 4. PARALEL BAĞLAMA, KİRŞOF UN AKIMLAR KANUNU

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

ÖSYM. T.C. Ölçme, Seçme ve Yerleştirme Merkezi

ÖSYM. T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ MATEMATİK (LİSE) ÖĞRETMENLİĞİ 20 AĞUSTOS 2016 Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun,

Detaylı

TASARI GEOMETRİ SINAV SORULARI

TASARI GEOMETRİ SINAV SORULARI TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla

Detaylı

8. SINIF ÖĞRETİM PROGRAMI

8. SINIF ÖĞRETİM PROGRAMI 8. SINIF ÖĞRETİM PROGRAMI Öğrenme Alanları ve Alt Öğrenme Alanları 8.1. Sayılar ve İşlemler 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2. Cebir 8.2.1. Cebirsel İfadeler

Detaylı

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır? www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne

Detaylı

AKDENİZ ÜNİVERSİTESİ ORAN-ORANTI. İlköğretim Matematik Öğretmenliği. Grup1 E N F O R M A T İ K - L A B 4

AKDENİZ ÜNİVERSİTESİ ORAN-ORANTI. İlköğretim Matematik Öğretmenliği. Grup1 E N F O R M A T İ K - L A B 4 AKDENİZ ÜNİVERSİTESİ ORAN-ORANTI İlköğretim Matematik Öğretmenliği Grup1 2011 1 E N F O R M A T İ K - L A B 4 İçindekiler ÜNİTE HAKKINDA BİLGİ:... 3 ORAN... 3 ORANTI... 4 1)ORANTI ÇEŞİTLERİ... 5 A)DOĞRU

Detaylı

Prof. Dr. Selim ÇETİNKAYA

Prof. Dr. Selim ÇETİNKAYA Prof. Dr. Selim ÇETİNKAYA ÇİZİM KAĞITLARI Ve ANTETLER Çizim kağıdı A0 ~ A4 arası kesilmiş kağıt boyutları Standard kağıt ölçüsü (ISO) A4 210 x 297 A3 297 x 420 A2 420 x 594 A1 594 x 841 A0 841 x 1189 (Ölçüler

Detaylı

Geometri ile Trigonometri Sorusu Yazma Tekniği

Geometri ile Trigonometri Sorusu Yazma Tekniği TMOZ/cege@yahgrups.cm Kasım - 005 Trignmetri Gemetri İlişkisi 3 Gemetri ile Trignmetri Srusu Yazma Tekniği Eyüp Kamil Yeşilyurt Mustafa Yağcı u yazımızda, gemetri yardımıyla trignmetri srularının, nasıl

Detaylı

Page 1. Page 3. Not: Doğrusal ölçüde uzunlukların ölçülendirilmesi şekildeki gibidir.

Page 1. Page 3. Not: Doğrusal ölçüde uzunlukların ölçülendirilmesi şekildeki gibidir. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Ölçülendirmenin Gereği ve Önemi Parçaların üretimi için gerekli değerlerin belli kurallara göre resme (görünüşlere) yansıtılması işlemine ölçülendirme denir.

Detaylı

Katı Cisimlerin Yü zey Alanı Ve Hacmi

Katı Cisimlerin Yü zey Alanı Ve Hacmi Katı Cisimlerin Yü zey Alanı Ve Hacmi Dikdörtgenler Prizması Hacmi ve Yüzey Alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Kürenin temel elemanları; bir merkez noktası, bu merkez

Detaylı

- İkinci öğretimi tercih ettiğimde, mevcut bursluluk durumum devam edebilecek mi? Evet.

- İkinci öğretimi tercih ettiğimde, mevcut bursluluk durumum devam edebilecek mi? Evet. 667 Sayılı KHK İle Kapatılan Vakıf Yükseköğretim Kurumlarının Önlisans ve Lisans Programlarına Tercih Sürecinde Sıkça Sorulan Sorular ve Cevapları (29 Ağustos 2016 Tarihinde Güncellenmiştir) - Yerleştirme

Detaylı

Sevgili Öğrencilerimiz,

Sevgili Öğrencilerimiz, 103 ZEKÂ OYUNU BİLSEM e Hazırlık Mantık Oyunları - Dikkat Oyunları - Hafıza oyunları Dikkat Geliştirme - Sözel Zekâ - IQ Soruları Sayısal Zekâ - Görsel Zekâ Baki Yerli - Ali Can Güllü - Halil İbrahim Akçetin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Prof. Dr. İrfan KAYMAZ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları

Detaylı

2013-2014 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI

2013-2014 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI 0-0 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK İ YILLIK PLANI Temel Kavramlar 9... Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler. 6 EYLÜL 0 EYLÜL Temel Kavramlar

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

KTO KARATAY ÜNİVERSİTESİ Temel Bilgisayar 2. Hazırlayan : Erdem YAVUZ

KTO KARATAY ÜNİVERSİTESİ Temel Bilgisayar 2. Hazırlayan : Erdem YAVUZ KTO KARATAY ÜNİVERSİTESİ Temel Bilgisayar 2 Hazırlayan : Erdem YAVUZ FORMULLER Formül Çubuğuna yazmış olduğumuz formuller sayaesinde hücreler arasında matematiksel işlemler yapabiliriz. Excel de formüller

Detaylı

MALZEME BİLGİSİ. Atomların Yapısı

MALZEME BİLGİSİ. Atomların Yapısı MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Atomların Yapısı 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (- yüklü) Basit

Detaylı

DİNAMİK (1.hafta) Mekanik: Cisimlerin hareket ve dengelerini inceleyen bir bilimdir. Başlıca üç kısma ayrılır.

DİNAMİK (1.hafta) Mekanik: Cisimlerin hareket ve dengelerini inceleyen bir bilimdir. Başlıca üç kısma ayrılır. TEMEL KAVRAMLAR DİNAMİK (1.hafta) Mekanik: Cisimlerin hareket ve dengelerini inceleyen bir bilimdir. Başlıca üç kısma ayrılır. a) Rijit Cisimler (esnemeyen) Mekaniği b) Elastik Cisimler Mekaniği c) Akışkanlar

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. YGS DENEESİ 04 1) U ESE EEL AEAİ VE GEOERİ OLA ÜERE, OPLA 40 ADE SORU VARDIR. ) U ESİN CEVAPLANASI İÇİN AVSİYE EDİLEN SÜRE 40 DAİADIR. 1) İki basamaklı birbirinden farklı iki pozitif tam sayının farkı

Detaylı

kpss Yeni sorularla yeni sınav sistemine göre hazırlanmıştır. matematik sayısal akıl yürütme mantıksal akıl yürütme geometri 30 deneme

kpss Yeni sorularla yeni sınav sistemine göre hazırlanmıştır. matematik sayısal akıl yürütme mantıksal akıl yürütme geometri 30 deneme kpss 204 Yeni sorularla yeni sınav sistemine göre hazırlanmıştır. matematik sayısal akıl yürütme mantıksal akıl yürütme geometri 0 deneme KOMİSYON MATEMATİK 0 DENEME ISBN 978-605-64-706-5 Kitap içeriğinin

Detaylı

İ.Ü. AÇIK VE UZAKTAN EĞİTİM FAKÜLTESİ Çalışma Soruları Hazırlama Klavuzu

İ.Ü. AÇIK VE UZAKTAN EĞİTİM FAKÜLTESİ Çalışma Soruları Hazırlama Klavuzu Dök. No: AUZEF-SS-2.2-04 Yayın Tarihi:30.06.2014 Rev.No:00 Rev Tarihi: Sayfa 1 / 5 1. Amaç... 1 2. Kapsam... Hata! Yer işareti tanımlanmamış. 3. Sorumlular... Hata! Yer işareti tanımlanmamış. 4. Tanımlar...

Detaylı

3. MATEMATİK YARIŞMASI

3. MATEMATİK YARIŞMASI ÖZEL MALTEPE GÖKYÜZÜ EĞİTİM KURUMLARI 3. MATEMATİK YARIŞMASI A Kitapçığı 5. SINIFLAR Adı Soyadı TC Kimlik No Okulu : :. : SINAVLA İLGİLİ UYARILAR Yarışmaya gelirken okul tarafından verilmiş olan Giriş

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan baģlayarak gezimize çıkacağız.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan baģlayarak gezimize çıkacağız. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakıģ açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düģünür

Detaylı

3. ÜNİTE ALTERNATİF AKIM DEVRELERİ

3. ÜNİTE ALTERNATİF AKIM DEVRELERİ 3. ÜNİTE ALTERNATİF AKIM DEVRELERİ KONULAR 1. Direnç-Bobin Seri Devresi (R-L Seri Devresi) 2. Direnç-Kondansatör Seri Devresi (R-C Seri Devresi) 3. Direnç-Bobin-Kondansatör Seri Devresi (R-L- C Seri Devresi)

Detaylı

4. Bölüm. Aerostatik, Atmosfer, Aerostatik taşıma. Aerostatik denge

4. Bölüm. Aerostatik, Atmosfer, Aerostatik taşıma. Aerostatik denge 4. Bölüm Aerostatik, Atmosfer, Aerostatik taşıma Aerostatik denge (p+ p).a h W p.a Statik halde akışkan içindeki bir kitlenin ağırlığı, bu kitlenin alt ve üst tarafından etkileyen basınç kuvvetlerinin

Detaylı

Sınav : MATEMATĐK (TÜRKÇE) ÖĞRETMENĐ-GOÖD-MTÖD. Yarışma Sınavı A ) B ) C ) E ) 4 1200 sayısının asal olmayan tamsayı bölenlerinin

Sınav : MATEMATĐK (TÜRKÇE) ÖĞRETMENĐ-GOÖD-MTÖD. Yarışma Sınavı A ) B ) C ) E ) 4 1200 sayısının asal olmayan tamsayı bölenlerinin 1 Üç basamaklı XYZ doğal sayısının 7 ile bölümünden kalan 6 dır. Buna göre X ve Y rakamları 4 arttırılır, Z rakamı 8 azaltılırsa elde edilen sayının 7 ile bölümünden kalan kaç olur? 1 3 2 0 4 3 2 Đki basamaklı

Detaylı

1. ÜNİTE TAM SAYILAR KONULAR 1. SAYILAR

1. ÜNİTE TAM SAYILAR KONULAR 1. SAYILAR 1. ÜNİTE TAM SAYILAR KONULAR 1. SAYILAR 2. Doğal Sayılar 3. Sayma Sayıları 4. Tam Sayılar(Yönlü sayılar) 5. Tam sayılarda Dört İşlem 6. Tek ve çift sayılar 7. Asal Sayılar 8. Bölünebilme Kuralları 9. Asal

Detaylı

Temel Matematik Testi - 2

Temel Matematik Testi - 2 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleebilirsiniz. Test Kodu: D0102 1. Bu testte 40 soru vardır. 2. Tavsie edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü Massachusetts Teknoloji Enstitüsü - Fizik Bölümü Fizik 8.02 Ödev # 1 6 Şubat 2002. Kendinize bir iyilik yapın ve derslere hazırlanın! Derste anlatılmadan önce, konuları okumanızı şiddetle öneririz. Derslerden

Detaylı

YGS MATEMATİK DENEME SINAVI I

YGS MATEMATİK DENEME SINAVI I YGS MATEMATİK DENEME SINAVI I Sınav 2015 ve sonrası YGS sınavlarının müfredatına uygundur. 1. -2 [3 (2-5)-(2-3 5)] = işleminin sonucu kaçtır? A) -10 B) -8 C) 6 D) 10 E) 12 5. A= 24 + 2 2 olup 24 2 2 ifadesinin

Detaylı

SERTLİK ÖLÇME DENEYLERİ

SERTLİK ÖLÇME DENEYLERİ SERTLİK ÖLÇME DENEYLERİ Sertlik nedir? Sertlik genel anlamda, malzemelerin kesmeye, çizilmeye, aşınmaya veya kendisine batırılmaya çalışılan cisimlere karşı göstermiş oldukları kalıcı şekil değiştirme

Detaylı

TOPLAMADA KISAYOLLAR

TOPLAMADA KISAYOLLAR ARDIŞIK SAYILARIN TOPLANMASI TOPLAMADA KISAYOLLAR 1 Kural: Gruptaki en küçük sayı ile en büyük sayıyı topla, sonucu gruptaki sayıların miktarıyla çarp ve sonucu 2 ye böl. Örneğin 33 den 41 e kadar olan

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİK TESTİ (Mat ). u testte srasla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için arlan ksmna işaretleiniz.. f, 0 ise =, = 0 ise fonksionu için,

Detaylı

Bireysel ve Kurumsal Eğitim Hizmetleri YILI KATALOĞU

Bireysel ve Kurumsal Eğitim Hizmetleri YILI KATALOĞU ASKO KARİYER Bireysel ve Kurumsal Eğitim Hizmetleri 2010 YILI KATALOĞU Sayfa 2 ASKO KARİYER HAKKINDA; Misyonumuz Geleceği yönlendirmeyi hedefleyen ve gelişimin sınırı olmadığına inanan her bireyin kendi

Detaylı

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST)

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST) DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST) 1. AMAÇ: Bu deney, üç eksenli sıkışmaya maruz kalan silindirik kayaç örneklerinin makaslama dayanımı parametrelerinin saptanması

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI

10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI 10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI 1. Aşağıda verilen kavramların tanımlarını karşısına yazınız. Dalga: Atma: Periyot: Frekans: Dalga boyu: Deprem dalgası: Deprem odağı: Merkez

Detaylı

SINAVLA İLGİLİ UYARILAR:

SINAVLA İLGİLİ UYARILAR: T.. İSTNUL VLİLİĞİ ÖZEL URÇ KOLEJİ 4. URİSTNUL MTEMTİK YRIŞMSI 17 NİSN 2011 Elinizdeki soru kitapçığı çoktan seçmeli 40 test sorusundan oluşmaktadır. u test için ayrılan süre 100 dakikadır. SINVL İLGİLİ

Detaylı

MATEMATİK TESTİ. 1. 15 15. (4 6) işleminin sonucu kaçtır? 3. Gecenin gündüzden 40 dakika daha uzun olduğu bir günde, gündüzün süresi kaç saattir?

MATEMATİK TESTİ. 1. 15 15. (4 6) işleminin sonucu kaçtır? 3. Gecenin gündüzden 40 dakika daha uzun olduğu bir günde, gündüzün süresi kaç saattir? MTEMTİK TESTİ 5 5 (4 6) işleminin sonucu kaçtır? ) 5 ) 0 C) 5 D) 45 4 b = olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? ) b < C) b < b ) 4 b D) < b b < b b, + 0,0 + 0,00 işleminin sonucu 0,0

Detaylı

DAHİMATİK MATEMATİK YARIŞMALARINA İLK ADIM. Doç. Dr. Mustafa Özdemir ALTIN NOKTA YAYINEVİ

DAHİMATİK MATEMATİK YARIŞMALARINA İLK ADIM. Doç. Dr. Mustafa Özdemir ALTIN NOKTA YAYINEVİ DHİMTİK MTEMTİK YRIŞMLRIN İLK DIM Doç. Dr. Mustafa Özdemir LTIN NOKT YYINEVİ İZMİR - 203 Önsöz Bu kitap matematik yarışmalarına hazırlanan öğrenciler için başlangıç kitabı olarak hazırlanmıştır. Daha önce

Detaylı

Örnek...3 : 8 x (mod5) denkliğini sağlayan en küçük pozitif doğal sayısı ile en büyük negatif tam sa yısının çarpım ı kaçtır?

Örnek...3 : 8 x (mod5) denkliğini sağlayan en küçük pozitif doğal sayısı ile en büyük negatif tam sa yısının çarpım ı kaçtır? MOD KAVRAMI (DENKLİK) a ve b tam sayıları arasındaki fark bir m pozitif tam sayısına tam bölünebiliyorsa bu sayılara m modülüne göre denktir denir ve a b(modm) yazılır. Yani m Z +,m (a b) a b (mod m) dir

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm 4: Konik Projeksiyonlar Doç.Dr. İ. Öztuğ BİLDİRİCİ Koni en genel projeksiyon yüzeyidir. Koninin yüksekliği sıfır alınırsa düzlem, sonsuz alınırsa silindir elde edilir. Genel

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

2016-2017. Yayın. Kataloğu

2016-2017. Yayın. Kataloğu 2016-2017 Yayın Kataloğu 1 Değişen ve sürekli gelişen; teknolojiye, bilgi çağına ayak uyduran gerçek bir markayı öğrencilerimize sunmanın gururunu yaşıyoruz Alanında uzman ve deneyimli öğretmenlerimizin

Detaylı

Uzayın Analitik Geometrisi

Uzayın Analitik Geometrisi Uzayın Analitik Geometrisi Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; Düzlemde geliştirilen analitik geometri modeline benzer şekilde üç boyutlu uzay için de bir analitik

Detaylı

YGS MATEMATİK PROBLEMLER NAMIK KARAYANIK

YGS MATEMATİK PROBLEMLER NAMIK KARAYANIK NELER ÖĞRENECEĞİZ? Denklem ve eşitsizlikleri gerçek hayat durumlarını modellemede ve problem çözmede kullanır. Gerçek hayat durumlarını temsil eden sözel ifadelerdeki ilişkilerin cebirsel, grafiksel ve

Detaylı

b Üslü Sayılara Giriş b İşlem Önceliği b Ortak Çarpan Parantezine Alma ve Dağılma Özelliği b Doğal Sayı Problemleri b Çarpanlar ve Katlar - Kalansız

b Üslü Sayılara Giriş b İşlem Önceliği b Ortak Çarpan Parantezine Alma ve Dağılma Özelliği b Doğal Sayı Problemleri b Çarpanlar ve Katlar - Kalansız 1 b Üslü Sayılara Giriş b İşlem Önceliği b Ortak Çarpan Parantezine Alma ve Dağılma Özelliği b Doğal Sayı Problemleri b Çarpanlar ve Katlar - Kalansız Bölünebilme Kuralları b Asal Sayılar, Asal Çarpanlar,

Detaylı

2016-2017 EĞİTİM-ÖĞRETİM DÖNEMİ KURUMSAL KURS SETİ

2016-2017 EĞİTİM-ÖĞRETİM DÖNEMİ KURUMSAL KURS SETİ 2016-2017 EĞİTİM-ÖĞRETİM DÖNEMİ KURUMSAL KURS SETİ LMT YAYINLARI KURUMSAL SET Konu Anlatım Föyleri Konunun her yönüyle gereksiz ayrıntılardan uzak bir şekilde MEB müfredatına ve ÖSYM nin soru yönelimlerine

Detaylı

SAYILAR TEORİSİ - PROBLEMLER

SAYILAR TEORİSİ - PROBLEMLER SAYILAR TEORİSİ - PROBLEMLER 1. (p + 1) q sayısının hangi p ve q asal sayıları için bir tam kare olduğunu 2. n+2n+n+... +9n toplamının bütün basamakları aynı rakamdan oluşan bir sayıya eşit olmasını sağlayan

Detaylı

KÜTAHYA EĞİTİM BİR-SEN 1 NOLU ŞUBE KİTAP OKUMA YARIŞMASI PROJE ŞARTNAMESİ

KÜTAHYA EĞİTİM BİR-SEN 1 NOLU ŞUBE KİTAP OKUMA YARIŞMASI PROJE ŞARTNAMESİ KÜTAHYA EĞİTİM BİR-SEN 1 NOLU ŞUBE KİTAP OKUMA YARIŞMASI PROJE ŞARTNAMESİ 2016 Bu Şartname Kitap Okuma Yarışması adlı projemizin, amacını, katılım şartlarını, yarışmanın şeklini, başvuru şeklini, yürütme

Detaylı

I.BÖLÜM (Toplam 35 soru bulunmaktadır.)

I.BÖLÜM (Toplam 35 soru bulunmaktadır.) I.BÖLÜM (Toplam 35 soru bulunmaktadır.) 1. ve B ise aşağıdakilerden hangisi daima doğrudur? )B=B B)B=B )(B) D)(B) E)(B) 5. 19 4 B5 7 Bölme işleminde ve B sıfırdan farklı birer rakam olmak üzere +B kaç

Detaylı

4. x, y, z ve t birbirinden farklı gerçel sayılardır. y - z = x ve x.z.t = 0 olduğuna göre aşağıdakilerden hangisi kesinlikle doğrudur?

4. x, y, z ve t birbirinden farklı gerçel sayılardır. y - z = x ve x.z.t = 0 olduğuna göre aşağıdakilerden hangisi kesinlikle doğrudur? 04 - YGS / MAT GENETİK K.. Bu testte 40 soru vardır.. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz.. 5.. 5 7 işleminin sonucu kaçtır? D) 7 9 E) 7 C). 4 6 8.6

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

SORULAR VE ÇÖZÜMLER 18.11.2014. Adı- Soyadı : Fakülte No :

SORULAR VE ÇÖZÜMLER 18.11.2014. Adı- Soyadı : Fakülte No : Adı- Soyadı : 18.11.2014 Fakülte No : Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Ara Sınavı Soru ve Çözümleri 18.11.2014 Soru (puan) 1 (20) 2 (20) 3 (20) 4

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

[ 1 i 6 2i. [ a b. Örnek...3 : Örnek...4 : 0 0 0. Örnek...5 : 1 3 2. Örnek...6 : i sanal sayı birimi olmak üzere, i. Örnek...1 : 3 4 2 8 =?

[ 1 i 6 2i. [ a b. Örnek...3 : Örnek...4 : 0 0 0. Örnek...5 : 1 3 2. Örnek...6 : i sanal sayı birimi olmak üzere, i. Örnek...1 : 3 4 2 8 =? A=[a i j] r x r bir kare matris ise bu kare matrisi reel bir sayıya eşleyen fonksiyona determinant denir. Örnek...3 : i sanal sayı birimi olmak üzere, [ 1 i 6 2i 3+i 2+2i] matrisinin determinantı kaça

Detaylı

İÇİNDEKİLER ÖNSÖZ...III AÇIKLAMA... V BÖLÜM I - TEMEL KAVRAMLAR...1

İÇİNDEKİLER ÖNSÖZ...III AÇIKLAMA... V BÖLÜM I - TEMEL KAVRAMLAR...1 İÇİNDEKİLER Sayfa ÖNSÖZ...III AÇIKLAMA... V BÖLÜM I - TEMEL KAVRAMLAR...1 Soru 1- Dış ticaret nedir?...1 Soru 2- Mal nedir?...1 Soru 3- Mal ve hizmet arasındaki fark nedir?...1 Soru 4- İhracat nedir?...1

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

Ölçme Bilgisi DERS 9-10. Hacim Hesapları. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ )

Ölçme Bilgisi DERS 9-10. Hacim Hesapları. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Ölçme Bilgisi DERS 9-10 Hacim Hesapları Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Büyük inşaatlarda, yol ve kanal çalışmalarında kazılacak toprak miktarının hesaplanması, maden işletmelerinde

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Dişli çarklarda ana ölçülerin seçimi

Dişli çarklarda ana ölçülerin seçimi Dişli çarklarda ana ölçülerin seçimi Taksimat dairesi; pinyon dişli mil ile birlikte imâl edildiği durumda, kabaca taksimat dairesi çapı, Pinyon mile takıldığında taksimat dairesi çapı Pinyon feder ile

Detaylı