MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf"

Transkript

1 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER BÖLÜM 8 Gerilme MECHANICS MUKAVEMET OF II MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit ve Şekil Değiştirme Dönüşümleri Düzenleen: Era Arslan (Kitapta Bölüm 7)

2 Giriş En genel halile bir noktadaki gerilmeler 6 bileşenden oluşur,,,, z z, z normal kama (Not : gerilmeler gerilmeler, i z z, z z ) Koordinat eksenleri döndürüldüğünde, anı gerilme hali farklı bir bileşen takımıla temsil edilecektir. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-3

3 Düzlem Gerilme Düzlem gerilme- kübik elemanın birbirine paralel iki üzeinin gerilmelerden bağımsız olduğu duruma denir. Bu durumda gerilmeler:,, z z z 0. Düzlem gerilme durumu Bir boutu diğer iki boutuna göre çok küçük olan ince levhalarda, Herhangi bir dış üke mağruz kalmaan üzelerde kabul edilebilir. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-4

4 Düzlem Gerilme Dönüşümü,, gerilme bileşenlerinin tanımlandığı bir düzlem gerilme durumundaki elemanı ele alalım. Elemanın z ekseni etrafında q açısı kadar döndükten sonraki durumula ilişkili ', ', ' gerilme bileşenlerini belirlemei ve bu bileşenleri,, cinsinden ifade etmei amaçlıoruz., q 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-5

5 Düzlem Gerilme Dönüşümü F F 0 0 A, ve eksenlerine dik üzeleri bulunan prizmatik elemanın denge koşullarını düşünelim:. Acosq cosq Acosq Asinq sinq Asinq cosq A Acosq sinq Acosq Asinq cosq Asinq sinq sinq cosq Bölece aşağıdaki denklemler elde edilir: (1) () (3) 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-6

6 Düzlem Gerilme Dönüşümü Kanak: 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-7

7 Örnek Problem 8.1 Şekildeki gerilme bileşenlerinin olduğu üze saat önünde 35 o döndürülürse, eni koordinat sisteminde oluşacak gerilmeler ne olur? 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-8

8 Asal Gerilmeler Denklemler (1)-(3) kullanılarak: ' burada ort R (4) ort ort R Denklem (4), arıçapı R, merkez apsisi ort ve ordinatı 0 olan bir çember denklemidir. Asal Gerilmeler ( ma ve min ) kama gerilmesinin sıfır olduğu düzlemde (A ve B noktalarında) oluşur. Denklem (3) ardımıla ma, min tan q p ort R 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-9

9 Maksimum Kama Gerilmesi Maksimum Kama Gerilmesi gerçekleşir. Denklem (3) ardımıla ort şartı sağlandığında ort ma tan q R s ort 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-10

10 Asal Gerilme ve Maksimum Kama Gerilmesi Asal Gerilme Düzlemi Maksimum Kama Gerilmesi Düzlemi ort tan q p Çember de ise aralarında 90 o var. Aralarında 45 o var. q p + 45 o = q s tan q s ma, min = 0 = = ort = ma 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-11

11 Düzlem Gerilme için Mohr Çemberi Denklemlerle tarif edilen kritik değerler, Mohr Çemberi kullanılarak daha basit bir şekilde hesaplanabilir. Bunun için; 1. Gerilme bileşenleri doğru işaretler ile tanımlanır.. X(, - ) ve Y(, ) noktaları - grafiğinde bulunur. 3. X ve Y bir doğru ile birleştirilir. Doğrunun orta noktası C dir ve ort a denk gelir. ort 4. R i bulmak için Pisagor teoremi kullanılabilir: ort )/ R R 5. ma ve min : ort ve R arı çapı kullanılarak bulunabilir. ma = ort + R ma = ort - R 6. Asal düzlem ile referans düzlemi arasındaki açıı (q p ) bulmak için ine dik üçgen özellikleri kullanılır. tan q p ( ) ma 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-18

12 Düzlem Gerilme için Mohr Çemberi O den Oa a dönme önü CX den CA a dönme önüle anıdır. Düzlemdeki dönme açısı değeri Mohr çemberindeki dönme açısının arısıdır. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-19

13 Örnek Problem 8. Şekildeki düzlem gerilme durumu için (a) Mohr çemberini oluşturunuz, (b) Asal düzlemi belirleiniz, (c) Asal gerilmeleri hesaplaınız, (d) Maksimum kama gerilmesinin oluştuğu düzlemi belirleiniz, (e) Maksimum kama gerilmesini ve karşılık gelen normal gerilmei hesaplaınız. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-0

14 Örnek Problem The McGraw-Hill Companies, Inc. All rights reserved. 8-1

15 Düzlem Gerilme için Mohr Çemberi Eksenel Yükleme için Mohr Çemberi P, 0 A P A Burulma için Mohr Çemberi Tc Tc 0 0 J J 00 The McGraw-Hill Companies, Inc. All rights reserved. 8 -

16 Örnek Problem mm 100 mm 540 mm 36 mm P = 900 N (a) H noktasındaki ( ve eksenlerine paralel) normal ve kama gerilmelerini, (b) H noktasındaki asal düzlem ve asal gerilmeleri hesaplaınız. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-3

17 Mohr Çemberinin Üç Boutlu Gerilme Analizine Ugulanması b ekseni etrafında döndüğünde (a-c düzlemi) a ekseni etrafında döndüğünde (b-c düzlemi) Asal eksenlerden biri etrafında döndürülen elemanda oluşan gerilmeler (bir düzlem gerilme dönüşümümüş gibi) Mohr çemberi ardımıla analiz edilebilir. A, B, C noktalarındaki gerilmeler, asal düzlemlerdeki asal gerilmeleri temsil eder. 00 The McGraw-Hill Companies, Inc. All rights reserved. Bu üç çember, her üç asal eksen etrafında döndürüldüğünde oluşacak normal ve kama gerilmeleri temsil eder. En büük çemberin arıçapı Q noktasındaki maksimum kama gerilmesi değerini verir. ma 1 ma min c ekseni etrafında döndüğünde (a-b a da - düzlemi) 8-31

18 Mohr Çemberinin Üç Boutlu Gerilme Analizine Ugulanması Eğer A ve B deki gerilmeler anı işarete sahipse; a) ma, min, ve ma i tanımlaan çember, düzlemi içindeki bir dönüşüme karşılık gelen çember değildir. b) ma = a ve min = 0 c) ma = a / d) Maksimum kama gerilmesi düzlemi, düzlem gerilme ile 45 o açı apar. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-3

19 Mohr Çemberinin Üç Boutlu Gerilme Analizine Ugulanması Eğer A ve B deki gerilmeler zıt işarete sahipse; a) karşı gelen asal gerilmeler, Q daki maksimum ve minimum normal gerilmelerine eşittir. b) Maksimum kama gerilmesi, maksimum düzlem kama gerilmesine eşittir. c) Maksimum kama gerilmesi düzlemi asal düzlemle 45 o lik açı apar. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-33

20 Örnek Problem 8.4 Gösterilen genel gerilme hali için (a) z = 0, (b) z = + 45 MPa, (c) z = - 45 MPa Olduğu durumlar için Mohr çemberini çiziniz, asal gerilmeleri hesaplaınız ve maksimum kama gerilmesini belirleiniz. 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-34

21 İnce Cidarlı Basınç Kaplarında Gerilmeler İnce cidarlı kap r/t >10 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-35

22 İnce Cidarlı Silindirik Basınç Kaplarında Gerilmeler Silindirik kapta, eksenel simetriden dolaı (kabın ve akışkanın simetrisi) üze elemanında kama gerçekleşmez. Silindirik kapta Asal Gerilmeler 1 = Çembersel gerilme = Bouna gerilme Çembersel gerilme: F z pr t Bouna gerilme: F 0 pr t t p r 1 rt p r 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-36

23 İnce Cidarlı Silindirik Basınç Kaplarında Gerilmeler Mohr çemberindeki A ve B noktaları 1 (çembersel) ve (bouna) asal gerilmelerine karşılık gelir. Maksimum düzlem kama gerilmesi: ma( duzlem) 1 pr 4t Ancak, kabın cidarındaki maksimum kama gerilmesi, daha büüktür, OA çaplı çemberin arıçapına eşittir ve bouna eksen etrafında, gerilme düzleminin dışına çıkan 45 o lik dönmee karşılık gelir. ma pr t 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-37

24 İnce Cidarlı Küresel Basınç Kaplarında Gerilmeler Küresel Basınç Kaplarında (iki asal doğrultuda eşit gerilme): 1 pr t Kap üzeinin teğet düzlemi içindeki gerilme dönüşümleri için elde edilecek ohr çemberi bir noktaa dönüşür. sabit 1 ma(duzlem) 0 Maksimum kama gerilmesi pr 1 ma 1 4t 00 The McGraw-Hill Companies, Inc. All rights reserved. 8-38

25 Örnek Problem The McGraw-Hill Companies, Inc. All rights reserved. 8-39

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T E CHAPTER 7 Gerilme MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Dönüşümleri Fatih Alibeoğlu 00 The McGraw-Hill

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

MATERIALS. Gerilmeler. (Kitapta Bölüm 8.4) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Gerilmeler. (Kitapta Bölüm 8.4) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Third E CHAPTER BÖLÜM 7 Bileşik MECHANCS MUKAVEMET OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Düenleen: Era Arslan Yükleelerde

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ

BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ DÜZLEM-BİRİM ŞEKİLDEĞİŞTİRME 3D durumda, bir noktadaki birim şekil değiştirme durumu 3 normal birim şekildeğiştirme bileşeni,, z, ve 3 kesme birim şekildeğiştirme bileşeninden,

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Nlαlüminyum 5. αlüminyum

Nlαlüminyum 5. αlüminyum Soru 1. Bileşik bir çubuk iki rijit mesnet arasına erleştirilmiştir. Çubuğun sol kısmı bakır olup kesit alanı 60 cm, sağ kısmı da alüminum olup kesit alanı 40 cm dir. Sistem 7 C de gerilmesidir. Alüminum

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

ANALİTİK GEOMETRİ KARMA / TEST-1

ANALİTİK GEOMETRİ KARMA / TEST-1 NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 7 Gerilme ve Şekil Değiştirme Dönüşümleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

MEKANİK ANABİLİMDALI MUKAVEMET-2 UYGULAMA PROBLEMLERİ SAYFA:1

MEKANİK ANABİLİMDALI MUKAVEMET-2 UYGULAMA PROBLEMLERİ SAYFA:1 SAYFA:1 1. Üç tane tahta plakanın birbirlerine yapıştırılmasıyla yapılmış olan bir AB kirişi; şekildeki yüklemelere maruzdur. Kirişe ait boyutlar şekilde verilmiştir. Kirişin n-n kesitindeki herbir birleşme

Detaylı

Çekme testi ve gerilme-birim uzama diyagramı

Çekme testi ve gerilme-birim uzama diyagramı MCHANICS OF MATRIALS Beer Johnston DeWolf Maurek Çekme testi ve gerilme-birim uama diagramı Sünek bir maleme için çekme testi diagramı P P Lo P 2009 The McGraw-Hill Companies, Inc All rights reserved -

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

AKMA VE KIRILMA KRİTERLERİ

AKMA VE KIRILMA KRİTERLERİ AKMA VE KIRILMA KRİERLERİ Bir malzemenin herhangi bir noktasında gerilme değerlerinin tümü belli iken, o noktada hasar oluşup oluşmayacağına dair farklı teoriler ve kriterler vardır. Malzeme sünek ise

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

MATERIALS. Kavramı. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Kavramı. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University Third E CHAPTER BÖLÜM 2 Şekil MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Değiştirme Kavramı Düenleyen:

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Mukavemet (ME 210) Ders Detayları

Mukavemet (ME 210) Ders Detayları Mukavemet (ME 210) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Mukavemet ME 210 Bahar 3 0 0 3 4 Ön Koşul Ders(ler)i ME 201 Dersin Dili Dersin Türü Dersin

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 6 Kirişlerde ve İnce Cidarlı Elemanlarda Kayma Gerilmeleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok,

Detaylı

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz 1. Moleküler momentum iletimi Hız gradanı ve basınç nedenile Kesme gerilmesi (t ij ) ve basınç (p) Momentum iletimi Kuvvetin etki ettiği alana dik ön (momentum iletim önü) Kuvvetin bileşenleri (Momentum

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri Makine Elemanları Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri BİLEŞİK GERİLMELER Kırılma Hipotezleri İki veya üç eksenli değişik gerilme hallerinde meydana gelen zorlanmalardır. En fazla rastlanılan

Detaylı

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR 8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR KONULAR 1. TRİGONOMETRİ 2. Açı 3. Yönlü Açı 4. Yönlü Yaylar 5. Birim Çember 6. Açı Ölçü Birimleri 7. Derece 8. Radyan 9. Grad 10. Esas Ölçü 11. TRİGONOMETRİK FONKSİYONLAR

Detaylı

8.1 8.2 8.3 8.4. Kesit Tesir Diyagramları Örnekler PROBLEMLER

8.1 8.2 8.3 8.4. Kesit Tesir Diyagramları Örnekler PROBLEMLER 8.1 8.2 8.3 8.4 İç Kuvvetler Bir Noktada Kesit Tesirlerinin Hesabı Örnekler Doğru Eksenli Çubuklarda Kesit Tesirleri Kesim Yöntemi Örnekler Doğru Eksenli Çubuklarda Kesit Tesirleri Diferansiel Denge Denklemleri

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST)

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST) DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST) 1. AMAÇ: Bu deney, üç eksenli sıkışmaya maruz kalan silindirik kayaç örneklerinin makaslama dayanımı parametrelerinin saptanması

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BURKULMA HESABI Doç.Dr. Ali Rıza YILDIZ MAK 305 Makine Elemanları-Doç. Dr. Ali Rıza YILDIZ 1 BU SLAYTTAN EDİNİLMESİ BEKLENEN BİLGİLER Burkulmanın tanımı Burkulmanın hangi durumlarda

Detaylı

MECHANICS OF MATERIALS. Burulma. Fatih Alibeyoğlu. Third Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. John T.

MECHANICS OF MATERIALS. Burulma. Fatih Alibeyoğlu. Third Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. John T. T E CHAPTER MECHANICS OF 3 MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. Burulma John T. DeWolf Fatih Alibeyoğlu Burulma Döndürme momenti etkisi altında dairesel kesitli parçalar burulmaya zorlanır.

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Mukavemet Giriş, Malzeme Mekanik Özellikleri Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği GİRİŞ Referans kitaplar: Mechanics of Materials, SI Edition, 9/E Russell

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

İleri Mukavemet (MFGE 418) Ders Detayları

İleri Mukavemet (MFGE 418) Ders Detayları İleri Mukavemet (MFGE 418) Ders Detayları Ders Adı İleri Mukavemet Ders Kodu MFGE 418 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Seçmeli 3 0 0 3 5 Ön Koşul Ders(ler)i MFGE 212 Katı Mekaniği

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta)

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta) BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta) GERİLME KAVRAMI VE KIRILMA HİPOTEZLERİ Gerilme Birim yüzeye düşen yük (kuvvet) miktarı olarak tanımlanabilir. Parçanın içerisinde oluşan zorlanma

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth E CHPTER 1 MECHNICS OF MTERILS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Prof.Dr. Mehmet Zor GERİLME KVRMI MEKNİK

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) MATEMATİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. 7. kesrinin ondalık gösterimi aşağıdakilerden 0 hangisidir? 0, 0 0,

Detaylı

ANALİTİK GEOMETRİ. * I. bölgede noktalar (+,+), II. bölgede noktalar (,+), III. bölgede noktalar (, ) ve VI. bölgede noktalar (+, ) şeklindedirler.

ANALİTİK GEOMETRİ. * I. bölgede noktalar (+,+), II. bölgede noktalar (,+), III. bölgede noktalar (, ) ve VI. bölgede noktalar (+, ) şeklindedirler. ANALİTİK GEMETRİ Düzlemde (RR vea R ) iki reel saı doğrusunun sıfır noktasında dik kesişimile oluşturulan sisteme Dik Koordinat Sistemi denir. Yata eksene -ekseni ( ekseni vea doğrusu; tüm noktaların ordinatı

Detaylı

Laboratuvar 1: Gerilme, Mohr dairesi ÇÖZÜM ANAHTARI. Güz 2005

Laboratuvar 1: Gerilme, Mohr dairesi ÇÖZÜM ANAHTARI. Güz 2005 Laboratuvar 1: Gerilme, Mohr dairesi ÇÖZÜM ANAHTARI Güz 2005 1 Gerilme için Mohr daireleri Mohr dairesi çizimini kullandığınız problemler için ilgili düzlemlere karşılık gelen noktaları çizim üzerinde

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

8. SINIF ÖĞRETİM PROGRAMI

8. SINIF ÖĞRETİM PROGRAMI 8. SINIF ÖĞRETİM PROGRAMI Öğrenme Alanları ve Alt Öğrenme Alanları 8.1. Sayılar ve İşlemler 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2. Cebir 8.2.1. Cebirsel İfadeler

Detaylı

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 4-DBYBHY (2007)ve RBTE(2013) Karşılaştırılması

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 4-DBYBHY (2007)ve RBTE(2013) Karşılaştırılması RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 4-DBYBHY (2007)ve RBTE(2013) Karşılaştırılması Çevre ve Şehircilik Bakanlığı Alt Yapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü RİSKLİ BİNALARIN TESPİT

Detaylı

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır? www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029 Dersi Veren Birim: Makina Mühendisliği Dersin Türkçe Adı: MUKAVEMET Dersin Orjinal Adı: MUKAVEMET Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAK 09 Dersin Öğretim Dili:

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

SINIF. Örüntü ve Süslemeler ... TEST. 1. Aşağıdakilerden hangisi bir fraktalın adımlarından. 4. 4 cm A) B) C) D)

SINIF. Örüntü ve Süslemeler ... TEST. 1. Aşağıdakilerden hangisi bir fraktalın adımlarından. 4. 4 cm A) B) C) D) SINIF Örüntü ve Süslemeler. Aşağıdakilerden hangisi bir fraktalın adımlarından biri olamaz?. cm TEST cm?. adım Yukarıdaki fraktalın başlangıç adımında bir kenarı cm olan bir kare vardır. Bu fraktalın.

Detaylı

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ 0 0 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ SÜRE Ay Hafta D. Saati ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR Geometri Örüntü Süslemeler. Doğru, çokgen çember modellerinden örüntüler

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI

BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI Dr. O. Özgür Eğilmez Yardımcı Doçent İzmir Yüksek Teknoloji Enstitüsü İnşaat Mühendisliği Bölümü Zamanda Yolculuk İÇERİK Taşıma Gücü Hesabı ve Amaç

Detaylı

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Böylece aşağıdaki gerilme ifadelerine ulaşılır: Bu problem için yer değiştirme denklemleri aşağıdaki şekilde türetilir: Elastisite Teorisi Polinomlar ile

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

T.C. BAKSAN MESLEKİ EĞİTİM MERKEZİ ORTAK ALAN TEKNİK RESİM VE ÇİZİM TEKNOLOJİLERİ DERSİ SORULARI

T.C. BAKSAN MESLEKİ EĞİTİM MERKEZİ ORTAK ALAN TEKNİK RESİM VE ÇİZİM TEKNOLOJİLERİ DERSİ SORULARI T.C. BAKSAN MESLEKİ EĞİTİM MERKEZİ ORTAK ALAN TEKNİK RESİM VE ÇİZİM TEKNOLOJİLERİ DERSİ SORULARI 1- İş parçalarını, belli kurallara göre tanımlayan çizgisel şekillere ne ad verilir? a) Teknik resim b)

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

1 aralıklı vinç yolu 14.01.2016. 1 Aralıklı Vinç Yolu, Tekerlek kuvvetleri eşit Değerler Ornek_01_01_Kiris100kNx20m.pdf dosyasından.

1 aralıklı vinç yolu 14.01.2016. 1 Aralıklı Vinç Yolu, Tekerlek kuvvetleri eşit Değerler Ornek_01_01_Kiris100kNx20m.pdf dosyasından. 1 aralıklı vinç olu 14.01.016 1 Aralıklı Vinç Yolu, Tekerlek kuvvetleri eşit Değerler Ornek_01_01_Kiris100kNx0m.pdf dosasından Reference:C:\0\4_00_Ornek_01_0_Giris-TK-Esit.xmcd Vinç ve vinç olu hakkında

Detaylı

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken BASINÇLI KAPLAR BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken yapıldığı malzeme her doğrultuda yüke maruzdur.

Detaylı

Burulma (Torsion) Amaçlar

Burulma (Torsion) Amaçlar Bu bölümde şaftlara etkiyen burulma kuvvetlerinin etkisi incelenecek. Analiz dairesel kesitli şaftlar için yapılacak. Eleman en kesitinde oluşan gerilme dağılımı ve elemanda oluşan burulma açısı konuları

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_3 INM 308 Zemin Mekaniği Zeminlerde Kayma Direnci Kavramı, Yenilme Teorileri Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

III İÇİNDEKİLER ÜNİTE 1 ÜNİTE 2 ÜNİTE 3 FRAKTALLAR 2 YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 10 ÜSLÜ SAYILAR 14 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 18

III İÇİNDEKİLER ÜNİTE 1 ÜNİTE 2 ÜNİTE 3 FRAKTALLAR 2 YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 10 ÜSLÜ SAYILAR 14 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 18 MATEMATİK III İÇİNDEKİLER ÜNİTE FRAKTALLAR YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 0 ÜSLÜ SAYILAR 4 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 8 ÜSLÜ SAYILARLA BÖLME İŞLEMİ 8 BİLİMSEL GÖSTERİM 9 ÜNİTE OLASILIK, İSTATİSTİK

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler DERS ki De i kenli Do rusal Denklem Sistemleri ve Matrisler.. Do rusal Denklem Sistemleri. Günlük a amda a a dakine benzer pek çok problemle kar la r z. Problem. Manavdan al veri eden bir mü teri, kg armut

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 4 Basit Eğilme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4.1 Giriş Bu bölümde, eğilmeye

Detaylı

Çözüm: Borunun et kalınlığı (s) çubuğun eksenel kuvvetle çekmeye zorlanması şartından;

Çözüm: Borunun et kalınlığı (s) çubuğun eksenel kuvvetle çekmeye zorlanması şartından; Soru 1) Şekilde gösterilen ve dış çapı D 10 mm olan iki borudan oluşan çelik konstrüksiyon II. Kaliteli alın kaynağı ile birleştirilmektedir. Malzemesi St olan boru F 180*10 3 N luk değişken bir çekme

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

2004 ÖSS Soruları. 5. a, b, c pozitif tam sayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? işleminin sonucu kaçtır?

2004 ÖSS Soruları. 5. a, b, c pozitif tam sayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? işleminin sonucu kaçtır? 1. 1 1 1c + m 1 + 4 işleminin sonucu kaçtır? 0 16 6 ) ) ) ) ) 1 9 9 6. a, b, c pozitif tam sayılar, c asal sayı ve 1 1 1 + = y 6 olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? ) a < b < c )

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Şekil 1.17. Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt

Şekil 1.17. Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt Şekilde gösterilen eleman; 1) F = 188 kn; ) F = 36 96 kn; 3) F = (-5 +160) kn; 4) F=± 10 kn kuvvetlerle çekmeye zorlanmaktadır. Boyutları D = 40 mm, d = 35 mm, r = 7 mm; malzemesi C 45 ıslah çeliği olan

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

3 Aralıklı Vinç Yolu, Tekerlek kuvvetleri eşit Değerler Ornek_01_01_Kiris100kNx20m.pdf dosyasından F B. a S

3 Aralıklı Vinç Yolu, Tekerlek kuvvetleri eşit Değerler Ornek_01_01_Kiris100kNx20m.pdf dosyasından F B. a S Çok aralıklı vinç olu 14.01.016 3 Aralıklı Vinç Yolu, Tekerlek kuvvetleri eşit Değerler Ornek_01_01_Kiris100kNx0m.pdf dosasından Reference:C:\0\4_00_Ornek_01_0_Giris-TK-Esit.xmcd A C D x 1 as as Dmin Dmin

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı