1.ELEKTRİKLENME DENEYİMLERİNDEN ATOMA:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1.ELEKTRİKLENME DENEYİMLERİNDEN ATOMA:"

Transkript

1 ATOMUN YAPISI ATOM VE ELEKTRİK 1.ELEKTRİKLENME DENEYİMLERİNDEN ATOMA: Antik dönemde insanlar KEHRİBAR(sarı amber) taşını kürk türünden bir hayvan postu ya da yünlü kumaşa sürtmüşler, daha sonra da bu taşı saman, saç teli, kağıt parçası, kuş tüyü gibi hafif maddelere yaklaştırdıklarında bu maddeleri çektiğini fark etmişlerdir. Sir William Gilbert ( ) cam, reçine ve kükürt gibi maddelerin de kehribarla aynı özelliği taşıdığını ispatlamıştır. Gilbert bu türden çekme kuvvetine sahip olan maddeleri nitelemek için kehribar( eski Yunancada elektron) sözcüğünden elektrik sözcüğü türetmiştir. Sürtünme ile elektriklenmede iki tür yükün ( + ve yükler) olduğunu keşfeden ilk kişi Benjamin Franklin ( ) dir. 2.FARADAY IN ELEKTROLİZ DENEYLERİ VE ATOM ALTI PARÇACIKLAR: İtalyan fizikçi Alessandra Volta 1800 yılında belirli sayıdaki gümüş ve çinko levhayı üst üste yerleştirerek aralarına tuz çözeltisine batırılmış bez parçalarını koymuş ve kendi adıyla anılan ilk kimyasal pili (Volta Pili) bulmuştur. Üst üste koyduğu bu gümüş ve çinko levhalara bağladığı telleri birbirine değdirerek kıvılcım çıktığını görmüş ve ilk kez sürtünme dışında bir olay ile de elektriğin oluştuğu anlaşılmıştır. Böylece kimyasal enerji elektrik enerjisine dönüşmüştür. Volta pili ile nitel olarak anlaşılan kimyasal değişim-elektrik enerjisi ilişkisi Faraday deneyleri ile nicel olarak pekişmiştir. Michael Faraday ( ), bir elementin (örneğin Hg) çeşitli bileşiklerinin [ Hg(ClO 4 ) 2, Hg(NO 3 ) 2, Hg 2 (ClO 4 ) 2 ] çözeltilerini ayrı kaplara koyarak içlerinden belirli miktarda elektrik akımı geçirerek, Hg elementin her bir çözeltide serbest halde elektrotta toplandığını görmüştür (ELEKTROLİZ). Bu çözeltilerden geçen aynı miktardaki elektrik akımı sonucu ayrılan Hg miktarlarının Hg(ClO 4 ) 2 ve Hg(NO 3 ) 2 çözeltileri için aynı olduğunu, Hg 2 (ClO 4 ) 2 çözeltisinden ayrılan cıvanın ise bu miktarların iki katı olduğunu gözlemlemiştir. 3.ELEKTRONUN KEŞFİNİN TARİHSEL GELİŞİMİ: 1874 yılında Faraday ın çalışmalarına dayanarak, George Johnstone Stoney atomlarda elektrik yükü birimlerin bulunduğunu öne sürerek 1891 de de bu yüklü birimlere ELEKTRON adı verilmesini önermiştir. Elektronların varlığına dair ilk kanıt 1870 lerde İngiliz fizikçisi William Crooks tarafından bulunmuştur. Crooks geliştirdiği vakumlu tüp içerisinde gazların elektrikle etkileşim sonucu ortaya çıkan davranışlarını inceledi. Crooks tüpleri olarak da bilinen bu tüpler televizyon tüplerinin de öncüsü olmuştur. Crooks tüpünde elektrotlar arasına yüksek gerilim uygulandığında tüpün ortasındaki gölgenin görülmesinin sebebinin tüp içerisinde bazı ışınların oluşmasıdır. Bu ışınlar daha sonra KATOT IŞINI olarak adlandırılmıştır. Crooks tüpü günümüzde KATOT IŞIN TÜPÜ olarak adlandırılır. 19.yy ın sonlarında katot ışınlarının hızla hareket eden eksi yüklü tanecikler olduğu kesinleşmiştir. Bu taneciklere Stoney in önerdiği gibi ELEKTRON adı verilmiştir. 4.ELEKTRONUN KÜTLESİ VE YÜKÜNÜN BULUNMASI: Elektronun yük ve kütle gibi özellikleri, elektriksel ve manyetik kuvvetler yardımıyla ölçülür de Julius Plücker katot tüpünün yakınına bir mıknatıs getirerek oluşan katot ışınlarını gözlemleyip bu ışınların manyetik alandaki davranışlarını ilk kez inceleyen bilim insanıdır. Joseph John Thomson 1897 de katot ışınlarının elektrik ve manyetik alanlarda sapmasını gözlemleyerek bu alanların ışınları saptırma miktarını ölçmüştür. Bu gözlemlerin sonucunda katot ışınlarının yükünün (e) kütlesine (m) oranını ( e/m ) ölçtü.thomson katot ışınları parçacıkları (elektronlar) için e/m oranını - 1, C/kg bulmuştur. Katot ışınlarının özellikleri: *Negatif yüklüdür. *Tüp içinde elektriksel ve manyetik alan yokluğunda yolu çizgiseldir. *Elektrotlar arasına konan metal levhayı ısıtır. *Özellikleri elektrot olarak kullanılan maddenin ve tüp içindeki gazın cinsine bağlı değildir. *Elektriksel ve manyetik alanda sapmaya uğrar. *Katot ışınları hızlı akan elektronlardır.

2 Elektron Yükünün Bulunması: yılları arasında Robert Andrews Millikan, Thomson tarafından bulunan e/m değerinden faydalanarak yaptığı deneylerle elektronun yükü ve kütlesini bulmuştur. (Millikan Yağ Damlası Deneyi) Gönderilen X-ışınları havadaki gaz taneciklerine çarparak oluşturduğu elektronlar yağ damlacıkları tarafından tutulur ve onların eksi yükle yüklenmesine neden olur. Yağ zerreciğinin kütlesi ve yağ zerreciğini dengede tutmak için levhalara uygulanan gerilim bilinirse, her damla üzerindeki yük miktarı hesaplanabilir. Deney her tekrarlanışında yükün 1, coulombun katları olduğu belirlenmiştir. Elektronun yükü, e= - 1, coulomb dur. Bulunan değer e/m değerinde yerine yazılırsa elektronun kütlesi hesaplanabilir. Elektronun kütlesi, m e = 9, kg dır. 5.ATOMDA ELEKTRONUN YÜKÜ İLE POZİTİF YÜKLER ARASINDAKİ İLİŞKİ: Atomlar yüksüzdür(nötral). Atomun yapısındaki eksi yüklü elektronlar bulunduğuna göre bu elektronların yükünü dengeleyecek kadar artı yüklü bir kısmında bulunması gerekir. Kanal ışınları deneyi bu düşünceyi doğrulamıştır. Şekilde görüldüğü gibi, vakum tüpü ve bu tüpün ortasında gözenekli(delikli) bir katot vardır. Vakum tüpünün elektrotları arasına yüksek gerilim uygulanırsa; katottan çıkan ve tüpün ikinci yarısında, katot ışınlarına ters yönde yayılan, artı yüklü ışınlara rastlanır. Bu ışınlara POZİTİF IŞINLAR veya KANAL IŞINLARI denir. Kanal ışınları protonlardan ibarettir. Bu deneylerle, bütün atomların yapısında elektronlar yanında protonların da bulunduğu anlaşılmıştır. İlk olarak Eugen Goldstein tarafından 1886 da araştırılmıştır. Elektronlar gibi, protonun da e/m oranı, daha sonra da ayrı ayrı yükü ve kütlesi hesaplanmıştır. Protonun yükü= +1, C, Protonun kütlesi = 1, kg olarak hesaplanmıştır. 6.ATOMUN PROTON SAYILARININ DENEYSEL OLARAK BELİRLENMESİ: X-ışınları, görünür ışıktan daha yüksek enerjiye sahip elektromanyetik ışınlardır yıllarında İngiliz fizikçi Henry Gwyn Jeffreys Moseley, X-ışınlarını kullanarak değişik elementlerin farklı X-ışınları spektrumunu elde etmiştir. Moseley, 1912 de anotta çeşitli elementleri kullanarak her elementin farklı karakteristik X-ışınları spektrumu verdiğini ve elementin atom kütlesi arttıkça yayınlanan ışının frekanslarının buna paralel olarak arttığını gözlemlemiştir. Moseley, X-ışınları frekanslarının atomun çekirdeğindeki yükün karakteristiği olduğunu anlamıştır. Atom numaraları 13 ile 79 arasındaolan 38 elementin X-ışınları spektrumunu incelemiştir. Kütle Spektrometresi: Atom ve moleküllerin kütlelerinin belirlenmesi Kütle Spektrometresi ile yapılır. Kütle Spektrometresi gaz halinde örneğin, yüksek enerjili elektronlarla bombardımanı ilkesi ile çalışır.

3 ATOM MODELLERİNİN TARİHSEL GELİŞİMİ 1.RUTHERFORD ATOM MODELİ: Ernest Rutherford, alfa taneciklerinin (pozitif yüklü taneciklerin) ince altın levhada saçılmalarını gözlemlemiştir. Yaptığı deneyde dar bir aralıktan, paralel ve pozitif yüklü tanecikler demetini çok ince altın bir levhaya göndererek sapmaya uğrayan taneciklerin açısal dağılımını, çinko sülfür sürülmüş levha üzerinde beliren parıldamalar sayesinde belirlemiştir. Rutherford yaptığı deney sonucunda 1911 de yeni bir atom modeli geliştirmiştir. *Alfa ışınlarının çoğu ince levhadan geçtiğine göre atomda büyük boşluklar vardır. *Atom kütlesinin tamamına yakını ve pozitif yüklerin tamamı çekirdekte toplanmıştır. Çekirdeğin hacmi çok küçüktür. *Çekirdekteki (+) yükün miktarı elementten elemente değişir. Çekirdek kütlesinin yarısını protonlar oluşturur. *Çekirdeğin dışında, pozitif yüke eşit sayıda elektron bulunur. Rutherford, kütlesi yaklaşık protonun kütlesine eşit ve yüksüz bir taneciğin varlığını önermiştir. Ancak bu yüksüz taneciğin özelliklerini 1932 de James Chadwick ortaya koymuş ve nötron adını vermiştir. Çekirdekli atom modelini ilk öneren kişi Rutherdford dur. 2.ELEKTROMANYETİK IŞINLARIN DALGA MODELİYLE AÇIKLANMASI: Dalga, titreşen ve enerji transfer eden bir bozulmadır. Bir dalganın hızı, dalganın türüne ve yol aldığı ortama (hava, su veya vakum gibi) bağlıdır. Elektromanyetik ışın uzayda dalga hareketi ile ilerler. Elektromanyetik ışıma; renk, elektrik ve manyetik alanların dalgalar biçiminde bir ortam veya vakumda yayıldığı bir enerji şeklidir. Dalga boyu (λ:lamda) :Art arda gelen iki dalga üzerinde benzer noktalar arasındaki uzaklıktır. (İki max veya iki min nokta arasındaki uzaklık) Dalga sayısı : 1/ dalga boyuna dalga sayısı denir. ile gösterilir. = 1/ λ Genlik(A) :Bir dalgada max yüksekliğe veya min derinliğe denir. Dalganın yani ışımanın şiddeti, genliğin karesi (A 2 ) ile doğru orantılıdır. Frekans( : nü ) :Belli bir noktadan 1 saniyede geçen dalga sayısıdır. Birimi Hz (Hertz) dir. 1 Hz = 1/ saniye Hız (c) :Belli bir ışıma için dalga boyu ile frekansın çarpımı elektromanyetik dalgalar için ışık hızına eşittir. Boşlukta bütün dalgalar aynı hızla hareket eder. Bu hız ışık hızına eşit olup m/s dir. ( c =. λ )

4 Renkler arasında kırmızı en uzun dalga boyu ve en düşük frekansa; mor ise en kısa dalga boyu ve en yüksek frekansa sahiptir. Göz, ancak bu iki renk arasındaki ışınlara karşı duyarlıdır. Görünür ışık dalga boyları yaklaşık 380 nm 760 nm arasındaki ışınları içerir. Frekansı kırmızı renginkinden düşük ışınlara Kızıl ötesi (IR) Infrared; frekansı morunkinden yüksek olanlara ise Mor ötesi (UV) Ultraviyole Işınlar denir. Bütün bu frekansları kapsayan elektromanyetik ışın dizisine ELEKTROMANYETİK DALGA SPEKTRUMU denir. Spektrum, elektromanyetik ışının frekansı veya dalga boyuna göre gruplandırılır. Elektromanyetik ışımanın maddeyle (atomlar ve moleküller) etkileşmesini konu alan bilim dalına Spektroskopi, bu etkileşmenin incelendiği aletlere Spektroskop ve spektrumların kaydedildiği aletlere de Spektrometre denir. Bir ışığın cam prizmadan geçirilerek kendisini oluşturan farklı dalga boylarında ışınlara ayrışmasına Spektrum ya da tayf denir. ÖRNEK : Bir yeşil ışığın dalga boyu 500 nm dir. Bu radyasyonun frekansını hesaplayınız. (c= m/s) 1 nm 10-9 m λ = c / = / = Hz 500 nm x x= = m 3.IŞIĞIN İKİLİ DOĞASI: Işığın tanecikler halinde yayıldığını ilk olarak ortaya atan Newton dur. Işığın tanecikler halinde yayılması yansıma ve kırılma gibi bazı bilinen olayların açıklanmasını sağlıyordu. Newton hayatta iken 1678 de Hollandalı fizikçi Christian Huygens, ışık kaynaklarının çok yüksek frekanslı titreşimler meydana getirdiğini ve bu titreşimlerin, saydam ortamlarda dalgalar halinde yayıldığını ileri sürmüştür. Bu kanıya dar bir aralıktan ışık ışınları geçirerek bu ışınların önündeki ekranda karanlık ve aydınlık alanlar oluşturmasını gözlemleyerek varmıştır. Huygens in ışığın dalga hareketi şeklinde olduğu prensibini açıklayabilmek için İngiliz fizikçi Thomas Young çift aralıklı ışık girişim deneyini yapmıştır. Yarıklarda geçen iki ışının perde üzerinde aynı titreşim yaptıklarında birbirini kuvvetlendireceğini (aydınlık bölge), zıt titreşim yaptıklarında birbirini söndüreceğini (karanlık bölge) söyleyerek Young ın bu deneyi ışının dalga teorisini desteklemektedir. Yani ışın uygun koşullarda dalgalar gibi girişime uğramaktadır. Elektromanyetik Işımanın Dalga ve Parçacık Özelliği: Elektromanyetik ışımanın hem dalga hem de parçacık yapısında olma özelliği vardır. Işık, elektromanyetik ışımanın gözle görülen bölümüdür. Elektromanyetik ışımanın dalga kuramı, gözlenen pek çok özellikleri açıklar. CD üzerinde görülen gökkuşağı renkleri, elektromanyetik ışımanın dalga girişimine örnek teşkil ederken siyah cisim ışıması ve fotoelektrik olay gibi olaylar ise ışımanın parçacıklardan oluşması ile açıklanabilir. Işıma enerjisinin parçacık özelliği için Max Planck tarafından kuantum kuramı önerilmiş, enerjinin ancak belli bir büyüklük halinde alınıp verilebileceğini belirtmiştir. Belli bir büyüklük halinde alınıp verilebilen bu enerjiye KUANTUM, ışıma enerjisine ise KUANTLANMIŞ ENERJİ denir. Albert Einstein, 1905 te ışımayı oluşturduğu ve ışık hızıyla hareket ettiği kabul edilen bu kuantumları FOTON lar olarak isimlendirilmiştir. Işıma enerjisi hem ışıma dalgaları hem de foton akımlarıdır. Işıma enerjisi sürekli değil, kesikli bir biçimde, kuantumlar halinde alınıp verilebilir. Siyah Cisim Işıması: Üzerine gelen bütün ışınları soğuran cisimlere SİYAH CİSİM denir. Siyah cisim bir metalden veya kilden yapılmış, her yanı kapalı ve içi karbonla sıvanmış borunun üzerine bir delik açmakla hazırlanabilir. Siyah cisim ısıtılıp delikten çıkan ışımalar gözlendiğinde her çeşit dalga boyunda ışığın olduğu görülür. Düşük sıcaklıkta az enerjili (uzun dalga boylu) ışımalar olurken sıcaklık yükseldikçe ışıma yüksek enerjili (kısa dalga boylu) olur. Siyah cisim ısıtılıp görünür ışık yaydığında önce kırmızı renk görülür. Sıcaklık arttırılınca turuncu ve sarı ışıma mora kadar devam eder. Planck Kuantum Kuramı: 1900 yılında Max Planck, siyah cismin ışımasıyla yayılan ışının, sürekli bir elektromanyetik dalga olmadığını göstermek için, kesikli enerji paketlerinden (foton) oluştuğunu ileri sürmüştür. Buna göre enerji de madde gibi sürekli değildir. Elektromanyetik radyasyon şeklinde yayılan enerjinin en küçük birimine KUANTUM demiştir. Kuantum modeli ENERJİNİN KUANTLAŞMASI temeline dayanır.

5 Klasik fizik ile Planck ın kuantum modeli arasındaki temel fark şudur: klasik fizik bir sistemin sahip olabileceği enerjiye bir sınırlama getirmezken kuantum modelli bu enerjiyi belli değerlerdeki özel paketler halinde sınırlamıştır. Max Planck, herhangi bir frekansında salınan enerji miktarının belirli bir E değerinden küçük olmayacağını kabul etmiştir. Siyah cisimden salınacak en küçük enerji değerinin titreşim frekansına oranının sabit olduğunu göstermiştir. Kendi adıyla anılan bu sabit h ile gösterilmiştir. Her kuantum enerjisi, ışımanın frekansı ile doğru orantılıdır. Planck bir kuantumun taşıdığı enerji için; E=h. bağıntısını kullanmıştır. Planck sabiti (h) değeri 6, J.s dir. Fotoelektrik Olay: 1905 te Albert Einstein, kuantum kuramını kullanarak fotoelektrik olayını çözmüştür. Fotoelektrik Olay, bir metal yüzeyine ışık tutulduğu zaman elektronların kopması olayıdır. Einstein, Planck ın ortaya attığı kesikli ve belli büyüklükteki enerji kuantumlarının (fotonların) metal elektronları ile etkileşmesinin fotoelektrik olaya yol açtığını söylemiştir. Bir foton bir metal atomuna çarptığı zaman tüm enerjisini elektronlara verir. Bir elektron koparmak için minimum enerjiye sahip olması gerekir. ( E o = h. o ) Belli frekansta bir ışımanın şiddetinin artırılması fotonların sayısını artıracak ama enerjilerini değiştirmeyecektir. Işımanın enerjisi artarsa elektronun hızı da buna bağlı olarak artmaktadır. Işın kuantumlarının (fotonların) enerjisi ile dalga nicelikleri arasındaki ilişki: c E=h. = h. λ ÖRNEK: Dalga boyu nm olan bir fotonun enerjisini Joule cinsinden hesaplayınız. (c= m/s) (h=6, J.s) c nm 10-9 m E=h. = h = 6, = 4, J nm x λ x= = m 4.ATOM SPEKTRUMLARI: Atom spektrumlarının incelenmesi elementlerde elektron düzenini bulmak için kullanılan en iyi yöntemdir. Beyaz ışık (güneş ışığı) önce dar bir demet yapıcı yarıktan ve daha sonra prizmadan geçirilirse görünür bölgede mordan kırmızıya kadar değişen bütün renkleri içeren KESİKSİZ (SÜREKLİ) SPEKTRUM elde edilir. Elementler, gaz veya buhar halinde gerekli yüksek sıcaklığa kadar ısıtılırsa bir ışıma yayımlar. Işımanın prizmadan geçirilmesi bir KESİKLİ (ÇİZGİ) SPEKTRUM verir. Çizgi spektrumunda elementler (atomlar) görünür bölgenin değişik kesimlerinde parlak çizgiler oluşturur. Oluşan bu çizgi spektrumlarının nedeni maddelerin enerji (ısı, elektrik) aldıklarında kendine özgü dalga boylarında ışık yayımlamasıdır. Her elementin kendine özgü belirgin yayınma (emisyon) çizgi spektrumu vardır. Güneş ışığının kesiksiz spektrumunda soğurma (absorpsiyon) dalga boyları siyah çizgiler şeklinde görülür. Bunlara Fraunhofer Çizgileri denir. Bu çizgiler, güneş yüzeyindeki gaz elementlerin ışığın bazı dalga boylarını soğurmaları nedeniyle oluşur. Hidrojenin yayınma (emisyon) spektrumu: Emisyon spektrumu, madde örneğinin ısı ve ışık gibi enerji türleriyle etkileşmesinden sonra gözlenebilir. Atomik hidrojenin görünür bölgedeki spektrumu 4 çizgiden oluşur. En parlak çizgi 656 nm dalga boyu ile kırmızıdır. Bu değer hidrojenin yayınma spektrumunun görünür bölgedeki dalga boylarına karşılık gelir. Bu eşitlikle bulunan spektrum çizgileri dalga boylarına BALMER SERİSİ denir.

6 Hidrojen atomu spektrumunda gözlenen seriler: n=1 Lyman Serisi Mor ötesi (UV) n=2 Balmer Serisi Görünür bölge n=3 Paschen Serisi Kırmızı ötesi (IR) n=4 Brackett Serisi Kırmızı ötesi (IR) n=5 Pfund Serisi Kırmızı ötesi (IR) Hidrojenin soğurma (absorpsiyon) spektrumu: Elementlerin emisyon (yayınma) spektrumları olduğu gibi bir de soğurma (absorpsiyon) spektrumları vardır. Bunun nedeni hangi dalga boylarında ışıma yapıyorlarsa o dalga boylarındaki ışımayı soğurabilir. Her element atomunun kendine özgü bir absorpsiyon ve emisyon spektrumları vardır. Ayırt edici bir özelliktir. Hidrojenin görünür bölge soğurma (absorbsiyon) çizgi spektrumu Hidrojenin görünürbölge çizgi spektrumu J.Balmer ve J.Rydberg hidrojenin görünür bölge yayınma spektrumundaki en uzun dalga boylu üç çizginin (kırmızı, yeşil, mavi) dalga boylarını hesaplamaya yarayan bir eşitlik geliştirmişlerdir. Bu eşitlik Rydberg eşitliği olarak bilinir Rydberg eşitliği; = R. - Rydberg sabiti; R= 1, /m dir. λ 2 2 n 2 5.BOHR ATOM MODELİ VE VARSAYIMLARI: Hollandalı fizikçi Niels Henrik David Bohr, atomların spektrumları ile Planck ve Einstein in kuantum düşüncelerinden yaralanmıştır. Atomun elektron yapısını açıklayabilmek için Boht; atomun bir çekirdek ile çevresindeki elektronlardan oluştuğunu ve elektronların çekirdek üzerine düşmediği gerçeğinden yola çıkarak basit bir atom modeli önermiştir. Hidrojenin çizgi spektrumu ışımanın belli miktarlar (kuantumlar) halinde yayıldığını gösterir. Hidrojenin elektronunun enerjisi kuantlanmıştır. Elektron, yüksek enerjili bir düzeyden daha düşük olan düzeye geçerken enerji farkı, ışıma kuantumu olarak yayılmakta ve yayınma spektrumundaki bir çizgiye karşılık gelmektedir. Bohr atom modeline göre; 1.Bir atomda bulunan her elektron çekirdekten ancak belirli uzaklıklarda küresel yörüngelerde bulunabilir. Her yörünge belirli enerjiye sahiptir. Bu yörüngelere ENERJİ DÜZEYİ denir. Yörüngelerin ortak merkezi çekirdek olup yörüngeler K, L, M, N,O gibi harflerle gösterildiği gibi 1, 2, 3, 4, 5 gibi rakamlarla bir n değeri ile belirtilir. 2.Bir atomun elektronları en düşük enerji düzeyinde bulunmak ister. Bu düzeye TEMEL HÂL DÜZEYİ denir. Madde ısıtıldığında atomlarındaki elektronlar daha yüksek enerji düzeyine geçer. Bu durumdaki atomlara UYARILMIŞ HÂL denir. Uyarılmış atom yüksek enerjili olduğundan kararsızdır. 3.Yüksek enerji düzeyinde bulunan elektron düşük enerji düzeyine inerse aradaki enerji farkına eşit enerjide ışın yayılır. Bir dış yörüngedeki (n d ) elektronun enerjisine E d ve bir iç yörüngedeki (n i ) elektronunun enerjisine de E i diyelim. Elektron dış yörüngeden iç yörüngeye geçtiğinde (E d -E i ) kadar enerji bir ışık fotonu şeklinde yayılır. -2, Z 2 İyonlar için çekirdek yükü enerji düzeyi denklemi; E A = (Z=atom numarası, n=enerji düzeyi) n 2

7 KUANTUM (DALGA) MEKANİĞİNİN TARİHSEL GELİŞİMİ 1.ATOM ALTI PARÇACIKLARININ DALGA ÖZELLİĞİ: Bohr atom modeli; H, He + ve Li +2 vb. gibi tek elektronlu türlerin spektrumlarını başarıyla açıkladığı halde birden fazla elektron içeren türlerin spektrumlarını açıklamada yetersiz kalmıştır. Bohr un hidrojen üzerinde yaptığı çalışmalardan on yıl sonra elektronlar için ortaya atılan iki temel kavram (tanecik ve dalga) kuantumun yeniden gözden geçirilmesine sebep olmuştur. Dalga Tanecik İkiliği: Louis de Broglie ve Schrödinger ışığın dalge ve tanecik teorilerini birleştirerek bugünkü dalga mekaniğinin temelini oluşturdular. De Broglie bir fotonun enerjisini hesaplayabilmek için Planck bağıntısını ve Einstein enerji eşitliğini birlikte kullanmıştır. h Planck bağıntısı; E=h. = c/λ yerine konularak; λ= Einstein eşitliği; E=m.c 2 m.c eşitliği bulunur. De Broglie X-ışınları kırınımından yola çıkarak hareket eden maddesel parçacıkların dalga gibi davranabileceğini söylemiştir. De Broglie eşitliği; λ= h şeklinde yazılır. m.v De Broglie, maddesel taneciklerle bir arada kabul edilen dalgalara MADDE DALGALARI adını vermiştir. Küçük tanecikler için madde dalgaları varsa elektron gibi taneciklerin demetleri de dalgaların özelliklerini taşımalıdır. Eğer dalgaların dağıldığı nesneler arasındaki uzaklık, ışımanın dalga boyuna eşitse kırılma gerçekleşir. Elektronun Dalga Özelliği: Fotonlar gibi davrana ışık dalgacıklarından hareketle, de Broglie elektronların da dalga özelliği gösterebileceğini fikrini ileri sürmüştür. Bu fikre göre elektron duran bir dalga gibi davranmaktadır. Elektronun Dalga Özelliğine Deneysel Kanıt: De Broglie nin önerdiği madde dalgalarının ilk denel doğrulaması C.Davisson ve L.H.Germer ile George Paget Thomson tarafından kanıtlanmıştır. Elektronun tıpkı X-ışınları gibi kristalde kırınıma uğradığını gösterdiler ve elektronların dalga boylarını ölçmeyi başarmışlardır. G.P.Thomson şekilde olduğu gibi çok ince metal levhadan elektronları geçirerek Davisson ve Germer gibi girişim ve kırınım desenlerini gözlemlemiştir. İnce alüminyum levhanın elektron kırınımı görüntüsünü incelediğimizde Young ın ışıkla yaptığı deneydeki görüntüsüne benzemektedir. Bu görüntüde de ışık deneyinde olduğu gibi aydınlık ve karanlık bölgeler görünmektedir. Young ın deneyi, ışığın (elektromanyetik dalga) karakterinde olduğunu göstermektedir. Elektronda aynı görüntüyü (kırınımı) oluşturuyor ise elektron da dalga özelliği gösterir sonucuna ulaşılır. Başka madde atomları için de X-ışınları ile benzer şekilde aynı görünüm gözlenmiştir. 2.HEISENBERG BELİRSİZLİK İLKESİ: 1920 yıllarında Niels Bohr ve Werner Heisenberg atomlardan daha küçük taneciklerin örneğin elektronun davranışlarının nereye kadar belirlenebileceğini görebilmek için deneyler tasarlamışlardır. Bunun için taneciğin (elektronun) konumu (X) ve hızı (V) gibi iki değişkenin ölçülmesi gerekir. Heisenberg in ulaştığı sonuca göre ölçümlerde daima bir belirsizlikle karşılaşılmaktadır. Bu belirsizlik, h (ΔX).(ΔV) şeklinde olmalıdır. ( ΔX=konum, ΔV=hızdaki değişim ) 4.π.m ΔX konumdaki değişimi ölçmeye çalıştığımızda eşitsizliği sağlamak için hızdaki değişim de ΔV farklılaşarak belirsiz hale gelecektir. HEISENBERG BELİRSİZLİK İLKESİ: Bir taneciğin aynı anda hem hızı hem de konumu saptanamaz. Heisenberg e göre, elektronları çekirdek etrafında belli yörüngelerde dolaşan parçacıklar olarak düşünmek yanlıştır.

8 ATOMUN KUANTUM MODELİ 1.ATOMUN KUANTUM MODELİ: 1926 yıllarında Erwin Schrödinger Heisenberg den bağımsız olarak de Broglie nin hipotezinden ilham alarak tüm parçacıkların hareketinin hesaplanabileceği bir dalga mekaniği oluşturmuştur. Schrödinger bir kuvvet etkisi altında olan dalgaların nasıl oluşacağını ve gelişeceğini açıklamıştır. Bu açıklama tanecik yoğunluğunun dalga fonksiyonunun karesi ( ψ 2 ) ile doğru orantılı olduğu yönündedir. Fotonun bulunma ihtimalinin en yüksek olduğu yerin dalga fonksiyonunun karesinin değer olarak en yüksek olduğu yer olarak açıklamasıdır. Hidrojen atomunun elektronunun bulunabileceği enerji düzeyi ve dalga fonksiyonları Schrödinger denklemi ile açıklanabilir. Enerji düzeyleri ve dalga fonksiyonları kuantum sayıları ile ifade edilir. Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun kuantum sayıları ile belirlenen dalga fonksiyonudur. Orbital bir matematik fonksiyonudur ve bu fonksiyondan hareketle elektronun yerinin kesin olarak hesaplanması mümkün değildir. Ancak, elektronun belirli bir uzay bölgesinde bulunma olasılığı hesaplanabilir. Schrödinger, dalga fonksiyonlarını hidrojen benzeri atomlar ve iyonlar için matematiksel yöntemlerle bularak, her sistem için birden çok fonksiyon elde etmiştir. Bu fonksiyonlar n,l ve m l kuantum sayıları ile karakterize edilir. n, l ve m l ile karakterize edilen dalga fonksiyonlarının birden çok olması aynı sistemdeki tek elektronunun, çok sayıda enerji düzeylerinde bulunabileceği anlamına gelir.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

1.ÜNİTE: MODERN ATOM TEORİSİ

1.ÜNİTE: MODERN ATOM TEORİSİ 1.ÜNİTE: MODERN ATOM TEORİSİ 1.BÖLÜM: ATOMLA İLGİLİ DÜŞÜNCELER Atom Kavramını İlk Kim Kullandı? Eski Yunanlılarda, maddenin sonsuza kadar bölünmesinin veya artık daha fazla bölünmesinin mümkün olmadığı

Detaylı

MALZEME BİLGİSİ. Atomların Yapısı

MALZEME BİLGİSİ. Atomların Yapısı MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Atomların Yapısı 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (- yüklü) Basit

Detaylı

KİMYA. davranış. umunu, reaksiyonlar sırass. imleri (enerji. vs..) gözlem ve deneylerle inceleyen, açıklayan a

KİMYA. davranış. umunu, reaksiyonlar sırass. imleri (enerji. vs..) gözlem ve deneylerle inceleyen, açıklayan a KİMYA Maddenin yapısını, özelliklerini, farklı koşullardaki davranış ışlarını,, bir maddeden diğer bir madde oluşumunu, umunu, reaksiyonlar sırass rasındaki değişimleri imleri (enerji vs..) gözlem ve deneylerle

Detaylı

1. ATOMLA İLGİLİ DÜŞÜNCELER

1. ATOMLA İLGİLİ DÜŞÜNCELER 1. ATOMLA İLGİLİ DÜŞÜNCELER Democritus Maddenin tanecikli yapıda olduğunu ileri sürmüş ve maddenin bölünemeyen en küçük parçasına da atom (Yunanca a-tomos, bölünemez ) adını vermiştir Lavoisier Gerçekleştirdiği

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

Kimyafull Gülçin Hoca

Kimyafull Gülçin Hoca 1.ÜNİTE MODERN ATOM TEORİSİ 1. BÖLÜM: Atomla İlgili Düşünceler 1. Dalton Atom Modeli 2. Atom Altı Tanecikler Elektronun Keşfi Protonun Keşfi Nötronun Keşfi 0 Kimyafull Gülçin Hoca DALTON ATOM MODELİ Democritus

Detaylı

KİMYA ADF. Atomlarla İlgili Düşünceler ve Atom Modelleri ATOMLARLA İLGİLİ DÜŞÜNCELER VE ATOM MODELLERİ MADDENİN ELEKTRİK YAPISI

KİMYA ADF. Atomlarla İlgili Düşünceler ve Atom Modelleri ATOMLARLA İLGİLİ DÜŞÜNCELER VE ATOM MODELLERİ MADDENİN ELEKTRİK YAPISI KİMYA ÜNİTE 1: MODEN ATOM TEOİSİ Atomlarla İlgili Düşünceler ve Atom Modelleri ADF 01 ATOMLALA İLGİLİ DÜŞÜNCELE VE ATOM MODELLEİ Dalton Atom Modeli Elementler atom denilen en küçük partiküllerden oluşur.

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

DEMOKRİTOS ATOM FİKRİ M.Ö

DEMOKRİTOS ATOM FİKRİ M.Ö DEMOKRİTOS ATOM FİKRİ M.Ö 500 lü yıllarda DEMOKRİTOS maddelerin bölünemez ve parçalanamaz anlamına gelen atom olarak adlandırılan taneciklerden oluştuğunu öne sürmüştür. DALTON ATOM TEORİSİ Dalton denel

Detaylı

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur.

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur. 5.111 Ders Özeti #6 Bugün için okuma: Bölüm 1.9 (3. Baskıda 1.8) Atomik Orbitaller. Ders #7 için okuma: Bölüm 1.10 (3. Baskıda 1.9) Elektron Spini, Bölüm 1.11 (3. Baskıda 1.10) Hidrojenin Elektronik Yapısı

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için, DENEY NO : 7 DENEYİN ADI : ELEKTRONLARIN KIRINIMI DENEYİN AMACI : Grafit içinden kırınıma uğrayan parçacıkların dalga benzeri davranışlarının gözlemlenmesi. TEORİK BİLGİ : 0. yüzyılın başlarında Max Planck

Detaylı

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI: 2009-2010 E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI A 1. Plastik bir tarak saça sürtüldü ünde tara n elektrikle yüklü hale gelmesinin 3 sonucunu yaz n z. 2. Katot fl nlar nedir? Katot fl

Detaylı

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim. Bohr Atom Modeli Niels Hendrik Bohr, Rutherford un atom modelini temel alarak 1913 yılında bir atom modeli ileri sürdü. Bohr teorisini ortaya koyarak atomların çizgi spektrumlarının açıklanabilmesi için

Detaylı

Modern Atom Teorisi. Ünite

Modern Atom Teorisi. Ünite Ünite 1 Modern Atom Teorisi ATOMLA İLGİLİ DÜŞÜNCELER 8 ATOMUN KUANTUM MODELİ 19 PERİYODİK SİSTEM ve PERİYODİK ÖZELLİKLER 30 ELEMENTLERİN ÖZELLİKLERİ, YÜKSELTGENME BASAMAKLARI, BİLEŞİKLERİN ADLANDIRILMASI

Detaylı

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

Atomların Kuantumlu Yapısı

Atomların Kuantumlu Yapısı Atomların Kuantumlu Yapısı Yazar Yrd. Doç. Dr. Sabiha AKSAY ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra, Atom modellerinin yapısını ve çeşitlerini, Hidrojen atomunun enerji düzeyini, Serileri, Laser ve

Detaylı

5.111 Ders Özeti #5. Ödev: Problem seti #2 (Oturum # 8 e kadar)

5.111 Ders Özeti #5. Ödev: Problem seti #2 (Oturum # 8 e kadar) 5.111 Ders Özeti #5 Bugün için okuma: Bölüm 1.3 (3. Baskıda 1.6) Atomik Spektrumlar, Bölüm 1.7, eşitlik 9b ye kadar (3. Baskıda 1.5, eşitlik 8b ye kadar) Dalga Fonksiyonları ve Enerji Düzeyleri, Bölüm

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

2. BÖLÜM: ATOMUN KUANTUM MODELİ

2. BÖLÜM: ATOMUN KUANTUM MODELİ 2. BÖLÜM: ATOMUN KUANTUM MODELİ.ATOM ALTI PARÇACIKLARININ DALGA ÖZELLİĞİ: Bor atom modeli; H, He + ve Li +2 vb. gibi tek elektronlu türlerin spektrumlarını başarıyla açıkladığı alde birden fazla elektron

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

ELEKTRONLAR ve ATOMLAR

ELEKTRONLAR ve ATOMLAR BÖLÜM 3 ELEKTRONLAR ve ATOMLAR 1 Kapsam 1.0 Radyasyon Enerjisinin Doğası ve Karakteristiği 2.0 Fotoelektrik Etki 3.0 ER: Dalga Özelliği 4.0 Dalgaboyu, Frekans, Hız ve Genlik 5.0 Elektromanyetik Spektrum

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddeden kuark a maddenin yapıtaşının serüveni Elementlerin Varlığının Keşfi Maddenin yapıtaşı arayışı M.Ö. 2000 lerde Eski Yunan

Detaylı

ATOM MODELLERİ.

ATOM MODELLERİ. ATOM MODELLERİ THOMSON ATOM MODELİ ÜZÜMLÜ KEK MODELİ Kek pozitif yüklere, üzümler ise negatif yüklere benzetilmiştir. Thomson Atom Modeline göre; Atomun yapısında pozitif ve negatif yüklü tanecikler vardır.(+)

Detaylı

Bölüm 3. Işık ve Tayf

Bölüm 3. Işık ve Tayf Bölüm 3 Işık ve Tayf Işığın Doğası 1801 de de, Thomas Young, ışığın dalga yapısını buldu. 1905 de de, Albert Einstein,, ışığın foton olarak adlandırılan küçük dalga paketleri şeklinde yol aldığını fotoelektrik

Detaylı

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü Massachusetts Teknoloji Enstitüsü - Fizik Bölümü Fizik 8.02 Ödev # 1 6 Şubat 2002. Kendinize bir iyilik yapın ve derslere hazırlanın! Derste anlatılmadan önce, konuları okumanızı şiddetle öneririz. Derslerden

Detaylı

2014 Fizik Olimpiyatları 4. Aşama Kuramsal Sınav

2014 Fizik Olimpiyatları 4. Aşama Kuramsal Sınav 2014 Fizik Olimpiyatları 4. Aşama Kuramsal Sınav Sınav 4 sorudan oluşmaktadır. Sınav süresi 5 saattir. Sınavdaki soruların her biri 15 puan değerindedir. Toplam değerlendirmede kuramsal kısım %60 deneysel

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. ATOM TEORİLERİ DEMOCRİTUS DEMOCRİTUS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere

Detaylı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATO YAP Atomu oluşturan parçacıklar farklı yüklere sahiptir Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir Atomu oluşturan

Detaylı

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) kendi özelliğini taşıyan en küçük yapı birimine atom

Detaylı

KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK

KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK Madde ve Elektriksel Yük Maddelerin elektrikli yapıda olduğu eski çağlardan beri bilinmektedir. Örneğin antik dönemde Greekler yüne sürülen kehribar taşının(ağaç

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

ATOM VE ELEKTRİK MADDE VE ELEKTRİK YÜKÜ

ATOM VE ELEKTRİK MADDE VE ELEKTRİK YÜKÜ ATOM VE ELEKTRİK MADDE VE ELEKTRİK YÜKÜ Statik elektrik, yüzey atomlarındaki elektron kaybı ya da kazancıdır. Bir cisim elektrikle yüklendiğinde; yük, atom ya da cisim üzerinde bir elektron birikimi ya

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Atom ve Elektrik. A) Yalnız I B) Yalnız II C) I ve II. D) II ve III E) I, II ve III

Atom ve Elektrik. A) Yalnız I B) Yalnız II C) I ve II. D) II ve III E) I, II ve III Siyah isim Işıması Siyah cisim ideal bir cisimdir ve üzerine gelen tüm ışımaları soğurur. 1. Üzerine düşen bütün ışınları absorplar. 2. Her dalga boyunda ışıma yapar. 3. Işıma şiddeti ve spektrumu sıcaklığa

Detaylı

8. Sınıf Fen ve Teknoloji. KONU: Sıvılarda ve Gazlarda Basınç

8. Sınıf Fen ve Teknoloji. KONU: Sıvılarda ve Gazlarda Basınç Sıvılar bulundukları kabın her yerine aynı basıncı uygulamazlar. Katılar zemine basınç uygularken sıvılar kabın her yerine basınç uygularlar. Sıvı basıncı, kapta bulunan sıvının hacmine, kabın şekline

Detaylı

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması FİZİK 4 Ders 6: Atom Enerjisinin Kuantalanması Atom Enerjisinin Kuantalanması Atom Spektrumları Atom Modelleri Bohr Atom Modeli Atomun yapısı ve Laserler Dalga Parçacık İkilemi Tüm fizikçiler fotoelektrik

Detaylı

Atom Y Atom ap Y ısı

Atom Y Atom ap Y ısı Giriş Yarıiletken Malzemeler ve Özellikleri Doç.. Dr. Ersan KABALCI 1 Atom Yapısı Maddenin en küçük parçası olan atom, merkezinde bir çekirdek ve etrafında dönen elektronlardan oluşur. Çekirdeği oluşturan

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

Atomlar Atomlar başlıca üç temel altı parçaçıktan oluşur: Protonlar Nötronlar Elektronlar

Atomlar Atomlar başlıca üç temel altı parçaçıktan oluşur: Protonlar Nötronlar Elektronlar Atomlar Atomlar başlıca üç temel altı parçaçıktan oluşur: Protonlar Nötronlar Elektronlar Malzemelerin İç Yapısı Karbon elementinin şematik atom yapısı 1 Atomun çekirdeği pozitif yüklü (+) proton yüksüz

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

Maddenin Tanecikli Yapısı

Maddenin Tanecikli Yapısı Maddenin Tanecikli Yapısı Maddenin Tanımı Kütlesi olan ve boşlukta yer kaplayan her şeye madde denir. Cisim nedir? Maddenin şekil almış halidir. Maddenin Halleri Maddeler doğada 3 halde bulunur: Katı maddeler

Detaylı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ ATOM Elementlerin özelliğini taşıyan, en küçük yapı taşına, atom diyoruz. veya, fiziksel ve kimyasal yöntemlerle daha basit birimlerine ayrıştırılamayan, maddenin en küçük birimine atom denir. Helyum un

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: ATOM VE ELEKTRİK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur.

Detaylı

İNSTAGRAM:kimyaci_glcn_hoca

İNSTAGRAM:kimyaci_glcn_hoca MODERN ATOM TEORİSİ ATOMUN KUANTUM MODELİ Bohr atom modeli 1 H, 2 He +, 3Li 2+ vb. gibi tek elektronlu atom ve iyonların çizgi spektrumlarını başarıyla açıklamıştır.ancak çok elektronlu atomların çizgi

Detaylı

Faraday Elektroliz Deneyi

Faraday Elektroliz Deneyi Ünite 1: ATOMUN YAPISI 1. Bölüm: Atom ve Elektrik Michael Faraday 1830 larda sulu çözeltisinden elektrik akımı geçirilen maddenin kimyasal yapısında değişiklik meydana geldiğini saptamıştır. Böylece maddenin

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı

Vakum Tüpüyle Yapılan Deneylerle Katot Işınlarının Keşfi:

Vakum Tüpüyle Yapılan Deneylerle Katot Işınlarının Keşfi: ATOM VE ELEKTRİK (Ünite-1) Maddenin Elektriksel Yapısı: Sürtünme ile elektriklenmede iki tür yükün (+) ve (-) olduğunu keşfeden ilk kişi Benjamin Franklin dir. Ebonit çubuk bir kumaş parçasına sürtüldüğünde

Detaylı

Maddeyi Oluşturan Tanecikler

Maddeyi Oluşturan Tanecikler Maddeyi Oluşturan Tanecikler a) Saf Madde : Kendine özgü fiziksel ve kimyasal özellikleri olan, ayırt edici özellikleri bulunan ve bu ayırt edici özellikleri sabit olan maddelere saf madde denir. Elementler

Detaylı

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ 1. SPEKTROSKOPİ Bir örnekteki atom, molekül veya iyonların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımanın,

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

Coulomb Kuvvet Kanunu H atomunda çekirdek ve elektron arasındaki F yi tanımlar.

Coulomb Kuvvet Kanunu H atomunda çekirdek ve elektron arasındaki F yi tanımlar. 5.111 Ders Özeti #3 Bugün için okuma: Bölüm 1.2 (3. Baskıda 1.1 ), Bölüm 1.4 (3. Baskıda 1.2 ), 4. Baskıda s. 10-12 veya 3. Baskıda s. 5-7 ye odaklanın. Ders 4 için okuma: Bölüm 1.5 (3. Baskıda 1.3 ) Maddenin

Detaylı

kimya LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ İsmail GÜRDAL Öğrenci Kitaplığı

kimya LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ İsmail GÜRDAL Öğrenci Kitaplığı kimya SORU BANKASI İsmail GÜRDAL LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı kimya SORU BANKASI LYS EDAM Öğrenci Kitaplığı 37 EDAM ın yazılı izni olmaksızın, kitabın

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

İÇİNDEKİLER TEMEL KAVRAMLAR - 2. 1. Atomlar, Moleküller, İyonlar...36. 1.2. Atomlar...36. 1.2. Moleküller...37. 1.3. İyonlar...37

İÇİNDEKİLER TEMEL KAVRAMLAR - 2. 1. Atomlar, Moleküller, İyonlar...36. 1.2. Atomlar...36. 1.2. Moleküller...37. 1.3. İyonlar...37 vi TEMEL KAVRAMLAR - 2 1. Atomlar, Moleküller, İyonlar...36 1.2. Atomlar...36 1.2. Moleküller...37 1.3. İyonlar...37 2. Kimyasal Türlerin Adlandırılması...38 2.1. İyonların Adlandırılması...38 2.2. İyonik

Detaylı

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma)

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma) ENSTRÜMANTAL ANALİZ SPEKTROSKOPİ Spektroskopi Bir madde içerisindeki atom, molekül veya iyonların bir enerji seviyesinden diğerine geçişleri sırasında absorplanan veya yayılan ışınların ölçülmesi için

Detaylı

Renkler Testlerinin Çözümleri. Test 1 in Çözümleri

Renkler Testlerinin Çözümleri. Test 1 in Çözümleri 5 Renkler Testlerinin Çözümleri Test 1 in Çözümleri 1. Mavi cam,mavi ışığı çok geçirir, mavinin komşusu olan yeşil ve moru göremeyeceğimiz kadar az geçirir. Mavi renkli gözlük camı kırmızı ve sarıyı geçirmez,

Detaylı

ATOM YAPISI ve MODELLERİ. Kimya Ders Notu

ATOM YAPISI ve MODELLERİ. Kimya Ders Notu ATOM YAPISI ve MODELLERİ Kimya Ders Notu ATOM ve ELEKTRİK Bir elementin bütün özelliklerini taşıyan en küçük yapı taşına atom denir. Maddelerin tüm fiziksel ve kimyasal özellikleri atomun elektrik yapısı

Detaylı

ATOMUN KUANTUM MODELİ

ATOMUN KUANTUM MODELİ ATOMUN KUANTUM MODELİ 926 yıllarında Erwin Schrödinger Heisenberg den bağımsız olarak de Broglie nin hipotezinden ilham alarak tüm parçacıkların hareketinin hesaplanabileceği bir dalga mekaniği oluşturmuştur.

Detaylı

LYS K MYA SORU BANKASI KONU ÖZETLER KONU TESTLER

LYS K MYA SORU BANKASI KONU ÖZETLER KONU TESTLER LYS K MYA SORU BANKASI KONU ÖZETLER KONU TESTLER TEŞEKKÜR Kitabın hazırlanmasında emeğinin hiç esirgemeden çok titiz çalışarak güzel bir eser ortaya koyan Ankara Zafer Dershanesi kimya öğretmenlerine ve

Detaylı

ELEMENTLER, BİLEŞİKLER ve PERİYODİK CETVEL

ELEMENTLER, BİLEŞİKLER ve PERİYODİK CETVEL ELEMENTLER, BİLEŞİKLER ve PERİYODİK CETVEL MADDE VE ELEKTRİK YÜKÜ Statik elektrik, yüzey atomlarındaki elektron kaybı ya da kazancıdır. Bir cisim elektrikle yüklendiğinde; yük, atom ya da cisim üzerinde

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

MALZEME BİLGİSİ. Atomlar Arası Bağlar

MALZEME BİLGİSİ. Atomlar Arası Bağlar MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Atomlar Arası Bağlar 1 Giriş Atomları bir arada tutarak iç yapıyı oluştururlar Malzemelerin mukavemeti, elektriksel ve ısıl özellikleri büyük ölçüde iç yapıya

Detaylı

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER IŞIĞIN YAPISI Işığın; Dalga ve Parçacık olmak üzere iki özelliği vardır. Dalga Özelliği: Girişim, kırınım, polarizasyon, yayılma hızı, vb. Parçacık Özelliği: Işığın

Detaylı

Osiloskobun çalışma prensibi. F = q E (8.1)

Osiloskobun çalışma prensibi. F = q E (8.1) 8 Osiloskop Deneyin amacı Osiloskobun ve CRT ekranların çalışma prensibini öğrenmek. Genel bilgiler Osiloskobun çalışma prensibi Eğer q yükü taşıyan bir parçacık E elektrik alanının etkisi altında ise

Detaylı

10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI

10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI 10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI 1. Aşağıda verilen kavramların tanımlarını karşısına yazınız. Dalga: Atma: Periyot: Frekans: Dalga boyu: Deprem dalgası: Deprem odağı: Merkez

Detaylı

X-IŞINI OLUŞUMU (HATIRLATMA)

X-IŞINI OLUŞUMU (HATIRLATMA) X-IŞINI OLUŞUMU (HATIRLATMA) Şekilde modern bir tip X-ışını aygıtının şeması görülmektedir. Havası boşaltılmış cam bir tüpte iki elektrot bulunur. Soldaki katot ısıtıldığında elektronlar salınır. Katot

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK ÖĞRENE ALANI : FİZİEL OLALAR ÜNİE 5 : IŞI B BEAZ IŞI GERÇEEN BEAZ IDIR? (4 AA) 1 Işığın Renklerine Ayrılması 2 Işığın Elde Edilmesi 3 Renkler 4 Cisimlerin Işığı ansıtması 5 leri 6 Boya Renkleri 7 Gökyüzünün

Detaylı

7. Sınıf Maddenin Tanecikli Yapısı ve Çözünme Kazanım Kontrol Sınavı

7. Sınıf Maddenin Tanecikli Yapısı ve Çözünme Kazanım Kontrol Sınavı 7. Sınıf Maddenin Tanecikli Yapısı ve Çözünme Kazanım Kontrol Sınavı 1- Bir katyona ait atom parçacıkları ve sayısını gösteren sütun grafiği aşağıdakilerden hangisi gibi olabilir? Öğretmen: Çocuklar bu

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ

MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ MODERN FİZİĞİN DOĞUŞUNDA MOR ÖTESİ KRİZİNİN ROLÜ Öğretmen Olcay NALBANTOĞLU Hazırlayanlar A.Cumhur ÖZCAN Mustafa GÖNENÇER Okan GİDİŞ Tolga TOLGAY İÇİNDEKİLER 1. Klasik Fiziğin Tanımı 2. Klasik Kuramın

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması Dalga Nedir Enerji taşıyan bir değişimin bir yöne doğru taşınmasına dalga denir.

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ 9 Mekanik ve Elektromanyetik Dalga Hareketi TEKNOLOJİNİN BİLİMSEL İLKELERİ Adem ÇALIŞKAN Mekanik dalgalar Temelde taneciklerin boyuna titreşimlerinden kaynaklanırlar. Yayılmaları için mutlaka bir ortama

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI

10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI 10. ÜNİTE DİRENÇ BAĞLANTILARI VE KİRCHOFF KANUNLARI KONULAR 1. SERİ DEVRE ÖZELLİKLERİ 2. SERİ BAĞLAMA, KİRŞOFUN GERİLİMLER KANUNU 3. PARALEL DEVRE ÖZELLİKLERİ 4. PARALEL BAĞLAMA, KİRŞOF UN AKIMLAR KANUNU

Detaylı

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin Bu ürünün bütün hakları ÇÖÜM DERGİSİ AINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin önceden izni olmaksızın fotokopi ya da elektronik, mekanik herhangi bir

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ

MADDENİN YAPISI VE ÖZELLİKLERİ MADDENİN YAPISI VE ÖZELLİKLERİ 1. Atomun Yapısı KONULAR 2.Element ve Sembolleri 3. Elektronların Dizilimi ve Kimyasal Özellikler 4. Kimyasal Bağ 5. Bileşikler ve Formülleri 6. Karışımlar 1.Atomun Yapısı

Detaylı

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler SPEKTROSKOPİ Spektroskopi ile İlgili Terimler Bir örnekteki atom, molekül veya iyonlardaki elektronların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımanın,

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü

Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü ATOMUN YAPISI 1 Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü iki cisim birbirini çeker. Bütün maddeler

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 2 Prof. Dr. Kıvanç Kamburoğlu 1800 lü yıllarda değişik ülkelerdeki fizikçiler elektrik ve manyetik kuvvetler üzerine detaylı çalışmalar yaptılar Bu çalışmalardan çıkan en önemli sonuç;

Detaylı

En Küçüklerin Fiziği, CERN ve BHÇ 22 Mayıs 2009. Doç. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü

En Küçüklerin Fiziği, CERN ve BHÇ 22 Mayıs 2009. Doç. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü En Küçüklerin Fiziği, CERN ve BHÇ 22 Mayıs 2009 Doç. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü ozpineci@metu.edu.tr Medyatik Yansımalar Teen commits suicide after 'end of world' reports, http://www.news.com.au

Detaylı

Modern Fizik (Fiz 206)

Modern Fizik (Fiz 206) Modern Fizik (Fiz 206) 3. Bölüm KUANTUM Mekaniği Bohr modelinin sınırları Düz bir dairenin çevresinde hareket eden elektronu tanımlar Saçılma deneyleri elektronların çekirdek etrafında, çekirdekten uzaklaştıkça

Detaylı

Bölüm 1: Fizik ve Ölçme

Bölüm 1: Fizik ve Ölçme Bölüm 1: Fizik ve Ölçme Kavrama Soruları: 1- Avagadro sayısının anlamı nedir? 2- Maddenin en küçük yapı taşı nedir? 3- Hangi elementin çekirdeğinde nötron bulunmaz? 4- Boyut ile birim arasındaki fark nedir?

Detaylı

ATOM MODELLERİ BERNA AKGENÇ

ATOM MODELLERİ BERNA AKGENÇ ATOM MODELLERİ BERNA AKGENÇ DEMOCRITOS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ UV-Görünür Bölge Moleküler Absorpsiyon Spektroskopisi Yrd. Doç.Dr. Gökçe MEREY GENEL BİLGİ Çözelti içindeki madde miktarını çözeltiden geçen veya çözeltinin tuttuğu ışık miktarından

Detaylı