1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER"

Transkript

1 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b y+ c = 0 b i ç im i n d ek i d e n k l em l e r e b i r i n c i d e r e c e d e n ik i b i l i n m e ye n l i d e nk l em d e n i r. a x + b y+ c = 0 d e n k l em i n i n ç ö zü m k ü m e s i s o n s u z t a n e s ı r a l ı i k i l i d e n o l u ş u r. Ç ö z üm k üm e s i a n a l i t i k d ü zl e m d e b i r d o ğ r u b e l i r t i r. İKİ İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ a1x + b1y + c1= 0 a2x + b2y + c2= 0 s i s t e m i n e ik i b i l i nm e ye n l i d e nk l e m s i s t e m i d e n i r. B u t ü r d e n k l em s i s t em l e r i n i n ç ö züm k üm e s i ( e ğ e r v a r s a ) b u l u n u rk e n i k i f a rk l ı ç ö züm ya p ı l a b i l i r. B i l i n m e ye n l e r d e n h e r h a n g i b i r i n i n k at s a yı l a r ı e ş i t l e n i r, t a r af t a r af a ç ık a r t ıl ı r. Örnek...1 : x y= 9 2 x + y= 2 3 s i s t em i n i s a ğ l a ya n x d e ğ e r i k a ç t ı r? 1. YOK ETME YÖNTEMİ Örnek...4 : a v e b d o ğ a l s a yıl a r o l m a k ü ze r e, ( 3 a + 2 ). ( a + b )= 2 0 i s e a+ b e n ç ok k a ç t ır? Örnek...5 : m x ( n+ 2 ) y = 5 x + (m+n)y = 7 s i s t e m i n i s a ğ l a ya n ( x, y) ik i l i s i ( 2, 3 ) i s e m. n d e ğ e r i k a ç t ır? Örnek...2 : (a+b 13)32+(a b 9)44=0 i s e ( a, b ) i k i l i s i n i b u l u n u z. 1/8

2 Örnek...9 : 2.YERİNE KOYMA YÖNTEMİ a +b =3 ab 3a 2b =4 ab i s e a k a ç t ır? Denklemlerden herhangi birinde, d e ğ i ş k e n l e r d e n b i r i ya l n ı z b ı r ak ı l ı r v e b u l u n a n b u d e ğ e r, d i ğ e r d e nk l em d e ye r i n e ya z ı l ı r Örnek...6 : x + y = 11 2x + 5y = 34 s i s t em i n i s a ğ l a ya n x d e ğ e r i k a ç t ı r? HATIRLATMA a x + b y + c = 0 d e nk l e m i n i n ç ö züm k üm e s i s o n s u z t a n e s ır a l ı ik i l i d e n o l u ş u r. Ç ö zü m k ü m e s i a n a l i t i k d ü zl e m d e b i r d o ğ r u b e l i r t i r. B u d o ğ r u ç i zi l i rk e n i k i n o k t a b u lm ak ye t e r l i d i r. B u l u n a n n o k t a l a r ın b i r l e ş t i r i lm e s i yl e d o ğ r u ç i zi lm i ş o l u r. x y = 5 2x+ y =13 s i s t em i n i s a ğ l a ya n y d e ğ e r l e r i ç a r p ı m ı kaçtır? Örnek...8 : Örnek...7 : Örnek...10 : D e n k l e m l e r i v e r i l e n d o ğ r u l a r ı n g r a f ik l e r i n i ç i zi n i z. a) 3x 4y 12=0 b ) x + 5 y= =2 y x =5 y x ise x kaçtır? c ) y= 3 x 2/8

3 Örnek...11 : GENELLEME D o ğ r u l a r ı v e r i l e n k oş u l l a b e r a b e r ç i zi n i z. a1x + b1y + c1= 0 a2x + b2y + c2= 0 a ) x+ y= 8 v e x > 2 ik i b i l i nm e ye n l i d e n k l e m s i s t em i n d e h e r b i r if a d e b i r d o ğ r u b e l i r t t i ğ i n d e n, d o ğ r u l a r ı n d u r u m u n a g ö r e ç ö züm incelenebilir: a1 b1 i s e d o ğ r u l a r k es i ş i r d o l a yı s ı yl a a2 b2 t ek ç ö z üm v a r d ır. 1) a 1 b1 c1 = = i s e d o ğ r u l a r ç a k ış ı r a 2 b2 c2 d o l a yıs ı yl a s o n s u z ç ö zü m v a r d ır. 2) a 1 b1 c1 = ise doğrular paraleldir a 2 b2 c2 d o l a yıs ı yl a ç ö züm yo k t u r. 3) b ) 3 x 5 y= 6 y< 2 Örnek...12 : ( 3m 2 ) x+ 4 y= x+ ( n 5 ) y= 1 6 d e n k l em s i s t em i n i n ç ö z üm k üm e s i s o n s u z e l e m a n l ı i s e m + n t o p l a m ı k a ç t ır? c) x 5 y x+3=0 Örnek...13 : x my = 12 3 x+ 5 y = 2 1 s i s t e m i n i n ç ö zü m ü b o ş k ü m e i s e m d e ğ e r i n e olabilir? 3/8

4 Örnek...14 : Örnek...17 : ( a + 7 ) x a y= x + 3 y= 2 5 d e nk l e m s i s t e m i n i n ç ö zü m k üm e s i t ek e l em a n l ı i s e a s e ç i m i n a s ı l o lm a l ı d ı r? m v e n t a m s a yıl a r o lm ak ü z e r e =1 n m n+m 10 e ş i t l i ğ i n i s a ğ l a ya n m v e n d e ğ e r l e r i n i b u l u n u z. UYARI a x + b y = 0 d e nk l em i h e r x v e y d e ğ e r i i ç i n s a ğ l a n ı yo r s a, a= 0 v e b = 0 o l m a l ı d ır. ( 2 x y+ 5 ) a + ( x+ y) b = 0 eşitliği her a, b için doğru ise y kaçtır? Örnek...16 : (m 3 ) x+ ( n + 1 ) y= 0 d e nk l e m i h e r x v e y r e e l s a yı s ı i ç i n s a ğ l a n ı yo r s a ( m, n ) ik i l i s i n e o lm a l ı d ı r? Örnek...15 : Örnek...18 : a+b=2 a+c=7 b + c = 9 i s e a. b. c k a ç t ır? Örnek...19 : a+ 2 b = 3 a+ 4 c = 4 b c = 5 o l d u ğ u n a g ö r e, a k aç t ır? 4/8

5 Örnek...20 : Örnek...22 : EŞİTSİZLİK GRAFİKLERİ ax + by + c < 0 ifadesi koordinat d ü zl e m i n d e g ö s t e r i l i rk e n : AD I M 1 a x + b y + c = 0 a l ı n a r a k g r af i ğ e ait noktalar bulunur AD I M 2 <, > i ç i n k e s ik l i,, i ç i n s ü r ek l i ş e k i l d e g r af ik ç i zi l i r AD I M 3 G r a f i ğ e a i t o lm a ya n b i r n o k t a denenerek bölge bulunur AD I M 4 B u l u n a n b ö l g e t a r a n ı r. Örnek...21 : 3 x 2 y 1 2 < 0 e ş i t s i zl i ğ i n i d ü z l em d e ç i zi n i z x 5 y+ 8 0 e ş i t s i zl i ğ i n i d ü zl em d e ç i zi n i z. a, b, c n e g a t if r e e l s a yı l a r v e a.b=12 a.c=3 b.c=4 olduğuna göre, a.b.c kaçtır? Örnek...23 : x + 3 y > 0 e ş i t s i zl i ğ i n i d ü zl e m d e ç i zi n i z Örnek...24 : x 2 y+ 4 0, x 2 y 4< 0 e ş i t s i zl i k s i s t em i n i d ü zl e m d e ç i zi n i z 5/8

6 Örnek...25 : Örnek...28 : x 2 =3, y =5 e ş i t s i zl i k s i s t em i n i n 4 3 d ü zl e m d e s ın ır l a d ığ ı b ö l g e n i n a l a n ın ı b u l u n u z 5 x 4 y , 2 x + 3 y+ 8 < 0 e ş i t s i zl i k s i s t em i n i d ü z l em d e ç i zi n i z Örnek...26 : Örnek...29 : x 4 y+ 8 > 0, 3 x + 2 y 4 < 0 v e y> 0 e ş i t s i zl i k s i s t em i n i n d ü zl em d e s ı n ı r l a d ı ğ ı b ö l g e n i n alanını bulunuz y x 3 <1, e ş i t s i zl ik s i s t e m i n i n d ü zl e m d e 4 s ın ı r l a d ığ ı b ö l g e yi ç i z e r ek g ö s t e r i n i z. Örnek...27 : x y x y + <1 <1 v e x > 0 e ş i t s i zl ik s i s t e m i n i n d ü zl em d e s ı n ı r l a d ı ğ ı b ö l g e n i n a l a n ı n ı b u l u n u z HATIRLATMA Ş ek i l d e x ek s e n i n i A ( a, 0 ) v e y ek s e n i n i B(0,b) n ok t a s ı n d a kesen doğrunun d e nk l e m i x y + =1 o l a r ak a b ya z ıl a b i l i r. y b x a d 6/8

7

8 1) 2x y = 8 x + y = 13 olduğuna göre, x y kaçtır? 2) x + 2y = 4 3x + y = 17 denklem sistemini sağlayan (x, y) ikilisi nedir? 3) 2x + 3y 28 = 0 3x + 2y 27 = 0 olduğuna göre, x y farkı kaçtır? 4) 5) 2x my = 6, nx + 3y = 3 denklem sisteminin çözümü (1,2) ikilisi ise (m,n) ikilisi nedir? ax + y + 2 = 0 2x + 3y + b = 0 denklem sisteminin çözüm kümesi sonsuz elemanlı olduğuna göre, a +b toplamı kaçtır? DEĞERLENDİRME - 1 6) (3m 2)x+4y=12 5x + (n 5)y = 16 denklem sisteminin çözüm kümesi sonsuz elemanlı olduğuna göre, m + n toplamı kaçtır? 7) 2x ay =12 (a + 7)x + 3y =32 denklem sisteminin çözüm kümesi boş küme olduğuna göre, a kaç olabilir? 8) (3a + 1).x + 3y 8 = 0 5x + y + 12 = 0 denklem sisteminin çözüm kümesinin boş küme olabilmesi için, a kaç olmalıdır? 9) (m-3)x+(1+n)y=0 denklemin her (x,y) için sağlanıyorsa (m,n) ikilisi nedir? 10) xy 3y=2 ise x in hangi değeri için y bulunamaz? 8/8

ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ İ ğ ç ğ ğ ç ç ğ İ ğ ğ İ ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ İ ğ İ ğ İ ğ İ İ ğ ç ç ç ğ ç ğ

ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ İ ğ ç ğ ğ ç ç ğ İ ğ ğ İ ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ İ ğ İ ğ İ ğ İ İ ğ ç ç ç ğ ç ğ İ İ İ İ ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ İ ğ ç ğ ğ ç ç ğ İ ğ ğ İ ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ İ ğ İ ğ İ ğ İ İ ğ ç ç ç ğ ç ğ ğ ç ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ğ ğ ğ ç ğ İç ğ ğ ğ ğ ç ç ğ ç ğ ç ğ ğ ğ ç ç

Detaylı

Ğ İĞİ Ü ğ ğ ğ Ş ğ ö ğ ğ ğ ğ ö Ç Ç Ç Ğ Ç ÜÜ Ğ Ş Ğ Ç Ğ Ç Ğ Ğ İ Ş İ İ ğ ğ ğ İ İ İ İ Ü İ ğ ğ ğ ÖÇ ğ ö ğ ö ö ğ ö ö ğ Ç ğ ö ö ğ ö ö ö ö ğ ğ ö ğ ğ ö ö Ç Ü İ Ş İ İ ğ Ş İ İ İ İ Ş ö Ç ö ö ğ ğ ö ö ğ ö Ç Ç İ İŞ İ

Detaylı

«Ğ ğ İ ğ Ü Ü İ İ ğ ğ Ü Ü İ İ Ğ ğ ğ İ İ Ü Ü İ İ Ü İ Ğ Ü Ü ÜĞÜ Ğ İİ İ Ü ğ İ İ İ İİ İ İ Ç İ İ İ ö ö ö ğ İ İ Ö İ ö ğ Ö ğ ö ö ğ ö İ ğ ğ ğ ğ Ü Ü İ İ İ Ğ ğ ğ Ç ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ö ğ ğ ö ğ İ ğ İ ö ğ ğ ğ ğ

Detaylı

Ü Ü İ İ İ Ğİ Ü Ö İ İ Ğ Ğ İ ç İ Ğ ç ç ç İ ç ç İ İ ç ç ç İ ç ç İ ç ç ç Ü Ü İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç İ ç ç ç ç ç ç ç Ü İ ç ç İ Ö ç Ü ç ç ç ç ç ç ç ç Ü ç Ü Ü ç İ ç ç İ ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

Ç ö ö ö Ü Ö ö

Ç ö ö ö Ü Ö ö Ç ö ö ö İ Ö ö Ç ö ö ö Ü Ö ö İ İ Ğ Ü Ü ÜĞÜ Ü Ö Ö Ğ Ğ İ Ğ Ü Ü ÜĞÜ ö Ğ Ö ö ö ö ö ö ö ö ö Ö Ü Ü ö ö Ğ Ö Ç Ğ Ö ö Ç Ğ Ö İ Ü Ü Ü Ü Ü Ü Ö Ü Ü Ğ Ö Ö Ü Ü ö ö ö Ö Ü Ü Ö Ü Ü ö ö ö ö ö Ğ Ö Ğ Ö ö Ö Ö Ü Ü ö Ğ Ö ö Ğ Ö

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

DENKLEM KURMA PROBLEMLERİ

DENKLEM KURMA PROBLEMLERİ DENKLEM KURM İ SYI KESİR İ Örnek... : H a n g i s a yın ın d ö r t t e b i r i n i n 4 e k s i ğ i n i n 2 k a t ı 5 6 d ır? i r p r o b l e m i ç ö ze r k e n, s o r u d a ye r a l a n v e r i l e r i,

Detaylı

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ C) ÖZEL DOĞRU DENKLEMLERİ Örnek...17 : A ( 3, 6 ) n ok t a s ı n a n v e o r i j i n e n g e ç e n o ğ r u n u n e n k l em i n e i r? 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ eksenini A(a,0)

Detaylı

Ğ Ğ Ü ğ ö Ü Ç Ç Ş Ş

Ğ Ğ Ü ğ ö Ü Ç Ç Ş Ş Ğ Ğ Ü ğ ğ ö ö Ş Ü Ş Ç Ğ Ğ Ü ğ ö Ü Ç Ç Ş Ş Ş ö ö ğ ö ğ ğ ö ö ö ö ğ ö ö ö ğ ğ ö ö Ğ ğ öğ Ğ ğ Ü ğ ğ ğ ğ ğ ö ö ğ ö ğ ğ ö ö ö ğ ö ö ğ ğ Ş ğ ö ğ ğ ö ğ ö ğ ğ ö ö ğ ö Ü ğ ö Ş ğ ö ğ ğ ğ ğ Ş Ğ ğ ö ö ğ ö ö ğ ö ğ

Detaylı

İ İ İ Ğ İ İ İ İ Ğ Ğ Ş Ç Ş Ö Ş Ç İ Ç İ Ç Ş Ç Ü İ İ İ Ş Ş Ş Ş Ö Ç Ş Ş Ğ Ş Ç Ö Ş Ö Ö İ Ş Ç Ş Ş Ç Ş Ğ Ğ Ğ Ç İ Ğ Ş Ş Ç Ç Ş İ Ç Ş Ş Ş Ş İ Ğ Ö Ö Ş Ç Ş Ç Ş Ş Ş Ü Ö Ö Ö Ö Ö Ç Ç Ç Ö Ş Ç Ö Ö Ş İ İ Ç Ş Ş Ğ Ü Ş İ Ö

Detaylı

Ç Ç ü Ş ç Ü İ İ İ İ İ Ü İ İ Ş ğ ü Ö ç ç ü ç İ Ü ç İ İ ü ç ü ç İç ö ö ö ö ü ü ü ü ü ü ö Ü İ Ö İ ç ö ğ ü ö ç ç ö ç ö ü ğ ğ Ş ç Ç Ç Ş ü ö ç ğ ç ü ü ü ö ö ü ö ü ü ü ğ ğ ç ğ ğ ü ü ü ç ö ğ ç ğ ö ğ ğ ğ ç ü ü

Detaylı

ü Ğ İ Ğ ü İ ç ü ü ü ç Ç ü ü ç Ç ü ü ç ü ü Ü Ç Ü ç ü ü ü ü ü ç Ç ü ü ç İ ü Ğ Ş İ İ ü Ğ İ Ğ ü İ Ö üçü ü Ö Ö ü Ö ü İ İ Ş Ğ İ İĞİ ü ü ü Ğİ İ Ğ İ Ğ ü Ö Ö Ü İĞİ ü Ü İ İ Ğİ ü ü Ğ İ İ İ İ İ İ ç ü ç ü ç ü ü ç ü

Detaylı

ç ç ö Ğ Ö Ş ö ü ü Ş ç ö ü ç ğ ü ç ç Ğ Ü Ü ÜĞÜ ç ö ö ü ç ü üç ç ğ ü ü Ş ğ ü ü üğü ç ö ö ü ç ü ö ç Ş Ş ü ü üğü Ğ Ğ Ş ü üğü Ğ ç ü ö ğ ü ö Ö Ü Ş ü ü ü Ğ ğ ü ö ğ ü ü üğü ğ Ö Ğ ğ ü ü ü ç ö ö ü ö ü ü ğ ç ç ö

Detaylı

İ Ç Ü ö üğü İ Ö ö üğü Ş ü öğ ü ç Ç ü ü ü Ç Ü ç ğ ç ğ Ğ ç Ş ğ ç ö ğ ğ ü ç Ü Ç ö üğü ö ü ü İİ Ç ğ ü ğ ç ğ ü ü ü ç ü ü Ş ü ğ ç ü ü ç ü ü ç ö Ö Ş Ö ğ ö ü ç ğ İ Ç Ü Ç ğ Ç ğ Ü Ü İ ü ç ğ ğ ğ ğ ğ ğ ç Ç ç ü ç Ş

Detaylı

İ Ç Ü ş ö üü ş ş ö üü Ü ü ü ö ü ç ü ü ü Ö Ü Ü Ö ç ç ş ş ç ç ü İ ü ç Ü ç ş ö üü ö ü ü ç ş ş ü ş ş ç ş ş ü ü ü ç ü ş ü ç Ş ü Ü ç ü ü ü ç ş ş ö ş Ö ş Ö ş ö ü ç ş Ç Ü Ç ş Ç İ Ü İ Ü Ş ş ü ş ö çü ü Ç Ü ü ö ş

Detaylı

ü ü üğü ğ Ö ü ö üş ö İ ü ü üğü ş ğ ç İ ç Ş ç ş ğ ş ş ğ ç ö ç ğ ş ş ş ö ü ğ ş ğ ü ü üğü ü ğ ö ü ü üğü ş ğ ş ş ş ö ü ç ğ ö ü ğ ö ü ü üğü ş ö ğ ç ğ ü ü üğü ü ğ ü ü üğü ü ü ü üğ ü ğ ö ü ğ ş ö üş ü ü üğü ü

Detaylı

İ İ İ İ İ İ İ İ İ İ Ö İ İ İ İ İ Ü Ç İ Ş Ş İ İ Ü İ İ İ İ İ İÇİ Ö Ö Ç Ç Ç İ Ü Çİ İ Ü Ü İ İ İ İ İ İ İİ İ Ç Ş İ İ İ İ Ü Çİ Ö İ Ü Çİ İ İ Ü İİ İ Ç Ö İ Ö İ Ç Ç İ Ç Ö İ İ İİ İ Ç Ç Ç Ü İ Ç İ Ç İ Ş Ç İ Ğ İ İ İ İ

Detaylı

ç ğ ğ ğ ç ç ç ğ ç ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ğ ğ ç ğ ğ ç ç ğ ğ ğ Ü ç ğ ç ç ç ğ ç ç ğ ğ ğ ğ ğ ğ Ü ğ ğ ç ç ç ğ ç ğ ğ ç ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ğ ğ ğ ç ğ ç ğ Ü ğ ğ ğ ç ç ğ ç ğ Ü ç ğ ğ ğ ç Ü ç ç ç ç ğ ç ğ ğ

Detaylı

ü ü ü ö ü ü Ö Ö Ö öğ öğ ü ü İ ç ö ü ü ü Ü ü ö ü ü ö ö ö ö ö ç ö ö ü ö ü İ Ö Ü ü ü ü ü ö ü ö ü ü ü ü ü ç ü ö ç Ö ü ç ö ö ö ü ü ö ö ö ç ü ç ö ç ö ö ü ö ö ç ü ç ç ö ü ü ü ü ö ü ü ö ü Ö Ö ö ü ü Ö ö ö ö ü ü

Detaylı

ç Ğ Ü ç ö Ğ «ö ç ö ç ö ç ç ö ç ç ö ö ö ç ç ç ç ö ç ç ö ç ç ç ö ö ö ç ç ç Ç Ö Ü ç ç ç ç ç ç ç Ü ç ç ö ö ç ç ç ö ç ç ç ö ö ç ç ö Ç ç ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ü ö ç ç ç ç ç Ç Ç ç ç Ç

Detaylı

Ü ş ğ ğ Ü ş Ç ğ ş ş Ç ğ ş Ü ğ Ü ş ğ Ü Ç ğ ğ Ü ğ ğ ğ ş ğ ğ ğ ş ş ğ ş ş ş Ç Ç Ö ş ğ ş ş ğ ş ğ ğ ş Ü Ç ğ ş ğ ş ş ğ Ü ğ ş ş ğ ş ş ş ş ş ş ğ ğ ş ş ş ş ş ş ş Ü ğ ş ş Ü Ç ğ Ç Ç ş ş ş ğ ş Ö ÇÜ Ö ş ğ Ö ş ş ğ ş

Detaylı

ö Ü Ü ö Ö ğ ğ ğ ö Ü Ş ö Ü Ğ ö Ü ö Ü ö ğ ö ğ ö ö ğ ğ Ş Ü ğ ö ğ ğ ğ ğ ğ Ş Ş ğ ö ğ ğ ğ ğ ğ ö ö Ş ğ Ç ğ Ç Ş ö Ç ö ğ Ç ğ ö ğ ö ö ğ ö ğ ö Ş ğ Ç ğ Ç ğ ğ Ç Ş ö ö ö ğ Ç Ş Ç ö ö ğ ğ ğ ğ Ü Ü ö ğ «ğ ğ ğ ö ö «ö ğ ğ

Detaylı

Ç ö Ü ğ ö Ş ç ç Ş Ü Ö Ü Ü ö Ü ğ ğ ö ö ç ç Ü ğ ç ç ğ ğ ğ Ü ğ ö ö Ş ö ç ğ ö ç ç ğ ç ç ö Ş Ş ö ğ ç Ç ç ö ö ç Ç ö ğ Ü ö ğ ğ ç ö ç ğ ç ğ ö ç ö ö Üç ğ ö ç ö ç ö ç ğ ö ğ ö ç Ç ğ ç ç ğ ö ö ç ç ç ğ ğ ç ğ ç ğ ç

Detaylı

Ü İ İ İ İ ö İ ö ğ ğ Ü ö Ş Ç ğ İç Ş Ç ğ Ü ö İ İ ğ Ü ö ğ Ü ö İ İ Ş Ç ğ İ İ ğ Ü ğ ğ ğ ç ç ö ğ ö ö ğ ğ ğ ö ç ç Ç Ç ö Ö ğ ğ ç ç Ş ğ ğ Üç Ç ğ ç ö Ş Ç ğ ğ Ş Ü ğ ğ Ş ğ ç ç ç ğ ö ö ğ ö ö İ ç ç ğ ğ Ü ö İ İ ğ Ş ğ

Detaylı

Ç Ü ö ö Ü ö ç Ö Ü ç ö ç ç Ğ ç ç ç ö ö ç ç Ü ç ö ö ç ç ç ç ç ç ö Ö Ş Ö ö ç Ç Ü Ç Ç Ü Ü ö ç ö ç ç ç ç ö ç ç ç ö ç ö ö ö ç ö ö Ü ç çö çö Ü ç çö Ö ö ö çö ç Ü ö ç ç ç çö ç ç ç ö ç çö çö ö ö ö ç Çö çö çö ö ç

Detaylı

İ Ç Ü ö üğü İ ö üğü ü öğ ü ü ü ü Ö ği İ ü ö İ ğ Ğ Ü Ç ö üğü ö ü ü Ç ğ ü ğ Ş ğ ü ü ü ü ü ğ ö ü ü ü ü ü ö Ö Ş Ö ğ ö ü Ç ğ İ Ç Ü Ç ğ ğ Ü Ü ü «ü ö üğü İ Ü Ö Ü İ Ş İ Ü ü ö ü ö ğ ü İ «Ö ü ö ü İ ğ Ş ü Ş ö ö ü

Detaylı

Ç Ç ç Ğ ç Ö Ğ Ş ç Ö Ö Ğ Ğ Ö Ö Ç Ü ç Ç Ü ç Ö ç ç ç ç Ğ ç ç Ç Ç ç Ç Ü ç ç Ç ç ç ç Ö ç Ö Ö ç ç ç ç ç ç ç ç ç ç ç Ö Ş ç ç ç ç ç ç ç ç Ü ç ç Ü ç ç ç ç ç ç ç Ö Ç ç ç ç ç ç ç ç ç ç ç Ö ç ç Ğ Ç Ü ç ç Ç Ü ç ç Ç

Detaylı

Ç Ü ğ Ç ç Ğ ç Ü ç ğ ç ğ ğ ç ğ ç ç ğ ç ç Ö Ş Ö ğ ç ğ Ç Ü Ç ğ Ç ğ Ü Ü Ç Ü ğ ğ Ü ğ ç Ç ğ Ü ç ç ğ Ğ Ğ ç ç ğ ğ ğ ğ ğ Ğ Ğ Ğ Ğ Ğ Ş Ş Ç Ö Ö ç Ç ğ ç ç ğ ç ğ ç ç ç ğ ç ç ç Ü ç ç ç ğ Ö Ü Ç Ş Ş ç Ö ç ğ ğ ğ ç ğ ğ ğ

Detaylı

ç ü ü ç ç ş İ Ç Ü ş İ Ç Ü ç ş ü İ Ç Ü ş ş ç ş ü Ö ü Ö İş ş ç İ Ç Ü ş ş ç ü ç ş ş İ Ç Ü ş ç Ü İ Ç Ü İ Ç Ü ü ç ş ş ş İ Ç Ü ç ü ş İ Ç Ü İş ş ş ü ş İ Ç Ü ş ü ş üç ü ş ş ş ç ü ü ç ş ş ş ş ü ş ü ü ş ç ü ç ç

Detaylı

İ Ç Ü ş ö ğ ş ö ğ Ü öğ ç ş Ö Ü ğ ç ö ç ş ş ğ Ğ ç ç ğ ğ ö ş İ ç Ü ç ş ö ğ ö ç ç ş ş İ ğ ş ğ ş ç ş ğ ş ç ş ğ ç ç ş ş ö ş Ö Ş Ö ğ ş ö ç ş ğ Ç Ü Ç ğ ş Ç ğ İ Ü İ Ü ö ş ş ş ğ ç ş ö ğ çö ğ ş ş ç ö ş ş ş ğ ç ş

Detaylı

Ş İ İ İ ç İ İ İ İ ç ç ç Ç ç ç ç ç İ Ö İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ö Ö ç ç ç ç Ö ç Ö ç ç ç ç ç ç ç Ç ç ç ç Ç ç ç ç ç ç Ç ç Ö ç ç ç ç Ç ç Ö Ç ç ç Ş ç ç Ç Ş ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

Ş İ İ ç İ İ İ İ ç Ş ü ü ü ü ç ü üç ü ü ü ç ü ü Ü İ Ğ Ş üç ü İ ü ü ü ç ü ç Ç ç İ ü üç ü Ç üç ü ç ç Ç ü Ç ç üç ü ç Ç ç ç ç ç Ğ Ğ ç İ ü ü ç ç ç ü ü ü Ü ç ç ü ç ç ü ü ü Ö ü ü ü ü Ü ü ü ç ü ç ç ü ü ü ü ç ü

Detaylı

Ü Ö Ö ö ö Ü Ü Ö ö ç ç ö ç ö ç ç ö ö ö ö ö ç ö ö ç ç ç ç ç ç ö ö ö ö ç ç ö ç» ö ö ö ö ç ö ö ö ö ç ö ç ö ç ö ç ö ö ç ç ç ç ö ö ö ç ç ç ç ç ç ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ö ç ç ç ö ö ö ç ç ç ç ö ç ç ç ç

Detaylı

Ü Ü Ğ Ş Ş Ş Ş Ş Ü Ğ ç Ş Ğ Ü Ü Ğ Ü Ş Ö ç ç Ğ Ğ Ü Ş Ü Ş Ş ç ç Ç Ü Ş Ç Ç Ü Ş Ş Ü Ü Ü Ü Ü Ü ç Ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç Ş Ğ Ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ş ç ç ç Ç ç ç ç ç ç ç Ç ç Ç ç ç ç

Detaylı

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ

ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ İ Ş Ş İ İ Ö İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ ğ Ö Ö Ç ğ ğ ğ ğ ğ Ü ğ İ ğ ğ Ç İ ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ş ğ ğ ğ Ü ğ ğ ğ ğ Ö ğ ğ Ö ğ ğ ğ

Detaylı

İ» Ö İ İ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ İ ö ö ç ğ ğ ğ ğ ğ Ö Ü Ü ğ ğ ğ ö ğ ğ ğ ğ ö ğ ğ İ İ İ İ ğ ğ ğ ö İ ğ ğ ğ ğ ğ ö ğ ğ ö ö ğ öğ ğ ğ ğ İ ö ç ç ğ ö ö ç ğ ç ç ğ ç ğ ö ç ğ ğ ğ ğ ğ ğ İ Ü Ş İ ö İ ğ ğ İ İ ğ ğ ğ ç ğ ğ

Detaylı

ğ Ş ğ ş ğ İ ö ç ö ö İ ğ ş ş ç ç ğ ç ğ ş ğ İ Ş Ü İş ö Ö ğ Öğ ş ğ ğ İ ö ö Çğ ö İ ö ç İ ş ş ş ç ş öğ ş Ş ğ ö ğ ş ö ğ İ ğ ö ş ş ş ğ ğ İ ş ğ çö ğ ğ ş ö öğ ç öği İ ğ ğ ğ ğ öğ ö ş ğ İ ç ş İ İ ğ ç İ İ Ö ÖĞ İ ğ

Detaylı

Ğ Ğ Ü Ü Ö Ü Ö Ö Ö Ü Ö Ü Ü Ü Ü Ü İ İ Ü Ü Ö Ö Ü Ö Ü Ö Ü Ö İ Ü Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ü Ö İ Ö Ü Ö İ Ö İ İ İ İ İ İ İ İ İ İ Ö Ö Ö Ö Ö Ö Ö İ Ü İ Ü İ İ İ İ İ İ İ Ö İ Ü İ İ İ Ö İ Ö Ö İ İ Ö Ö İ İ İ İ İ İ İ İ İ İ Ö

Detaylı

Ğ ü ü ç ş ş ğ ğ ğ ğ Ö ü ğ ş ğ ü ş Ç ş ş Ç ş ü ü ü ğ ç ç ş ü ş ş Ç ş ü ü ü ü ğ ş ş ü ü ş ş ş ü ü ğ ü üğü ş ç ü ü Ç ç ğ ü ü üğü ğ ü ç ş ş ş ş ğ ç ü ü ü ş ş ş Ç ş Ç ğ Ç ğ Ç Ç ü ş ş ü Öğ ü ş ş ğ ç Ç Ç ş Ç

Detaylı

Ü Ğ Ğ Ş Ö Ü Ü Ğ Ğ ü ü ü ü ü Ö Ü ü ü ü Ş ü ü Ş Ş ü ü ü ü üü ü Ş ü ü ü ü ü ü ü Ç ü ü ü ü ü ü ü üü ü ü ü üü ü ü ü ü ü ü ü ü Ş ü ü Ö ü ü ü ü ü ü ü ü Ç Ş Ç üü Ş ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü Ş ü ü ü Ü ü ü

Detaylı

Ğ Ğ ö Ş Ş Ğ Ş Ş Ü Ş Ğ Ğ Ğ ö ö Ğ Ş Ş Ğ Ğ ö Ğ ö ö ö ö ö ö ö ö Ü Ş Ö Ö Ö Ş Ş Ç Ü ö Ü Ü Ğ ö «ö ö ö Ğ Ş ö ö ö ö ö ö ö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ö ö ö Ö Ö ö ö ö ö ö ö ö ö ö ö Ö Ö ö ö Ç Ö ö Ü ö

Detaylı

İ Ğ Ş İ» Ğ Ğ ö Ğ ö ö Ç ö Ç İ Ş ö ö ö ö ö ö ö ö ö ö ö Ç ö ö ö ö ö ö İ İ ö ö ö Ü ö ö ö ö ö ö ö Ş ö ö İ ö ö İ ö ö İ İ ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ç İ İ ö İ İ İ İ Ö İ Ç ö ö Ö Ç ö ö ö ö ö ö ö ö ö ö

Detaylı

Ğ Ğ Ö İ İĞİ» Çö İ İ İĞİ Ç İ İĞİ Ü İ İĞİ İ İ ö ö ö Ğ İ ç Ö Ö ö ö ö ç ç ö Ö ö ö ö ö ö Ö ç ç ç ç ç Ğ ç Ğ İ Çö öğ ö İ İ İ ç ö ö ç Ğ İ ö ö İ İĞİ İ İĞİ Ğ Ç Ğ ö ö ö Ğ ç Ö Ö ö ç ö Ö ö ö ç ö ö ö ç Ö ç ç ç ç ç Ğ

Detaylı

ANALİTİK GEOMETRİ KARMA / TEST-1

ANALİTİK GEOMETRİ KARMA / TEST-1 NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri

Detaylı

ş Ş ş ç ş ş ç ş ş ç ş ş ş ş ç ç ç ç ş ş

ş Ş ş ç ş ş ç ş ş ç ş ş ş ş ç ç ç ç ş ş şş ç ç İ Ç Ü Ğ ş Ç ç ş ç ş ç ç Ö ç Ö ş Ş ş ç ş ş ç ş ş ç ş ş ş ş ç ç ç ç ş ş ç ş ç ş ş ş ç ş ş ç ş ş ç ş ş ş ç ç ç ç ç İ ş ç ş ç ş ç ç ş ş ş ç ş ç ş ş ç ş ç ç ş Ö ç ş ç ç ç ç ş ç ş ç ş ş ç ç ş ç ç ş ş

Detaylı

Ü İ ç ç ğ İ ö ç ö İ İ

Ü İ ç ç ğ İ ö ç ö İ İ İ İ ç İ ğ İ İ Ş İ ç ğ Ö İ İ ç ö Ü İ ç ç ğ İ ö ç ö İ İ » İ ö İ Ç ö ğ ç ğ ç ç ğ ğ ğ ö Ç ğ Ç ç ğ ğ ç ç ç ö ç ç Ç ğ İ ç ö ç ç ç ç ç ğ ğ ç ö ğ ç ç ğ Ş ğ ç ğ ğ ğ ç ç ğ ğ ö ö Ş ç ç ç ö ç ğ ç ğ ğ ğ İ ö ğ İ ö İ

Detaylı

SAYI KÜMELERİ. Örnek...1 :

SAYI KÜMELERİ. Örnek...1 : SAYILAR SAYI KÜMELERİ RAKAM S yı l r ı i f d e e t m ek i ç i n k u l l n d ı ğ ı m ız 0,,,,,,6,7,8,9 semollerine rkm denir. DOĞAL SAYILAR N={0,,,...,n,...} k üm e s i n e d o ğ l s yı l r k üm e s i d

Detaylı

Ü Ğ Ğ ŞŞ ş Ğ ö Ğ ç ö ö ş ş ş ö ö ç ö ş Ç Ğ Ğ ç ş Ğ ş ç ö ş ç ş ş ö ö ş ö ş Ü ş ş ş ç ç Ü ş ş ö ş ş ö ş ş ş ö ç ş ö ş ş ö ş ş ç Ş ş ö ş ş ö ö Ç ç Ş ş ç ş ş ş ç ş ş ç ş ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ş ç

Detaylı

ğ Ç ö ğ ğ ğ ğ ğ ö ğ Ş ğ ğ Ş Ş Ş ö ö ö ğ Ş ö ğ ğ ö ğ ö ğ ğ ğ Ş ö ö ğ ö ğ ğ Ç ğ ö ğ ğ ö ö ğ ğ ö Ö Ç ö Ç ö Ç ö Ç ö ğ ö ö ğ ğ ö ğ ö ğ ğ ğ ğ Ö Ü ğ Ç Ç Ç ğ ö ğ ğ ğ ö ö Ş Ç ğ Ö Ş ğ ö Ç Ş ğ Ç Ş Ç Ş ö ö ö ö Ç ğ

Detaylı

Ş ü ü ç ç Ş ü Ş ü ç ç

Ş ü ü ç ç Ş ü Ş ü ç ç Ç Ü üü üü ü ü ç ü ü ü ü ü ü Ş Ç Ü Ğ Ç Ö Ğ Ğ ç Ü ç üü Ğ ü ç ü ç Ü ü ü Ç ü ü ç ü ü Ç ü ü ü Ç ü Ç ç Ü Ç Ç Ü Ü Ş ü ü ç ç Ş ü Ş ü ç ç Ş ç ç ç ü ü Ü ç ü ç ç ç ç ç ü ü Ü ç ç ç Ş çü ü ç ü ü ü ü ç ç ç ü Ü ç ç ü

Detaylı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı Ü Ğ Ş ö İ Ş ç ç Ğ ç ö Ü Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ğ ğ ç ö Ü ğ Ç Ö İ ğ ğ ğ Ş ö ç ç ö ö ç ö Ü İ İ ö ö ç «ğ Ü Ş ğ ö ğ ç ğ ç ö ç ç ç ç ö ö ö ç ç ç ö ç ö İ ö Ü ö ğ Ü Ş Ü Ş ö ç ç İŞ ğ ğ ğ ö İŞ ö İ Ü İ İ İ İ

Detaylı

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ğ ö ö İ ğ ğ ğ ö İ ö İ İ ö İ İ ğ İ İ ğ ğ ğ ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ö ğ İ ö ö ğ ö ğ ğ ğ İ İğ ö ğ ğ ğ ğ ğ ö ğ ğ ğ ğ ğ ö ğ ö ö ğ ö ğ ğ ğ ğ ğ Ş ö ö Ş ğ ğ ğ ğ ğ ğ

Detaylı

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler DERS ki De i kenli Do rusal Denklem Sistemleri ve Matrisler.. Do rusal Denklem Sistemleri. Günlük a amda a a dakine benzer pek çok problemle kar la r z. Problem. Manavdan al veri eden bir mü teri, kg armut

Detaylı

ü Ş ç Ş üç ü ö ü ö ö ü ö ç ü Ö ö ü ü ö ö üç ü ö ç ç ç ç ç Ö ü üç ü ö ç Ç ö ç ç ç Ş ö ç ö ü ö ç ç Ç Ç ç ç ç üç ü ö Ç ç ü ö ü ç ü ö ü ö ü ç ü ç Ğ Ğ ö ü ç ü ö Ş ç ö ü ü ü ü üö ü ü ü ö ö ü ü ç ö ö ö ç ç ü

Detaylı

ç Ğ İ Ğ İ ç ç İ ö ç ö ç ç ç ç ö ö İ İ ç ç ö ç Ü Ü İ İİĞ İÜ Ş ç Ç Ş ç ç ç ç ö ç ç İ «ç İİ İ İ İ Ş ç İ Ş ö Ş Ç Ç ö ç ç ç Ğ ö Ş ö Ş Ğ ç ç Ğ ç Ç ç ç ç ö ç ç ç İ Ş Ğ ö Ğ ç ç ç ö İ ç Ç İ Ş Ğ İ ç İ İİ ç ç Ğ İ

Detaylı

İ Ç Ü ş İ İ ö üğü ş ş ö üğü ü ü İ öğ ü Ç İ Ö Ü ü ğ ç ö ü ü ü ç ç ş ş ğ ç ç İ Ç Ü ş ö üğü İ İ İ İ İ İ ö ü ç Ü ç ş ö üğü ö ü ü İ Ç Ü ş ö üğü ç ç ş ş ğ ü ş ğ ş ç ş ğ ş ü ü ü Ç ü ş ü ğ Ç ğ ü ü ü ü ü Ç ş ş

Detaylı

Ü ü «öü ü ö ü ö ü ü Ü ü ö ü ü Ü ü ö ü ü ü ü Ü ü ö ü ü Ü ü ü üü ö ü ü ü ö ö ö Ş ö ö Ş ö ö Ş Ş ü Ç Ç ö ö ü ü ö Ş ü ö Ç ü ü ö ü ü ü ü Ç ö ö ü ü ö ü ö Ş ö ü üü Ü ü ö ü ü Ö Ö Ü ü ü ü ü ö ü Ç ü ö ü ü ü Ü ü ö

Detaylı

Ü Ü Ü Ü ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ü ç ç ç ç ç Ü ç ç Ü Ü Ü ç Ü ç ç Ü ç ç ç ç Ü Ü ç ç Ü ç ç ç ç Ü ç ç ç ç ç Ü ç ç ç ç ç Ü ç ç ç ç ç ç ç ç ç ç ç ç Ö ç Ö ç Ü Ü ç ç ç ç ç ç ç ç ç Ö ç ç ç ç Ö ç ç ç ç ç ç

Detaylı

Ü Ü Ğ ç İ Ş Ğ ç İ Ü İ Ü Ş Ö ç ç Ğ» Ü Ş Ü Ş Ş İ İ İ ç ç ç Şİ İ İ ç Ç İ Ü Ş İ İ Ç Ç Ü Ş İ İ İ İ Ü İ İ Ü Ü ÜÜ İ Ş İ İ ç ç ç İ İ İ İ ç İ ç İ İ İ İ ç ç ç ç ç İ ç İ ç ç ç İ ç İ ç ç ç Ğ Ç ç İ ç ç ç ç ç ç İ ç

Detaylı

Ğ Ğ Ü Ü ÜĞ Ö Ö Ç ç Ö ç

Ğ Ğ Ü Ü ÜĞ Ö Ö Ç ç Ö ç Ğ ç Ğ ç Ç ç Ö ç ç ç ç Ğ ç ç ç Ğ Ğ Ü Ü ÜĞ Ö Ö Ç ç Ö ç Ğ Ğ Ğ Ö Ö Ç ç Ö ç ç ç ç Ğ Ö Ö Ö Ö Ö ç Ö Ğ Ğ Ö Ö Ğ «Ğ Ç ç Ö ç ç ç Ö ç Ç Ğ Ğ Ğ ç Ğ Ğ ç Ğ Ö ç Ö ç Ğ Ü ÜĞÜ Ö ç Ö Ğ Ç Ö Ö ç Ö Ü Ö Ö ç Ö ç ç Ö ç ç ç Ö ç

Detaylı

Ğ Ö İ» Ğ İ ç ç Ü Ö İ İ Ğ Ü Ş İ İ Ü Ü ç Ş ç ç ç İ İ Ğ Ğ «Ğ Ğ Ğ ç Ö ç ç Ö ç Ö Ç Ö Ç İ İ Ç Ö Ö ç Ö İ İ İ ç Ö ç Ö » Ğ ç Ş İ ç ç Ş Ş İ Ç Ö İ Ö ç ç Ö ç ç ç İ Ü ç Ç ç ç Ö ç ç ç ç Ö Ü İ İ Ğİ İ Ğ Ğ ç ç ç ç ç ç

Detaylı

ÝKÝNCÝ DERECEDEN DENKLEMLER TEST / 1

ÝKÝNCÝ DERECEDEN DENKLEMLER TEST / 1 ÝKÝNCÝ DERECEDEN DENKLEMLER TEST / 1 1. Aþaðýdakilerden hangisi ikinci dereceden bir bilinmeyenli denklemdir? 5. (3x 5).(x+1)=0 denkleminin köklerinin toplamý kaçtýr? A) x+y= B) x +y = C) x.y= D) x +x=

Detaylı