EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206"

Transkript

1 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE EXACT SOLUTIONS OF THE INITIAL VALUE PROBLEM FOR A CLASS OF SECOND-ORDER DIFFERENTIAL EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD Vedat Suat ERTÜRK Ondouz Mayıs Üniversitesi, Fen-Edebiyat Faültesi, Matemati Bölümü, 5539, Samsun ÖZET Geliş Tarihi: 8 Eim Kabul Tarihi: 9 Kasım Bu çalışmada iinci mertebeden bir lineer adi diferensiyel denlem sınıfı için başlangıç değer probleminin diferensiyel dönüşüm yöntemi olara bilinen nispeten yeni bir seri çözüm yöntemi ile çözümlerinin bulunması ele alındı.yöntem matematisel fiziğin üç farlı denlemine uygulandı ve tam çözümler elde edildi. Anahtar elimeler: Diferensiyel dönüşüm, Taylor serisi, Analiti çözüm, Başlangıç değer problemi ABSTRACT In this paper, the solutions of the initial value problem for a class of second-order differential equations are obtained via a recently new series solution method, the so-called differential transform method. The method is applied to three different problems of Mathematical Physics.The eact solutions are obtained. Keywords: Differential transform, Taylor series, Analytical solution, Initial value problem. GİRİŞ Bilim ve mühendisli alanında arşılaşılan bir ço fizisel problem iinci mertebeden adi diferensiyel denlemlere ilişin başlangıç değer problemi olara arşımıza çıar (Davis, 96; Groswald, 978). Son yıllarda bu tür başlangıç değer problemlerinin çözümleri ile ilgili olara bazı çalışmalarda özel iinci mertebeden Sorumlu yazar:

2 Başlangıç Değer Probleminin Diferensiyel Dönüşüm Yöntemiyle adi diferensiyel denlemlerin bir ço çözümleri elde edilmiştir (Hosseini and Nasabzadeh, 7; Wazwaz, 9). d d Bu çalışmada dy dy p( + q( + r( y = f (, > d d y ) = α, y'( ) = β () ( başlangıç değer problemi göz önüne alınacatır (Bougoffa, 9). Burada, p C ([, L]) q (, r( ve f ( süreli fonsiyonlar ve ( bu fonsiyonların süreli olduğu aralıdai bütün değerleri için p( dır. Diferensiyel dönüşüm metodu sırasıyla Lane-Emden tip başlangıç-değer problemlerine ve. mertebeden sınır-değer problemlerine uygulandı (Ertür, 7; Ertür and Momani, 7). Bu çalışmada ()-() probleminin ortaya çıardığı diğer bir tip denlem sınıfı ve bu sınıfa ait bilim ve mühendislite önemli yer teşil eden Hipergeometri Denlem, Euler Denlemi ve Legendre Denlemlerinin bazı tam çözümleri alternatif bir yöntem olara diferensiyel dönüşüm yöntemi ullanılara elde edildi. Diferensiyel dönüşüm yöntemi il defa eletri devre analizinde arşılaşılan lineer ve lineer olmayan başlangıç değer problemlerini çözme için ullanıldı (Puhov, 978; Zhou, 986). Bu yöntem polinom formda çözümler sunar ve Taylor seri yönteminde olduğu gibi türevlerin semboli olara hesaplanmasını içermez. Bilindiği gibi mertebe büyüdüçe Taylor seri yönteminde veri fonsiyonuna bağlı olara türev alma işlemi hesaplama açısından olduça işlem fazlalığı ortaya çıarır.oysa diferensiyel dönüşüm yöntemi sadece uvvet serisindei atsayıların ardışı olara hesaplanmasını içerir. Bu yöntem ile başlangıç ve sınır değer problemlerinin yüse esinlite yalaşı veya tam çözümlerini bulma mümündür. () EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-Yıl: 99-6

3 . MATERYAL VE METOT.. Diferensiyel Dönüşüm: Ertür f ( bir D bölgesinde analiti bir fonsiyon ve D olsun. T diferensiyel dönüşüm işlemini gösterme üzere f ( fonsiyonunun diferensiyel dönüşümü F(), d f ( F( ) = T[ f ( ] =! d (3) şelinde tanımlanır... Ters diferensiyel dönüşüm: = F () fonsiyonunun ters diferensiyel dönüşümü ise f ( = T [ F( )] = F( )( ) (4) = şelinde tanımlanır. (3), (4) de yerine onursa d f ( N f ( = + =! d.( ) = R N (5) yazılabilir. Burada R N, R N N + d f ( = N + d = ξ N + ( ). ( N + )! (6) ile tanımlı olup, N, f( in Taylor seri açılımında göz önüne alınaca terim sayısı ve < ξ < dır. Diferensiyel dönüşümün bazı özellileri Tablo de verilmiştir. EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6

4 Başlangıç Değer Probleminin Diferensiyel Dönüşüm Yöntemiyle Tablo. Diferensiyel dönüşümün bazı özellileri Esas fonsiyon Dönüşmüş fonsiyon f ( = u( ± v( F ( ) = U ( ) + V ( ) f ( = α u( F( ) = αu ( ) f ( = u( v( F( ) = U ( l) V ( l) l = m d u( f ( = F ( ) = ( + )( + ) K ( + m) U ( + m) m d m ( F( ) ( n) f = 3. BULGULAR, = δ, δ ( n) =, = n n Örne. Dejenere Hipergeometri Denlem(Bougoffa, 9) İl olara d y b dy + + y =, > d d y( ) =, y'() = (8) b başlangıç değer problemini ele alalım. (7) eşitliği ile çarpılırsa d y dy + ( b + y = (9) d d bulunur. Diferensiyel dönüşümün Tablo de verilen özellileri ullanılara (9) eşitliğinin diferensiyel dönüşümü alınırsa δ ( l( l + )( l + ) Y( l + ) + [ bδ ( l) δ( l]( l + ) Y( l + ) + Y( ) = () (7) EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-Yıl: 99-6

5 Ertür 3 [ δ ( l( l + )( l + ) Y( l + ) + [ bδ ( l) δ( l]( l + ) Y( l + )] + Y( ) = () olacağından ( Y( ) Y( + ) = () ( + )( + b) terar bağıntısı elde edilir. (3) eşitliği ullanılara (8) başlangıç şartlarının dönüşümü Y ( ) =, Y () = (3) b olara bulunur. () eşitliğinde = alınırsa Y ( ) = bulunur. Yine () eşitliğinde = alınırsa Y ( ) = olduğundan Y ( 3) = bulunur. Aynı işlem taip edilirse için Y ( ) = olduğu görülür. Şu halde (4) eşitliğinden y( = (4) b b y( = (5) b elde edilir. Bougoffa(9) da elde edilen çözüm (5) ile aynıdır. Örne. Euler Denlemi (Bougoffa, 9) İinci olara d y dy + y = 3, > (6) d d y ( ) =, y'() = (7) başlangıç değer problemini göz önüne alalım.(6) eşitliğinin diferensiyel dönüşümü alınırsa EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6

6 4 Başlangıç Değer Probleminin Diferensiyel Dönüşüm Yöntemiyle l + )( l + ) Y( l + ) + l l + ) Y( l + ) Y( ) = 3 l (8) l + )( l + ) Y( l + ) + l + ) Y( l + ) Y( ) = 3 (9) l l olacağından 3 Y( + )( + )( + ) ( ( + ) Y ( ) ( + ) = Y () ( + )( + ) bulunur. (3) eşitliği ulllanılırsa (7) şartlarının dönüşümü Y ( ) =, Y() = () şelinde olur. () eşitliğinde = alınırsa Y ( ) = bulunur. Yine () eşitliğinde = alınırsa Y ( 3) = bulunur. Aynı işlem taip edilirse 3 için Y( ) = olduğu görülür. Şu halde (4) eşitliğinden y ( = + ( + ( () y ( = (3) elde edilir. Bougoffa(9) da elde edilen çözüm (3) ile aynıdır. Örne 3. Legendre Denlemi (Bougoffa, 9) Son olara d y d dy + d y =, > (4) y ( =, y'( = (5) başlangıç değer problemini ele alalım. (4) eşitliği ile çarpılırsa EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-Yıl: 99-6

7 Ertür 5 d y dy ) + y = (6) d d ( bulunur. (6) eşitliğinin diferensiyel dönüşümü alınırsa l ( + )( + ) Y( + ) ( l + )( l + ) Y( l + ) l (7) l ( l + ) Y( l + ) + Y ( ) = l ( + )( + ) Y( + ) l ( l + )( l + ) Y( l + ) l l + Y ( ) = olacağından ( ( + ) Y ( ) + ( ) Y + = ( + ) l ( l + ) Y( l + ) (8) (9) bulunur. (3) eşitliği ulllanılırsa (5) şartlarının dönüşümü Y ( ) =, Y() = (3) şelinde olur. (9) eşitliğinde = alınırsa Y ( ) = bulunur. Yine (9) eşitliğinde = alınırsa Y ( 3) = bulunur. Aynı işlem taip edilirse için Y( ) = olduğu görülür. Şu halde (4) eşitliğinden y ( = ( + ) (3) y( = (3) elde edilir. Bougoffa(9) da elde edilen çözüm (3) ile aynıdır. EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6

8 6 Başlangıç Değer Probleminin Diferensiyel Dönüşüm Yöntemiyle 4. SONUÇLAR VE TARTIŞMA Diferensiyel dönüşüm yöntemi ile iinci mertebeden bir adi diferensiyel denlem sınıfı için bazı tam çözümler başarılı bir şeilde elde edildi. Yöntemin bu türden problemlerin çözümü için uvvetli bir yöntem olduğu söylenebilir. KAYNAKLAR Bougoffa, L. (9). On the eact solutions for initial value problems of second-order differential equations, Applied Mathematics Letters, (8), Davis, H.T. (96). Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New Yor. Ertür, V.S. (7). Differential transformation method for solving differential equations of Lane-Emden type, Mathematical and Computational Applications, (3), Ertür, V.S., Momani, S. (7). A reliable algorithm for solving tenth-order boundary value problems, Numerical Algorithms, 44(), Groswald, E. (978). Bessel Polynomials, Springer, Berlin. Hosseini, M.M., Nasabzadeh, H. (7). Modified Adomian decomposition method for specific second order ordinary differential equations, Applied Mathematics and Computation, 86(),7-3. Puhov, G.E.(978). Computational structure for solving differential equations by Taylor transformations, Cybernetics and Systems Analysis, 4(3), Wazwaz, A.M. (9)The variational iteration method for analytic treatment for linear and nonlinear ODEs, Applied Mathematics and Computation, (), -34. Zhou, J.K. (986). Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China. EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-Yıl: 99-6

Address : Celal Bayar University, Faculty of Arts & Science, Department of Mathematics, Muradiye Campus, 45140, Yunusemre-Manisa/TURKEY

Address : Celal Bayar University, Faculty of Arts & Science, Department of Mathematics, Muradiye Campus, 45140, Yunusemre-Manisa/TURKEY PERSONAL INFORMATION Res.Assist. Sinan DENİZ Manisa Celal Bayar University Faculty of Arts & Science Department of Mathematics Address : Celal Bayar University, Faculty of Arts & Science, Department of

Detaylı

LİNEER OLMAYAN OLUŞUM DENKLEMLERİNİN ÜSTEL RASYONEL FONKSİYON METODUYLA ÇÖZÜMÜ. Geliş Tarihi: 05.08.2014 Kabul Tarihi: 09.06.2015

LİNEER OLMAYAN OLUŞUM DENKLEMLERİNİN ÜSTEL RASYONEL FONKSİYON METODUYLA ÇÖZÜMÜ. Geliş Tarihi: 05.08.2014 Kabul Tarihi: 09.06.2015 LİNEER OLMAYAN OLUŞUM DENKLEMLERİNİN ÜSTEL RASYONEL FONKSİYON METODUYLA ÇÖZÜMÜ Melike KAPLAN 1, Arzu AKBULUT 2, Mehmet Naci ÖZER 3 1 Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Matematik-Bilgisayar

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.0.1969. Ünvanı: Doç. Dr.. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Karadeniz Teknik Üniversitesi 1991 Y. Lisans Matematik

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Salih YALÇINBAŞ 2. Doğum Tarihi: Unvanı: Doç.Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Salih YALÇINBAŞ 2. Doğum Tarihi: Unvanı: Doç.Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Salih YALÇINBAŞ 2. Doğum Tarihi: 01.07.1969 3. Unvanı: Doç.Dr. 4. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Öğr. Dokuz Eylül Üniversitesi 1990 Y. Lisans Matematik

Detaylı

Doktora Tezi Başlığı : Simetrik Konumdaki Boyuna Boşlukları Farklı Malzemeden Yapılmış Borularla Takviye edilmiş Silindirik Kirişin Burulması

Doktora Tezi Başlığı : Simetrik Konumdaki Boyuna Boşlukları Farklı Malzemeden Yapılmış Borularla Takviye edilmiş Silindirik Kirişin Burulması ÖZGEÇMİŞ VE ESERLER LİSTESİ Ad- Soyadı :Elçin YUSUFOĞLU Ünvanı: Prof. Dr. DOĞUM TARİHİ:17 Şubat 1960 Derece Bölüm/Program Üniversite Yıl Lisans Uygulamalı Matematik Azerbaycan Devlet Üniversitesi 1982

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

ÖZGEÇMİŞ. : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü Telefon : :

ÖZGEÇMİŞ. : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü Telefon : : ÖZGEÇMİŞ 1. Adı Soyadı : İsmail Onur KIYMAZ İletişim Bilgileri Adres : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü Telefon : 0 386 2804635 Mail : iokiymaz@ahievran.edu.tr 2. Doğum

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.03.1969 3. Ünvanı: Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.03.1969 3. Ünvanı: Doç. Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.0.1969. Ünvanı: Doç. Dr.. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Karadeniz Teknik Üniversitesi 1991 Y. Lisans Matematik

Detaylı

CURRICULUM VITAE NİYAZİ ŞAHİN

CURRICULUM VITAE NİYAZİ ŞAHİN CURRICULUM VITAE NİYAZİ ŞAHİN Yıldırım Beyazıt Üniversitesi Tel (Ofis): (312) 324-1555 Mühendislik ve Doğa Bilimleri Fak. Matematik-Bilgisayar Bölümü Fax: (312) 324-1505 Ankara, Türkiye E-mail: nisa70@gmail.com

Detaylı

HOMOTOPY ANALİZİ METODUNUN NOTRON DİFÜZYONUNA UYGULANMASI

HOMOTOPY ANALİZİ METODUNUN NOTRON DİFÜZYONUNA UYGULANMASI X. Ulusal Nükleer Bilimler ve Teknolojileri Kongresi, 6-9 Ekim 2009,129-135 TR ) 00056 Y TR1100058.Balos HOMOTOPY ANALİZİ METODUNUN NOTRON DİFÜZYONUNA UYGULANMASI Şükran Çavdar* Enerji Enstitüsü, İstanbul

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Bazı Özel Kısmı Türevli Diferansiyel Denlemlerin Gezen Dalga Çözümleri İbraim ÇAĞLAR YÜKSEK LİSANS Matemati Anabilim Dalını Ağustos - KONYA Her Haı Salıdır

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Mehmet Tarık Atay. 2. Doğum Tarihi: 13 Kasım 1969. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Mehmet Tarık Atay. 2. Doğum Tarihi: 13 Kasım 1969. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: ÖZGEÇMİŞ 1. Adı Soyadı: Mehmet Tarık Atay 2. Doğum Tarihi: 13 Kasım 1969 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik Orta Doğu Teknik Üniversitesi 1993 Y. Matematik

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

Yrd. Doç. Dr.Yiğit Aksoy

Yrd. Doç. Dr.Yiğit Aksoy Yrd. Doç. Dr.Yiğit Aksoy ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Y. Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Doktora Celal

Detaylı

ÖZGEÇMİŞ MATEMATİK PR. 1996 2000 MATEMATİK ANABİLİM DALI (YL)(TEZLİ) (DR) FEN-EDEBİYAT FAKÜLTESİ BÖLÜMÜ ANABİLİM DALI DALI

ÖZGEÇMİŞ MATEMATİK PR. 1996 2000 MATEMATİK ANABİLİM DALI (YL)(TEZLİ) (DR) FEN-EDEBİYAT FAKÜLTESİ BÖLÜMÜ ANABİLİM DALI DALI ÖZGEÇMİŞ PERSONEL AD: SOYAD: UĞUR DEĞER DİL ADI SINAV ADI PUAN SEVİYE YIL DÖNEM İngilizce ÜDS 72.5 İYİ 2010 Güz PROGRAM ADI ÜLKE ÜNİVERSİTE ALAN DİĞER ALAN BAŞ. TARİH BİTİŞ TARİH Lisans-Anadal TÜRKİYE

Detaylı

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem. Logistic Differential Equations Obtained from Hanta-virus Model

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem. Logistic Differential Equations Obtained from Hanta-virus Model SDU Journal of Science (E-Journal), 2016, 11 (1): 82-91 Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem Zarife Gökçen Karadem 1,*, Mevlüde Yakıt Ongun 2 1 Süleyman Demirel Üniversitesi,

Detaylı

Derece Alan Üniversite Yıl Doktora Matematik Gebze Yüksek Teknoloji Enstitüsü 2011. Yüksek Lisans Matematik Kocaeli Üniversitesi 2004

Derece Alan Üniversite Yıl Doktora Matematik Gebze Yüksek Teknoloji Enstitüsü 2011. Yüksek Lisans Matematik Kocaeli Üniversitesi 2004 1. Adı Soyadı : Fatma Kanca 2. Doğum Tarihi : 25.03.1980 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Doktora Derece Alan Üniversite Yıl Doktora Matematik Gebze Yüksek Teknoloji Enstitüsü 2011 Yüksek Lisans

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

DOÇ. DR. BANU UZUN Işık Üniversitesi Matematik Bölümü

DOÇ. DR. BANU UZUN Işık Üniversitesi Matematik Bölümü DOÇ. DR. BANU UZUN Işık Üniversitesi Matematik Bölümü buzun@isikun.edu.tr 1. Adı Soyadı : Banu UZUN 2. Doğum Tarihi : 22.09.1971 3. Ünvanı : Doçent 4. Öğrenim Durumu : ÖĞRENİM DÖNEMİ DERECE ÜNİVERSİTE

Detaylı

PARABOLİK DENKLEMLERDE BİLİNMEYEN KAYNAK TERİMLERİNİN BULUNMASI İÇİN PROSEDÜR VE PROGRAMLAR. Alper Bostancı

PARABOLİK DENKLEMLERDE BİLİNMEYEN KAYNAK TERİMLERİNİN BULUNMASI İÇİN PROSEDÜR VE PROGRAMLAR. Alper Bostancı öz PARABOLİK DENKLEMLERDE BİLİNMEYEN KAYNAK TERİMLERİNİN BULUNMASI İÇİN PROSEDÜR VE PROGRAMLAR Alper Bostancı BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS TEZİ Şubat 2002 Bu tez çalışmasında parabolik

Detaylı

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ YÜKSEK LİSANS TEZİ Hakan TEMİZ Danışman Doç. Dr. Mustafa Kemal YILDIZ MATEMATİK ANABİLİM DALI Haziran, 2014 AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Uluslararası bilimsel toplantılarda sunulan ve bildiri kitabında (Proceedings) basılan bildiriler:

Uluslararası bilimsel toplantılarda sunulan ve bildiri kitabında (Proceedings) basılan bildiriler: BĐLĐMSEL YAYINLARIN TOPLU LĐSTESĐ Uluslararası bilimsel toplantılarda sunulan ve bildiri kitabında (Proceedings) basılan bildiriler: DEMĐR H., WĐLLĐAMS R. W., AKYILDIZ T., Second International Symposium

Detaylı

ÖZGEÇMİŞ. Dejenere olan parabolik tür denklemlerin sayısal çözümünün araştırılması ve bazı matematiksel fizik denklemlerinin çözümü, 1983

ÖZGEÇMİŞ. Dejenere olan parabolik tür denklemlerin sayısal çözümünün araştırılması ve bazı matematiksel fizik denklemlerinin çözümü, 1983 ÖZGEÇMİŞ 1.Adı Soyadı: Mahir RASULOV 2. Doğum tarihi: 30 Aralık 1950 3. Unvanı: Prof.Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik Bakü Devlet Doktora PhD Doktor of Science Uygulamalı

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.0.1969. Ünvanı: Doç. Dr. 4. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Karadeniz Teknik Üniversitesi 1991 Y. Lisans Matematik

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

2. ULUSAL KONYA EREĞLİ KEMAL AKMAN MESLEK YÜKSEKOKULU TEBLİĞ GÜNLERİ

2. ULUSAL KONYA EREĞLİ KEMAL AKMAN MESLEK YÜKSEKOKULU TEBLİĞ GÜNLERİ SELÇUK ÜNİVERSİTESİ KONYA EREĞLİ YÜKSEKÖĞRETİMİ GELİŞTİRME DERNEĞİ Sayı 2, No:1, 1 891, 2010 2. ULUSAL KONYA EREĞLİ KEMAL AKMAN MESLEK YÜKSEKOKULU TEBLİĞ GÜNLERİ BİLİM KURULU FEN BİLİMLERİ Prof. Dr. Novruz

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU)

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU) HÜSEYİN IŞIK YARDIMCI DOÇENT E-Posta Adresi : h.isik@alparslan.edu.tr Telefon (İş) Telefon (Cep) Faks Adres : : : : 3122021084-5071865605 MUŞ ALPARSLAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ Öğrenim Durumu

Detaylı

ÖZGEÇMĐŞ. B. ADRESLERĐ VE TELEFON NUMARALARI Ev :0(232)3756219 Đş :0(236)2013225 Cep :0(536)8802842

ÖZGEÇMĐŞ. B. ADRESLERĐ VE TELEFON NUMARALARI Ev :0(232)3756219 Đş :0(236)2013225 Cep :0(536)8802842 ÖZGEÇMĐŞ A. KĐMLĐK BĐLGĐLERĐ Adı ve Soyadı :Mehmet SEZER Doğum Yeri :Dutluca/AKSEK Doğum Tarihi :20.03.1954 Yabancı Dili :Đngilizce Uzmanlık Alanı :Uygulamalı Matematik B. ADRESLERĐ VE TELEFON NUMARALARI

Detaylı

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 08 BİLDİRİLER KİTABI SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ Fevzi ŞENLİTÜRK, Fuat ALARÇİN ÖZET Bu çalışmada

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

DİFERENSİYEL DENKLEMLERİN HOMOTOPİ PERTURBASYON METODU İLE YAKLAŞIK ANALİTİK ÇÖZÜMLERİ

DİFERENSİYEL DENKLEMLERİN HOMOTOPİ PERTURBASYON METODU İLE YAKLAŞIK ANALİTİK ÇÖZÜMLERİ T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DİFERENSİYEL DENKLEMLERİN HOMOTOPİ PERTURBASYON METODU İLE YAKLAŞIK ANALİTİK ÇÖZÜMLERİ HURİYE KADAKAL YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ 1. KİŞİSEL BİLGİLER Kimlik Bilgileri TC Kimlik No :33107316330 Adı Soyadı Baba Adı Doğum Yeri :Mahmut :MODANLI : Abdülkadir : ŞANLIURFA Doğum Tarihi : 01.01.1978 Uyruk : Türkiye

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2012 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 ralı 2012, Bursa Lineer Olmayan Dinami Sistemlerin Yapay Sinir ğları ile Modellenmesinde MLP ve RBF Yapılarının Karşılaştırılması

Detaylı

ÖZGEÇMİŞ Doç. Dr. NİLÜFER TOPSAKAL

ÖZGEÇMİŞ Doç. Dr. NİLÜFER TOPSAKAL ÖZGEÇMİŞ Doç. Dr. NİLÜFER TOPSAKAL TC Kimlik No / Pasaport No: Doğum Yılı: 1978 Yazışma Adresi : Telefon : 346-2191010/1531 e-posta : Fen Fakültesi Matematik Bölümü 58140 Sivas/ ntopsakal@cumhuriyet.edu.tr

Detaylı

Form IIIa ( Türkçe): Ders Bilgileri. Dersin Adı Kodu Yarıyılı Teori (saat/hafta) AKTS. Uygulama (saat/hafta) Yerel Kredi. Laboratuar (saat/hafta)

Form IIIa ( Türkçe): Ders Bilgileri. Dersin Adı Kodu Yarıyılı Teori (saat/hafta) AKTS. Uygulama (saat/hafta) Yerel Kredi. Laboratuar (saat/hafta) Form IIIa ( Türkçe): Ders Bilgileri Dersin Adı Kodu Yarıyılı Teori (saat/hafta) Uygulama (saat/hafta) Laboratuar (saat/hafta) Yerel Kredi AKTS Mühendislik KMÜ Güz 2 2-3 5 Matematiği 237 Önkoşul(lar)-var

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Ali AKBULUT İletişim Bilgileri : Ahi Evran Üniversitesi Fen debiyat Fakültesi Adres Matematik Bölümü KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Ali AKBULUT İletişim Bilgileri : Ahi Evran Üniversitesi Fen debiyat Fakültesi Adres Matematik Bölümü KIRŞEHİR ÖZGEÇMİŞ 1. Adı Soyadı : Ali AKBULUT İletişim Bilgileri : Ahi Evran Üniversitesi Fen debiyat Fakültesi Adres Matematik Bölümü KIRŞEHİR Telefon : (0386) 280 4565 Mail : aakbulut@ahievran.edu.tr 2. Doğum

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU :

Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU : Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU : 1972 Lisans, Ankara Üniversitesi Fen Fakültesi 1982 Yüksek Lisans,

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik

Detaylı

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl Lisans Matematik Boğaziçi Üniversitesi 1993 Y. Lisans Mathematical and Colorado School of Mines 1996

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl Lisans Matematik Boğaziçi Üniversitesi 1993 Y. Lisans Mathematical and Colorado School of Mines 1996 1. Adı Soyadı: Ünal Göktaş 2. Doğum Tarihi: 20 Mayıs 1972 3. Unvanı: Doçent Doktor 4. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Boğaziçi Üniversitesi 1993 Y. Lisans Mathematical

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

Ö Z G E Ç M İ Ş. Turgutlu, Matematikçi, Yrd. Doç. Dr. Uygulamalı Matematik DÜZEYİ OKUL ADI YILI ALANI

Ö Z G E Ç M İ Ş. Turgutlu, Matematikçi, Yrd. Doç. Dr. Uygulamalı Matematik DÜZEYİ OKUL ADI YILI ALANI Ö Z G E Ç M İ Ş ADI SOYADI DOĞUM YERİ VE TARİHİ MEDENİ DURUMU MESLEĞİ VE ÜNVANI UZMANLIK ALANI BİLDİĞİ YABANCI DİL EV ADRESİ: İŞ ADRESİ E-POSTA YUSUF GÜREFE Turgutlu, 01.07.1984 Evli Matematikçi, Yrd.

Detaylı

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Politeni Dergisi Cilt:3 Sayı: 3 s. 09-3, 00 Journal of Polytechnic Vol: 3 No: 3 pp. 09-3, 00 Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Tevfi GÜLERSOY, Numan

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

TIMOSHENKO KİRİŞLERİNİN SERBEST TİTREŞİM ANALİZİNİN DİFERANSİYEL TRANSFORMASYON METODU İLE İNCELENMESİ

TIMOSHENKO KİRİŞLERİNİN SERBEST TİTREŞİM ANALİZİNİN DİFERANSİYEL TRANSFORMASYON METODU İLE İNCELENMESİ 14-16 Ekim 015 DEÜ İZMİR TIMOSHEKO KİRİŞLERİİ SERBEST TİTREŞİM AALİZİİ DİFERASİYEL TRASFORMASYO METODU İLE İCELEMESİ Baran Bozyiğit 1, Seval Çatal ve Hikmet Hüseyin Çatal 3 1 Araştırma Görevlisi, İnşaat

Detaylı

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems Bilal Şenol 1, Celaleddin Yeroğlu 1 1 Bilgisayar Mühendisliği Bölümü İnönü

Detaylı

AKTS Kredisi (ECTS Credits) Petrol ve Doğal Gaz Mühendisliği (Petroleum and Natural Gas Engineering)

AKTS Kredisi (ECTS Credits) Petrol ve Doğal Gaz Mühendisliği (Petroleum and Natural Gas Engineering) Dersin Adı İleri Mühendislik Matematiği Course Name Advanced Engineering Mathematics Kodu (Code) Yarıyılı (Semester) Kredisi (Local Credits) AKTS Kredisi (ECTS Credits) Ders Türü (Course Type) PET519E

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Akademik Ünvanı : Y. Doç. Dr. Çalışma Alanları: Cebir, Cebirsel Sayı Teorisi, Cebirsel Geometri, Kodlama Teorisi, Kriptoloji, Cebirsel Topoloji.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

ÖZGEÇMİŞ :Yrd. Doç. Dr Yaşar Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü

ÖZGEÇMİŞ :Yrd. Doç. Dr Yaşar Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü ÖZGEÇMİŞ 1. Adı Soyadı: Refet POLAT ( refet.polat@yasar.edu.tr ) 2. Doğum Tarihi: 29.06.1977 3. Ünvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik-Bilgisayar Bilimleri

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi.

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Ünvanı : Doç. Dr. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. 1. Öğrenim

Detaylı

Prof.Dr.Ünal Ufuktepe

Prof.Dr.Ünal Ufuktepe İzmir Ekonomi Üniversitesi, Matematik Bölümü 21 Ocak 2012 KLASİK ANLAMDA TÜREV Fiziğin en temel işlevlerinden biri hareketi tanımlamaktır. Newton ve Leibniz hareketi tanımlama ve tahmin etme konusunda

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

Doç. Dr. Mehmet ÇEVİK

Doç. Dr. Mehmet ÇEVİK Doç. Dr. Mehmet ÇEVİK ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Boğaziçi Üniversitesi İnşaat Mühendisliği 986-990 Y. Lisans Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013-2014 GÜZ YARIYILI DERS PROGRAMI. 1. Sınıf. Normal ve İkinci Öğretim. Pazartesi Salı Çarşamba Perşembe Cuma

Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013-2014 GÜZ YARIYILI DERS PROGRAMI. 1. Sınıf. Normal ve İkinci Öğretim. Pazartesi Salı Çarşamba Perşembe Cuma 1. Sınıf 08:15 Normal ve BİL 141 BİL 151 BİL 131 BİL 101 ENF 101 BİL 121 ENF 101 LAB BİL 103 TD 111 AİİT 101 AİİT 101* - Atatürk İlkeleri ve İnkılap Tarihi I (2+0) BİL 101* - Algoritmalar ve Programlama

Detaylı

Özgeçmi³. Mart 2014'e kadar AHMET YANTIR. Ya³ar Üniversitesi Matematik Bölümü, zmir Tel: +90 232 411 5107 Email: ahmet.yantir@yasar.edu.

Özgeçmi³. Mart 2014'e kadar AHMET YANTIR. Ya³ar Üniversitesi Matematik Bölümü, zmir Tel: +90 232 411 5107 Email: ahmet.yantir@yasar.edu. Özgeçmi³ Mart 2014'e kadar AHMET YANTIR Ya³ar Üniversitesi Matematik Bölümü, zmir Tel: +90 232 411 5107 Email: ahmet.yantir@yasar.edu.tr kí³ísel bílgíler Do um Yeri: Ekim, 1975 Do um Tarihi: Nazilli -

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Diferansiyel Denklemler ve Lineer Cebir BIL271 3 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans

Detaylı

Doç. Dr. Mehmet ÇEVİK

Doç. Dr. Mehmet ÇEVİK Doç. Dr. Mehmet ÇEVİK ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Boğaziçi Üniversitesi İnşaat Mühendisliği 986-990 Y. Lisans Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS KİTAPLARI LİSTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS KİTAPLARI LİSTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS KİTAPLARI LİSTESİ *Ders kitaplarını almadan önce dersi veren öğretim üyesine mutlaka danışın. Birinci Yıl 1.Yarıyıl BLM101 Bilgisayar Yazılımı I Ana Ders Kitabı: C How

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

IMPORTANT ANNOUNCEMENT ON 2015 SUMMER SCHOOL

IMPORTANT ANNOUNCEMENT ON 2015 SUMMER SCHOOL FACULTY OF ARTS AND SCIENCES FACULTY OF ECONOMICS AND ADMINISTRATIVE SCIENCES FOREIGN LANGUAGES TURKISH LANGUAGE CHEM 101 FİZ 101 FİZ 102 FİZ 224 HUM 302 İNB 302 KİM 101 MATE 102 MATE 111 MATE 112 MATE

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK III Dersin Orjinal Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT Dersin Öğretim

Detaylı

Doç. Dr. Mehmet ÇEVİK

Doç. Dr. Mehmet ÇEVİK Doç. Dr. Mehmet ÇEVİK ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Boğaziçi Üniversitesi İnşaat Mühendisliği 986-990 Y. Lisans Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği 2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği Dersin Açıldığı Bölüm Dersin Dersin 501001042010 Matematik 1 Fen Fak. Fizik Bölümü MAT0157 Matematik

Detaylı

Derece Bölüm/Program Üniversite Yıl

Derece Bölüm/Program Üniversite Yıl DR. ALI S. NAZLIPINAR Dumlupınar Üniversitesi, Fen Ed. Fakültesi Matematik Bölümü, Kütahya, TÜRKİYE ali.nazlipinar@dpu.edu.tr Tel: +90 274 2652031 /3065 (Dahili) Öğrenim Durumu Derece Bölüm/Program Üniversite

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için,

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için, Ritz Yöntemi Kullan larak Integral Operatörlerin Özde¼gerlerinin Yaklaş k Hesab Yüksel SOYKAN, Erkan TAŞDEM IR, Melih GÖCEN Zonguldak Karaelmas Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 6700

Detaylı

Prof. Dr. Aydın Tiryaki

Prof. Dr. Aydın Tiryaki İzmir Üniversitesi Fen-Edebiyat Fakültesi, öğrenci merkezli eğitimi hedef alan ama araştırma odaklı olmaya da aynı derecede önem veren bir eğitim kurumudur. Bu bağlamda lisans ve lisansüstü düzeyinde eğitim

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

Tel: +90 212 285 32 92 Fax: +90 212 285 63 86 e-mail:kiris@itu.edu.tr web:http://atlas.cc.itu.edu.tr/~kiris AHMET KIRIŞ

Tel: +90 212 285 32 92 Fax: +90 212 285 63 86 e-mail:kiris@itu.edu.tr web:http://atlas.cc.itu.edu.tr/~kiris AHMET KIRIŞ Tel: +90 212 285 32 92 Fax: +90 212 285 63 86 e-mail:kiris@itu.edu.tr web:http://atlas.cc.itu.edu.tr/~kiris Istanbul Teknik Üniversitesi (ITU), Fen Edebiyat Fakültesi, Matematik Bölümü, Sariyer, 34469

Detaylı

ÖZGEÇMİŞ Prof. Dr. RAUF AMİROV

ÖZGEÇMİŞ Prof. Dr. RAUF AMİROV TC Kimlik No / Pasaport No: Doğum Yılı: 1956 Yazışma Adresi : ÖZGEÇMİŞ Prof. Dr. RAUF AMİROV CUMHURİYET ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ - 58140 Sivas/Türkiye Telefon : 346-21910101522

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Uygulamalı Matematik Dersin Orjinal Adı: Applied Mathematics Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu:

Detaylı

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde ÖABT LİSE KPSS 2016 Pegem Aademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 40'ın üzerinde soruyu olaylıla çözebildiğini açıladı. MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Eğitimde

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ DOÇ.DR. AYŞE FUNDA YALINIZ Adres : Dumlupınar Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Evliya Çelebi Yerleşkesi Tavşanlı Yolu 10.km. KÜTAHYA Telefon : 2742652031-3058

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

Kompleks Analiz (MATH 346) Ders Detayları

Kompleks Analiz (MATH 346) Ders Detayları Kompleks Analiz (MATH 346) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kompleks Analiz MATH 346 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i Math 251 Dersin Dili

Detaylı

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER Doç. Dr. Mustafa KANDEMİR Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER ISBN: 978-605-318-31-1 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 015, Pegem Akademi

Detaylı

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi Bulanı Programlama Yöntemi ile Süre-- Eniyilemesi Eran Karaman, Serdar Kale BAÜ Mühendisli Mimarlı Faültesi, 045, Çağış, Balıesir Tel: (266) 62 94 E-posta: earaman@baliesir.edu.tr sale@baliesir.edu.tr

Detaylı