ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN"

Transkript

1 ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014

2

3 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI GĠRĠġ KULLANILAN YÖNTEM SONUÇLAR ve TARTIġMA PROJE BÜTÇESĠ PROJE ÇALIġMA TAKVĠMĠ... 8 KAYNAKLAR

4 1. PROJENĠN AMACI Tbnı dr çılı bir üçgen oln bir üçgen pirmit (vey prizm) lınsın. Pirmidin (vey prizmnın) tbnınd yer ln üçgenin her bir kenrının ort noktsındn üçgenin diğer iki kenrın dikmeler inilsin. Bu projenin mcı, bu çizimlerden sonr üçgenin iç bölgesinde oluşn ltıgen üzerine pirmidin (vey prizmnın) yüksekliği ile ynı oln bir ltıgen pirmit (vey prizm) kurulduğund oluşn bu ktı cismin hcmi ile bşt lınn ktı cismin hcmi rsındki ilişkiyi belirlemektir. Projede, özel olrk tbnı eşkenr üçgen oln pirmit (prizm) incelenmiş ve oluşn düzgün ltıngenin çevrel çemberinin üzerine pirmidin (prizmnın) yüksekliği ile ynı oln bir koni yerleştirildiğinde, koninin hcmi ile üçgen pirmidin (vey prizmnın) ve ltıgen prizmnın (vey pirmidin) hcimleri rsındki ilişkinin bulunmsı hedeflenmiştir. 2. GĠRĠġ Bu proje şğıdki sorudn yol çıkılrk hzırlnmıştır: SORU [1] Dr çılı bir ABC üçgeni verilsin. Üçgenin her bir kenrının ort noktsındn diğer iki kenrın dikmeler inilsin. Üçgenin iç bölgesinde oluşn ltıgensel bölgenin lnının ABC üçgensel bölgesinin lnının yrısın eşit olduğunu gösteriniz. Öncelikle bu ilginç problemin çözümünü yptık. Sonr tbnı dr çılı üçgen oln bildiğimiz ktı cisimlerin içine bu şekilde ltıgenler çizdik. Yükseklikleri bşt seçtiğimiz ktı cismin yüksekliği ile ynı oln ve tbnı, oluşturduğumuz ltıgen oln ktı cisimlerin hcimlerini belirlemeye krr verdik. Özel olrk, tbnı eşkenr üçgen oln ktı cisimler ldığımızd ise oluşn düzgün ltıgenin çevrel çemberini tbn kbul eden koninin hcmini de diğer ktı cisimlerin hcmi ile krşılştırdık. Oluşn tüm durumlrın modellerini yprk projeyi sonlndırdık. 2

5 3. KULLANILAN YÖNTEM 1. Önce yukrıd yer ln sorunun çözümünü yptık. Sorunun çözümü için ġekġl 1 i inceleyelim. ÇÖZÜM: Ġstenilen özelliklerde ABC üçgeni lıp Ģğıdki Ģekli çizelim. A H K D L M R E O P A olsun. B F N D ile E, D ile N ve N ile E noktlrını birleştirelim. ort tbn olduğundn olur. Burdn, DBNE, DNCE ve DNEA dörtgenleri prlel kenrdır. G C S 3 R S 2 Oluşn ADE, DBN, ENC üçgenleri eştir. Bu üçgenlerin yükseklik merkezleri de sırsıyl R, M ve O olur. Diğer trftn, ADR, DBM ile ENO üçgenleri, DMN, EOC ile ARE üçgenleri ve MBN, ONC ile RDE üçgenleri eştir. D S 1 S S 2 S 1 +S 2 +S 3 3 S M 3 O E S 2 b Bu üçgenlerin lnlrı sırsıyl S 3, S 2, S 1 olsun. Yni, Aln(MBN)=Aln (ONC)=Aln(RDE)=S B 1 S 1 N S 1 C Aln(DMN)=Aln (ARE)=Aln(EOC)=S 2 Aln(DMB)=Aln(ADR)=Aln (ENO)=S 3 DBNE prlel kenr olduğundn Aln (DNE)= S 1 + S 2 +S 3 olur. Burdn, Aln (DMNOER)= 2(S 1 + S 2 +S 3 ) iken Aln (ABC)= 4(S 1 + S 2 +S 3 ). Yni, oluşn ltıgenin lnı, ABC üçgenin lnının yrısıdır. ġekġl 1 3

6 2. Dh sonr, mket krtonun üzerine cetvel, pergel ve çı ölçer yrdımı ile dr çılı bir ABC üçgeni çizdik. ABC üçgensel bölgesinin lnı 2A olsun. Bu üçgenin her bir kenrının ort noktsını belirleyerek, diğer iki kenr bu ort noktlrdn pergel yrdımı ile dikmeler indik ve sorud yer ln ltıgensel bölgeyi oluşturduk (ġekġl 1). Bu ltıgensel bölgenin lnı A olur. içine, 3. ABC üçgenini tbn kbul eden ve yüksekliği h birim oln bir üçgen prizmnın ) tbnı oluşturduğumuz ltıgen oln ve yüksekliği h birim oln bir ltıgen prizm b) tbnı oluşturduğumuz ltıgen oln ve yüksekliği h birim oln bir ltıgen pirmit gömdük. Bu durumd, olur. ) Üçgen prizmnın hcmi=2ah b) Altıgen prizmnın hcmi=ah c) Altıgen pirmitin hcmi=(1/3)ah 4

7 4. Dh sonr, tbnı ABC üçgeni ve yüksekliği h birim oln bir üçgen pirmit ldık. Bu pirmitin içine tbnı oluşturduğumuz ltıgen oln ve yüksekliği h birim oln bir ltıgen pirmit gömdüğümüzde ise olur. ) Üçgen pirmidin hcmi=(1/3)2ah b) Altıgen pirmidin hcmi=(1/3)ah 5. Özel olrk, ABC üçgenini eģkenr üçgen olrk ldığımızd ise üçgenin içinde oluşn ltıgenin düzgün ltıgen olduğunu isptldık. (ġekġl 2) A 60 0 R D 2 E M O B N C 2 ġekġl 2 2 5

8 6. Bu düzgün ltıgenin çevrel çemberini çizerek yüksekliği h birim oln bir koni oluştuduk. Bu durumd, tbnı ABC üçgeni ve yüksekliği h birim oln bir üçgen pirmit içine bu koniyi gömersek olur. ) Üçgen pirmidin hcmi=(1/3)2ah b) Altıgen pirmidin hcmi=(1/3)ah c) Küçük Koninin hcmi= (1/3)((2π )/9)Ah, d) Büyük Koninin hcmi= (1/3)((8π )/9)Ah DÜZGÜN ALTIGEN VE ÇEVREL ÇEMBER R A D E M X 2 O B X C N =A X merkezli, 2 yrıçplı direnin lnı= = (Altıgenin Çevrel Çemberinin Alnı) Aln (ABC) = = =2A X merkezli, 4 yrıçplı direnin lnı= = (ABC Üçgeninin Çevrel Çemberinin Alnı) 6

9 7) Tbnı ABC üçgeni ve yüksekliği h birim oln bir üçgen prizm içine bu koniyi gömersek olur. ) Üçgen prizmnın hcmi=2ah b) Altıgen prizmnın hcmi=(1/3) Ah c) Koninin hcmi= (1/3)((2π )/9)Ah 4. SONUÇLAR VE TARTIġMA: Çlışmmızın sonund 1) Üçgen prizmnın içine, tbnı oluşturduğumuz ltıgen oln ve yüksekliği üçgen prizm ile ynı oln oln ltıgen ) prizmyı yerleştirdiğimizde, üçgen prizmnın hcminin ltıgen prizmnın hcminin iki ktı kdr, b) pirmidi yerleştirdiğimizde, üçgen prizmnın hcminin ltıgen prizmnın hcminin ltı ktı kdr, 2) Üçgen pirmidin içine, tbnı oluşturduğumuz ltıgen oln ve yüksekliği üçgen pirmit ile ynı oln oln ltıgen pirmidi yerleştirdiğimizde üçgen pirmidin hcminin ltıgen pirmidin hcminin iki ktı kdr, 3) Özel olrk ABC üçgenini eşkenr üçgen olrk ldığımızd ise, ) ABC üçgen pirmidinin içine tbnı oluşturduğumuz ltıgenin çevrel çemberi oln ve yüksekliği üçgen pirmit ile ynı oln koni yerleştirdiğimizde, pirmidin hcminin koninin hcminin ((3 3)/ π) ktı b) ABC üçgen prizmsının içine tbnı oluşturduğumuz ltıgenin çevrel çemberi oln ve yüksekliği üçgen prizm ile ynı oln koni yerleştirdiğimizde, prizmnın hcminin koninin hcminin ((9 )/ π) ktı 7

10 olduğunu belirledik. 5. PROJE BÜTÇESĠ Mket Krtonu, ypıştırıcı ve el işi kğıtlrı için toplm 10 TL hrcnmıştır. 6. PROJE ÇALIġMA TAKVĠMĠ 1 Ekim Ksım 2013: Proje konusunun rştırılmsı ve belirlenmesi 1 Ksım Arlık 2013: Gerekli ispt ve hesplmlrın ypılmsı 1 Arlık Arlık 2013: Proje Rporunun Yzılmsı KAYNAKLAR [1] Serkn Küpeli, 2010, 100 Yılın Olimpiyt Sorulrıyl Geometri, Altın Nokt Yyınevi, İzmir. [2] Ömer Gürlü, 2004, Merklısın Geometri, Zmbk Yyınlrı, İstnbul. 8

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

KATI CİSİMLER ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

KATI CİSİMLER ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT TI İSİMR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT 1. znım : tı cisimleri ve kplı yüzeyleri sınıflndırır.. znım : Çokyüzeyli ktı cisimlerin temel elemnlrını çıklr.. znım : Verilen çokyüzlülerin çınımlrını ypr ve çınımlrı

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı ÜÇN NZRLİK enzerlik eometride benzerlik kvrmı görsel olrk birbiri ile ynı oln şekiller için kullnılır. enzer iki şeklin krşılıklı kenrlrı rsınd sbit bir orn vrdır. iz bu bölümde sdece üçgenler rsındki

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3 Ö.Y.S. 997 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ.,,, k olduğun göre, k kçtır? A) B) C) D) E) Çözüm,,, k k k 7 k. [( ) ( )] [ (9 ) ( )] işleminin sonucu kçtır? A) B) C) D) 9 E) 6 Çözüm [( ) ( )] [ (9 ) ( )] [.(

Detaylı

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre SORU 1 : Bhr, t=1,3,5. yıllrın sonund 1000(1,025) t TL ödeyerek bir fon oluşturmuştur. Üç ylığ dönüştürülebilir nominl iskonto ornı 4/41 olrk verildiğine göre, bu fonun 7. yıl sonundki birikimli değeri,

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT Süleymn Demirel Üniversitesi Ormn Fkültesi Dergisi Seri: A, Syı:, Yıl: 004, ISSN: 130-7085, Syf:160-169 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1 Süleymn KORKUT

Detaylı

Öğrenci Seçme Sınavı (Öss) / 16 Haziran Matematik Soruları ve Çözümleri = 9, : = 6

Öğrenci Seçme Sınavı (Öss) / 16 Haziran Matematik Soruları ve Çözümleri = 9, : = 6 Öğrenci Seçme Sınvı (Öss) / 6 Hzirn 00 Mtemtik Sorulrı ve Çözümleri.,4 0,4,4,4 işleminin sonucu kçtır? A) 0 B) 0, C) 9,9 D) 0, E), Çözüm,4 0,4,4,4 0 99 0 0 40 4 4 40 9,9. 6 : 4. işleminin sonucu kçtır?

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar Test Çözümleri

Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar Test Çözümleri Dynıklılık, Yüzey Gerilimi ve ılcl Olylr Test Çözümleri Test 'in Çözümleri.. /2 Aynı mddeden ypılmış düzgün geometrik biçimli cisimlerin dynıklılığı bğıntısıyl esplnır. üp ve silindirin leri eşit olduğun

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin ONU NLTIMLI Mtemtik Olimpiytlrı İçin enzerlik LİS MTMTİ OLİMPİYTLRI İÇİN Mustf Yğı, Osmn kiz enzerlik Mustf Yğı Osmn kiz İki çokgenin köşeleri rsınd ire-ir eşleme ypılırs eşleştirilen köşelere krşılıklı

Detaylı

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından Milli ğitim knlığı, Tlim ve Terbie urulu knlığı'nın 0.1.010 trih ve 0 sılı krrı ile kbul edilen ve 011 01 Öğretim Yılındn itibren ugulnck progrm göz önüne lınrk hzırlnmıştır. u kitb n her hkk skl d r ve

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10 1) Z RII Rİ(GO): 0 0 ŞekildeII=, II=,m()=,m()= ve + = 10 olduğun göre II kç br dir? ) )5 ) ) )10 ÇÖZÜ-1: 0 5 5 5 0 105 ile yi birleştirelim. @ (.. eşliği) olur. ikizkenr olur.unlr göre çılrı simgelendirirsek

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25 EĞİTİM BİLİMLERİ MERKEZİ 0 5 5 DÜZLEMDE ÇILR Prlel Ġki Doğrunun Bir Kesenle Yptığı çılr: Tnım: Bşlngıç noktsı ortk iki ışının irleşim kümesine çı denir. d 6 5 d 7 8 O OB OB = BO ÇI ÇEġĠTLERĠ. Dr çı: Ölçüsü

Detaylı

Okuyun başarın Okuyun başarın. Okuyun başarın İhtiyaç ile kazanın! Okuyun başarın MATEMATİK

Okuyun başarın Okuyun başarın. Okuyun başarın İhtiyaç ile kazanın! Okuyun başarın MATEMATİK ! SEVGİLİ RKŞLR MTEMTİK 0 KPSS, ÖSYM nin yptığı düzenlemeyle birlikte, testlerdeki konu ve soru dğılımlrının güncellendiği, lışılmışın dışınd bir sınv olcktır. Syısl ve mntıksl muhkeme becerilerini ölçmeye

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri Yükseköğretime Geçiş Sınvı (Ygs) / Nisn 0 Mtemtik Sorulrı ve Çözümleri. 0,5, işleminin sonuu kçtır? 0,5 0, A) 5 B) 5,5 C) 6 D) 6,5 E) 7 Çözüm 0,5 0,5, 0, 05 50 5.5.4 5.5. 4 4 0 5 .. 4.6 6 işleminin sonuu

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

www.mustafayagci.com.tr, 2013 Geometri Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Küp

www.mustafayagci.com.tr, 2013 Geometri Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Küp www.mustfygci.com.tr, 0 Geometri Notlrı Mustf YĞI, ygcimustf@yhoo.com üp ütün yüzleri kre oln bir prizmy, diğer deyişle tüm yrıtlrı eş oln dikdörtgenler prizmsın küp denir. üp, nihyetinde bir dikdörtgenler

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 9 Mrt 998 Mtemtik Sorulrı ve Çözümleri. Rkmlrı sıfırdn frklı, eş smklı ir syının yüzler ve inler smğındki rkmlr yer değiştirildiğinde elde edilen yeni syı ile eski syı rsındki

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

Afyon Çimento Sanayi T.A.Ş. nin 12.04.2006 tarihli yazısı aşağıya çıkarılmıştır.

Afyon Çimento Sanayi T.A.Ş. nin 12.04.2006 tarihli yazısı aşağıya çıkarılmıştır. TARİH:27/01/2006 Afyon Çimento Snyi T.A.Ş.'nin 27.01.2006 trihli yzısı şğıy çıkrılmıştır. Şirketimiz Afyon Çimento Snyi T.A.Ş.'nin 108 kişi oln personel mevcudu "kpsm içi mkin bkım elemnlrı"nı kdrosun

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 *ÇALIŞTAY 2014+)

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 *ÇALIŞTAY 2014+) TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 *ÇALIŞTAY 014+) MATEMATİK PROJE ÖNERİSİ GRUP YILDIZ PROJE ADI Yıldızlrın Döndürülmesi İle

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

YAYINA HAZIRLAYANLAR

YAYINA HAZIRLAYANLAR rif ŞYKKUYN Her hkkı sklıdır ve MVSİM SIM YY. Ğ. PZ. SN ve Tİ. LT. ŞTİ ne ittir. Metinler, örnekler, lıştırmlr nen d değiştirilerek lınmz, fotokopi ve bşk bir oll çoğltılrk kullnılmz. YYIN HZIRLYNLR ditör

Detaylı

2. BÖLÜM AKIŞKANLARIN STATİĞİ

2. BÖLÜM AKIŞKANLARIN STATİĞİ . BÖLÜM AKIŞKANLARIN STATİĞİ Akışknlr mekniğinin birçok probleminde reket yoktur. Bu tip problemlerde durn bir kışkn içinde bsınç dğılımı ve bu bsınç dğılımının ktı yüzeylere ve yüzen vey dlmış cisimlere

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI

ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI ULUSL İLKÖĞRETİM MTEMTİK OLİMPİYTI DENEME SINVI -0 SINVL İLGİLİ UYRILR: * Çoktn seçmeli 0 test sorusundn oluşn sınv süresi 50 dkikdır. * evp kğıdınız, size verilen soru kitpçığının türünü işretlemeyi unutmyınız.

Detaylı

OM466 Orman Koruma (2015-2016 Bahar Yarıyılı) dersi kapsamında düzenlenen 15 Mart 2016 tarihli teknik arazi gezisi hakkında rapor

OM466 Orman Koruma (2015-2016 Bahar Yarıyılı) dersi kapsamında düzenlenen 15 Mart 2016 tarihli teknik arazi gezisi hakkında rapor OM466 Ormn Korum (2015-2016 Bhr Yrıyılı) dersi kpsmınd düzenlenen 15 Mrt 2016 trihli teknik rzi gezisi hkkınd rpor Teknik rzi gezisi, Düzce Ormn İşletme Müdürlüğü, Konurlp Ormn İşletme Şefliği sınırlrı

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR...

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR... İçindekiler 1. BÖLÜM: KÜMELERDE TEMEL KVRMLR, KÜMELERDE İŞLEMLER... 10. KÜMELERDE TEMEL KVRMLR... 10 B. SONLU, SONSUZ VE BOŞ KÜME... 12 C. KÜMELERİN EŞİTLİĞİ... 14 D. LT KÜME, ÖZ LT KÜME... 14 E. KÜMELERDE

Detaylı

Ox ekseni ile sınırlanan bölge, Ox ekseni

Ox ekseni ile sınırlanan bölge, Ox ekseni DERSİN ADI: MATEMATİK II MAT II (06) ÜNİTE: BELİRLİ İNTEGRALLERİN UYGULAMALARI. HACİM HESABI GEREKLİ ÖN BİLGİLER 1. Eğri Çizimleri. İntegrl formülleri KONU ANLATIMI. HACİM HESABI ) Disk Yöntemi = f ()

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ AHŞAP TAVAN VE DÖŞEMELER

T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ AHŞAP TAVAN VE DÖŞEMELER T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ AHŞAP TAVAN VE DÖŞEMELER ANKARA 2007 Milli Eğitim Bknlığı trfındn geliştirilen modüller;

Detaylı

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK Ders Notlrı 1.hft 1.Hft Sttik ve temel prensipler Kuvvet Moment MEKNİK Kuvvetlerin etkisi ltınd kln cisimlerin denge ve hreket şrtlrını nltn ve inceleyen bilim dlıdır. Meknikte incelenen cisimler Rijit

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları Bilgisr Destekli Tsrım/İmlt Sistemlerinde Kllnıln Modelleme Yöntemleri: Béier ve Tiri Eğrileri ve İmlt Uglmlrı Bilimsel Hesplm II Dönem Projesi Hmdi Ndir Trl İçerik. Giriş. Bilgisrlı Destekli Tsrım (CAD

Detaylı

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme MTEMT K Uzunluklr Ölçme Çevre ln Zmn Ölçme S v lr Ölçme Hcmi Ölçme Temel Kynk 5 Uzunluklr Ölçme UZUNLUKLRI ÖLÇME Çevremizde metre, sntimetre, milimetre vey bunlr n herhngi ikisi ile söyledi imiz uzunluklr

Detaylı

46. 48. yatay F 3 F 1. çubuğa 3m kütleli X cismi ve kütlesi bilinmeyen Y cismi şekildeki gibi asõldõğõnda yatay denge sağlanõyor.

46. 48. yatay F 3 F 1. çubuğa 3m kütleli X cismi ve kütlesi bilinmeyen Y cismi şekildeki gibi asõldõğõnda yatay denge sağlanõyor. 46 48 F O F 1 F2 4 1 2 m ip ip N R ip yty I Sürtünmesiz yty bir düzlemde hreketsiz tutuln noktsl cismi serbest bõrkõldõğõnd, üzerine uygulnn dört kuetin etkisiyle, deki O yönünde hreket ediyor Bu kuetlerden

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Haziran Matematik Soruları ve Çözümleri 82 E) 9

Öğrenci Seçme Sınavı (Öss) / 19 Haziran Matematik Soruları ve Çözümleri 82 E) 9 Öğrenci Seçme Sınvı (Öss) / 9 Hzirn 005 Mtemtik Sorulrı ve Çözümleri. 3 (3 ) 3 3 9 (9 ) 9 9 işleminin sonucu kçtır? 0 A) 3 B) 9 C) 7 D) 3 8 E) 9 Çözüm 3 (3 ) 3 3 9 (9 ) 9 9 0 8 3 3 8 80 9 9 3 9 9. 3 3

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları İNTEGRAL İÇ KAPAK B kitın ütün ın hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI n ittir. Kısmen de ols lıntı pılmz. Metin, içim ve sorlr, ımln şirketin izni olmksızın, elektronik, meknik, fotokopi

Detaylı

İNTEGRAL - 6 ALAN HESABI. Bazı Önemli Fonksiyonların Grafikleri: y = mx3. y = mx 2. Taralı Alan = x = my 2. f g. y.x = m. g f. (f(x) g(x)).

İNTEGRAL - 6 ALAN HESABI. Bazı Önemli Fonksiyonların Grafikleri: y = mx3. y = mx 2. Taralı Alan = x = my 2. f g. y.x = m. g f. (f(x) g(x)). SEÇKÝN GRUP DERSHANESÝ Kurtuluþ Mh. Hkký Yðcý C. - 76 / UÞAK İNTEGRAL - 6 ALAN HESABI.. Bzı Önemli Fonksionlrın Grikleri: = m = m () = () = Trlı Aln = (). Trlı Aln = (). = m. = m 5. 6. g g Trlı Aln = Trlı

Detaylı

Mil li E i tim Ba kan l Ta lim ve Ter bi ye Ku ru lu Bafl kan l n n 30.12.2009 ta rih ve 334 sa y l ka ra r ile ka bul edi len ve 2010-2011 Ö re tim

Mil li E i tim Ba kan l Ta lim ve Ter bi ye Ku ru lu Bafl kan l n n 30.12.2009 ta rih ve 334 sa y l ka ra r ile ka bul edi len ve 2010-2011 Ö re tim Mil li i tim kn l T lim ve Ter bi ye u ru lu fl kn l n n 0..009 t rih ve s y l k r r ile k bul edi len ve 00-0 Ö re tim Y l n dn iti b ren uy gu ln ck oln prog r m gö re h z r ln m flt r. Genel Müdür Temel

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 9. Konu AĞIRLIK MERKEZİ - KÜTLE MERKEZİ TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 9. Konu AĞIRLIK MERKEZİ - KÜTLE MERKEZİ TEST ÇÖZÜMLERİ 11. SIIF SU SI 1. ÜİTE: UVVET VE HEET 9. onu ĞII EEZİ - ÜTE EEZİ TEST ÇÖZÜEİ 9 ğırlık erkezi - ütle erkezi Test 1 in Çözümleri 1. Çubuk noktsındn sılınc ipin doğrultusu ğırlık merkezinden geçmelidir. ksi

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

4. BÖLÜM GEOMETRİK ÇİZİMLER

4. BÖLÜM GEOMETRİK ÇİZİMLER 4. ÖLÜM GEOMETRİK ÇİZİMLER MHN 113 Teknik Resim ve Tasarı Geometri 2 4. GEOMETRİK ÇİZİMLER 4.1. ir doğruyu istenilen sayıda eşit parçalara bölmek 1. - doğrusunun bir ucundan herhangi bir açıda yardımcı

Detaylı

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU 2 0 1 3YI L I R KL AMV Rİ L Rİ YL T ÜRKİ Y RADY OVT L Vİ ZY ONY A YI NCI L I ĞI S KT ÖRRAPORU R A T M R A D Y OT L V İ Z Y O NY A Y I N C I L A R I M S L KB İ R L İ Ğ İ L e y l ks o k kmu r t İ ş Me r

Detaylı

Geometri Notları. Kenar-Açı Bağıntıları Mustafa YAĞCI,

Geometri Notları. Kenar-Açı Bağıntıları Mustafa YAĞCI, www.mustfygi.om, 00 Geometri Notlrı Mustf YĞI, ygimustf@yhoo.om Kenr-çı ğıntılrı Üçgenin tnımını htırlyrk derse şlylım:,, doğrusl olmyn üç nokt olduğund, [], [] ve [] nin irleşimine üçgeni denirdi. ir

Detaylı