STATICS. Atalet Momentleri (Moments. of Inertia) VECTOR MECHANICS FOR ENGINEERS: Yapı. özellikle de kesit alanının n 2. momenti veya atalet

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "STATICS. Atalet Momentleri (Moments. of Inertia) VECTOR MECHANICS FOR ENGINEERS: Yapı. özellikle de kesit alanının n 2. momenti veya atalet"

Transkript

1 CHAPTER 9 Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P Beer, E Russell Johnston, Jr & RC HIBBELER in STATICs kitaplarından düzenlenmi zenlenmiştir tir 10 HAFTA Düzenleen zenleen:: Dr N MEYDANLIK Traka Universit EDİİRNE Atalet Momentleri (Moments of Inertia) All rights reserved to bana GİRİ İ Yapı elemanlarının n mukavemeti büük b k oranda onların n kesit büüklb klüklerine klerine ve şekline bağlıdır, özellikle de kesit alanının n momenti vea atalet momentine bağlıdır All rights reserved to bana --

2 UYGULAMALAR Kiriş ve kolon gibi bir çok apı elemanı have cross sectional shapes like I, H, C, etc Diğerleri içi dolu kare ada daire kesitlerden çok tüb şeklindedir Wh do the usuall not have solid rectangular, square, or circular cross sectional areas? Tasarımda bu elemanların hangi özellikleri daha etkendir? How can we calculate this propert? All rights reserved to bana -- Atalet Momenti, Statik hesaplarında kullanılmaz ama hesaplanması ağırlık merkezi hesaplarına benzediği için statik dersi içinde gösterilir Atalet momenti daha çok mukavemet (malzeme mekaniği), dinamik ve akışkanlar mekaniği derslerinde ve hesaplamalarında kullanılır Bir cismin atalet momenti onun dönmee karşı direncinin bir ölçümüdür Günlük tecrübelerimizden de biliriz ki dönen büük bir tekerleği durdurmak vea dönmee başlatmak küçük tekerlekten daha zordur Matematiksel olarak da bu olaın büük tekerleğin daha büük atalet momentine sahip olması nedenile olduğu gösterilebilir Atalet momenti çeşitli mühendislik hesaplamalarında kullanılır; - Hidrostatik basınç kuvvetlerinin bileşkesinin erini bulmak için, - Kirişlerde gerilme ve sehim hesapları için, - Dönen cisimlerin kütle atalet momentleri hesabı All rights reserved to bana --

3 MOMENTS OF INERTIA FOR AREAS Sıvı içine daldırılmış bir plağı göz önüne alalım Yüzeden z kadar aşağıdaki sıvı basıncı pγz ile verilir where γ is the specific weight of the liquid Bu noktada da alanına etki eden kuvvet df p da (γ z) da Bu kuvvet nedenile x-eksenine göre moment z(df) dir The total moment is A z df A γ z da γ A (z da) This integral term is referred to as the moment of inertia of the area of the plate about an axis All rights reserved to bana MOMENTS OF INERTIA FOR AREAS 10cm cm 1cm (A) 10cm 1cm (B) 10cm (C) cm x A F B AB kirişi için farklı kesit şekli ve alanı göz önüne alalım Toplam alanlar eşit ve anı malzemeden apılmış, dolaısıla birim uzunluk için kütleleri anı - Verilen ükleme hali için hangisini tercih edersiniz? Niçin? (daha az gerilme ve çökmei dikkate alın) Yanıt x-eksenine göre atalet momentine bağlıdır x-ekseninden en uzak alanların çoğu (A) da olduğu için en büük atalet momentine sahip olan (A) dır Bu nedenle de en az gerilme ve çökmei (δ) veren de A şıkkıdır Atalet momenti arttıkça (δ) ve gerilme düşer All rights reserved to bana -- 66

4 İntegrasonla bir alanın n atalet momentinin bulunması : Herhangi bir alanın x ve eksenlerine göre ikinci Momenti or atalet momenti, I x da I x da da alanının koordinat eksenlerine parelel ince şerit halinde seçilmesi (I x için ata, I için düşe eleman) integral hesabını basitleştirir All rights reserved to bana di x da di x da Moment of Inertia of an Area b Integration For a rectangular area, h 1 Ix da bd bh 0 Dikdörtgen alan için bulunan ifade eksenlere parelel olarak seçilecek ince şeritlere de ugulanabilir, örneğin bir tek düşe şerit eleman seçilerek her iki eksene göre atalet momentleri di x 1 dx di x da x dx All rights reserved to bana -- 88

5 Polar Moment of Inertia Polar Atalet momenti, dönen silindirik millerin burulmasında önemli bir parametredir J 0 r da Polar atalet momenti ile dik atalet momentleri arasındaki ilişki, J J 0 0 ( x + ) r da da x da+ I + I x da Atalet momentinin birimi uzunluğun kuvvetidir (m ) All rights reserved to bana Bir alanın n atalet arıçap apı Atalet momeni I x olan bir alanı göz önüne alalım Bu alanın erine x-eksenine parelel ve atalet momenti ine I x e eşdeğer bir dikdörtgen şerit düşünürsek, I x kx A kx k x I x A x eksenine göre atalet arıçapı All rights reserved to bana Similarl, I J O O k k O x A A k k + k k k O I A J A Atalet arıçapı özellikle kolonların tasarımında önemlidir O -- 10

6 Sample Problem 91 SOLUTION: A differential strip parallel to the x axis is chosen for da di x da da l d For similar triangles, l b h h l h b h da h b d h Üçgen alanın tabanına göre atalet momentini hesaplaınız 0 dan h a kadar di x in integrasonu, I x b h h h h b da b d h h 0 h 0 h 0 ( h ) bh I x 1 d All rights reserved to bana Sample Problem 9 SOLUTION: An annular differential area element is chosen, dj J O O u da r da π u du djo u ( π u du) π 0 J O r 0 u π r du a) Dairesel bir alanın polar atalet momentini bulunuz b) a şıkkında bulduğunuz sonucu kullanarak, dairesel alanın çapından geçen x-eksenine göre atalet momentini bulunuz From smmetr, I x I, π JO Ix + I Ix r I I x diameter I x π r All rights reserved to bana -- 1

7 Sample Problem 9 Given: The shaded area shown in the figure Find: The MoI of the area about the x- and -axes (x,) cm Solution I x da da ( x) d ( /) d I x 0 ( /) d [ (/) (1/0) 5 ] 0 1 cm cm All rights reserved to bana -- 1 (x,) cm I x da x dx x ( x) dx 0 x 5 dx [ (/5) x 5 ] 0 cm 71 cm In the above example, it will be difficult to determine I using a horizontal strip However, I x in this example can be determined using a vertical strip So, I x (1/) dx (1/) ( x) dx All rights reserved to bana -- 1

8 Sample Problem 9 Given: The shaded area shown Find: I x and I of the area (x,) Solution I x (1/) dx 8 0 (1/) x dx [x / 6 ] in 8 All rights reserved to bana (x,) I Y x da x dx x ( x (1/) ) dx 8 0 x (7/) dx [(/10) x (10/) ] in All rights reserved to bana -- 16

9 1 When determining the MoI of the element in the figure, di equals A) x d B) x dx ATTENTION QUIZ C) (1/) dx D) x 5 dx x (x,) Similarl, di x equals A) (1/) x 15 dx B) da C) (1/1) x d D) (1/) x dx All rights reserved to bana Parelel eksenler Teoremi & Bileşik ik alanların n atalet momentleri Yapı elemanlarının kesit alanları genellikle basit şekillerden ada ilkel basit şekillerin birleşmesinden oluşmuştur Bu basit alanların atalet momentlerini bulmak için integrason öntemi ile karşılaştırıldığında daha basit öntemler var mıdır???? All rights reserved to bana EVET

10 PARALLEL-AXIS THEOREM FOR AN AREA Bu teorem bir alanın ağırlık merkezinden geçen eksenlere göre atalet momentinin ine bu eksenlere parelel başka eksenlere göre atalet momentleri ile ilgilidir Bileşik alanların atalet momentlerinin bulunması için pratik bir öntemdir Gözönüne alınan alanın ağırlık merkezi C dir x' and ' axes ağ mer C den geçmektedir x -eksenine parelel ve d kadar mesafede bir x-eksenine göre atalet momenti parelel eksen teoremi ile bulunur All rights reserved to bana Parelel Eksen Teoremi I X A da A (' + d ) da A ' da + d A ' da + d A da + d Ağırlık merkezinin tanımını kullanarak: ' ( A ' da) / ( A da) Now since C is at the origin of the x' ' axes, ' 0, and hence A ' da 0 Thus I X I X ' + A d Similarl, I Y I Y ' + A d X and J O J C + A d All rights reserved to bana -- 0

11 All rights reserved to bana -- 1 All rights reserved to bana --

12 Parallel Axis TeoremiT örnek Use the value of I for a circle from the table on the following page and the parallel-axis theorem to find I T, the moment of inertia about an axis tangent to the circle I T I + Ad 5 π r 1 π r + ( π r ) r All rights reserved to bana Use the value of I AA along the base of a triangle from the table on the following page and the parallel-axis theorem to find I BB, the moment of inertia along a parallel axis through the centroid of the triangle I I + Ad I AA BB I 6 1 BB AA bh Ad 1 1 bh 1 bh ( 1 h) -- En çok bilinen bazı ilkel kesitlerin atalet momentleri All rights reserved to bana --

13 En çok bilinen bazı ilkel kesitlerin atalet momentleri All rights reserved to bana -- 5 All rights reserved to bana -- 6

14 CONCEPT QUIZ 1 For the area A, we know the centroid s (C) location, area, distances between the four parallel axes, and the MoI about axis 1 We can determine the MoI about axis b appling the parallel axis theorem A) directl between the axes 1 and d d d 1 A C Axis 1 B) between axes 1 and and then between the axes and C) between axes 1 and and then axes and D) None of the above All rights reserved to bana -- 7 d d d 1 CONCEPT QUIZ A C Axis 1 smallest MoI For the same case, consider the MoI about each of the four axes About which axis will the MoI be the smallest number? A) Axis 1 B) Axis C) Axis D) Axis E) Can not tell All rights reserved to bana -- 8

15 ATTENTION QUIZ 1 For the given area, the moment of inertia about axis 1 is 00 cm What is the MoI about axis (the centroidal axis)? A) 90 cm B) 110 cm C) 60 cm D) 0 cm d d 1 C C A10 cm d 1 d cm 1 I 1 I + Ad I I 1 - Ad 00-10() 0 cm All rights reserved to bana -- 9 ATTENTION QUIZ The moment of inertia of the rectangle about the x-axis equals A) 8 cm B) 56 cm C) cm D) 6 cm cm cm cm d x x I x I x + Ad I x (bh )/1 + Ad ( ) / cm All rights reserved to bana -- 0

16 EXAMPLE Given: Find: The beam s cross-sectional area The moment of inertia of the area about the -axis and the radius of gration k Solution [1] [] [] 1 The cross-sectional area can be divided into three rectangles ( [1], [], [] ) as shown The centroids of these three rectangles are in their center The distances from these centers to the -axis are 0 mm, 875 mm, and 875 mm, respectivel All rights reserved to bana -- 1 EXAMPLE From the inside back cover of the book, the MoI of a rectangle about its centroidal axis is (1/1) b h I [1] (1/1) (5mm) (00mm) 565 (10 6 ) mm [1] [] [] Using the parallel-axis theorem, I Y[] I Y[] I Y + A (d X ) (1/1) (100) (5) + (5) (100) ( 875 ) 197 (10 6 ) mm All rights reserved to bana --

17 EXAMPLE I I 1 + I + I 98 ( 10 6 ) mm k ( I / A) A 00 (5) + 5 (100) + 5 (100) 1,500 mm k ( 979) (10 6 ) / (1500) 871 mm All rights reserved to bana -- MOMENT OF INERTIA FOR A COMPOSITE AREA A composite area is made b adding or subtracting a series of simple shaped areas like rectangles, triangles, and circles For example, the area on the left can be made from a rectangle minus a triangle and circle The MoI of these simpler shaped areas about their centroidal axes are found in most engineering handbooks as well as the inside back cover of the textbook Using these data and the parallel-axis theorem, the MoI for a composite area can easil be calculated All rights reserved to bana --

18 STEPS FOR ANALYSIS 1 Divide the given area into its simpler shaped parts Locate the centroid of each part and indicate the perpendicular distance from each centroid to the desired reference axis Determine the MoI of each simpler shaped part about the desired reference axis using the parallel-axis theorem ( I X I X + A ( d ) ) The MoI of the entire area about the reference axis is determined b performing an algebraic summation of the individual MoIs obtained in Step (Please note that MoI of a hole is subtracted) All rights reserved to bana -- 5 READING QUIZ 1 The parallel-axis theorem for an area is applied between A) an axis passing through its centroid and an corresponding parallel axis B) an two parallel axis C) two horizontal axes onl D) two vertical axes onl The moment of inertia of a composite area equals the of the MoI of all of its parts A) vector sum B) algebraic sum (addition or subtraction) C) addition D) product All rights reserved to bana -- 6

19 EXAMPLE Given: The shaded area as shown in the figure Find: The moment of inertia for the area about the x-axis and the radius of gration k X (a) (b) (c) Solution 1 The given area can be obtained b subtracting both the circle (b) and triangle (c) from the rectangle (a) Information about the centroids of the simple shapes can be obtained from the inside back cover of the book The perpendicular distances of the centroids from the x-axis are: d a 5 in, d b in, and d c 8in All rights reserved to bana -- 7 EXAMPLE I Xa (1/1) 6 (10) + 6 (10)(5) 000 in I Xb (1/) π () + π() () 16 in (a) (b) (c) I Xc (1 /6) () (6) + (½) () (6) (8) 59 in I X I Xa I Xb I Xc 1190 in k X ( I X / A ) A 10 ( 6 ) π () (½) () (6) 8 in k X (119 / 8) 557 in All rights reserved to bana -- 8

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

FLUID MECHANICS PRESSURE AND MOMENTUM FORCES A-PRESSURE FORCES. Example

FLUID MECHANICS PRESSURE AND MOMENTUM FORCES A-PRESSURE FORCES. Example A-PRESSURE FORCES FLUID MECHANICS PRESSURE AND MOMENTUM FORCES Consider a duct as shown in figure. First identify the control volume on which to conduct a force balance. The inner passage is filled with

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Maden Mühendisliği Bölümü MDM 240 Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No:

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi MHN 243 Sürmene Deniz Bilimleri Fakültesi Gemi İnşaatı ve Gemi Makineleri Mühendisliği Bölümü, Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.)

Detaylı

Ders Öğretim Planı. Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001132003 STATICS Zorunlu 1 2 5

Ders Öğretim Planı. Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001132003 STATICS Zorunlu 1 2 5 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001132003 STATICS Zorunlu 1 2 5 Dersin Seviyesi Lisans Dersin Amacı Statik ile ilgili kavramları tanıması ve bu kavramları ilgili

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

İZDÜŞÜM. İzdüşümün Tanımı ve Önemi İzdüşüm Metodları Temel İzdüşüm Düzlemleri Noktanın İzdüşümü Doğrunun İzdüşümü Düzlemlerin İz Düşümleri

İZDÜŞÜM. İzdüşümün Tanımı ve Önemi İzdüşüm Metodları Temel İzdüşüm Düzlemleri Noktanın İzdüşümü Doğrunun İzdüşümü Düzlemlerin İz Düşümleri ÖĞR. GÖR.ÖMER UÇTU İZDÜŞÜM İzdüşümün Tanımı ve Önemi İzdüşüm Metodları Temel İzdüşüm Düzlemleri Noktanın İzdüşümü Doğrunun İzdüşümü Düzlemlerin İz Düşümleri İzdüşümün Tanımı ve Önemi İz düşüm: Bir cismin

Detaylı

SBR331 Egzersiz Biyomekaniği

SBR331 Egzersiz Biyomekaniği SBR331 Egzersiz Biyomekaniği Açısal Kinematik 1 Angular Kinematics 1 Serdar Arıtan serdar.aritan@hacettepe.edu.tr Mekanik bilimi hareketli bütün cisimlerin hareketlerinin gözlemlenebildiği en asil ve kullanışlı

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

Karadeniz Teknik Üniversitesi. Mühendislik Fakültesi. Endüstri Mühendisliği Bölümü. MM 2005 Mühendislik Mekaniği

Karadeniz Teknik Üniversitesi. Mühendislik Fakültesi. Endüstri Mühendisliği Bölümü. MM 2005 Mühendislik Mekaniği Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü MM 2005 Mühendislik Mekaniği 2016-2017 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü,

Detaylı

108 0. How many sides has the polygon?

108 0. How many sides has the polygon? 1 The planet Neptune is 4 496 000 000 kilometres from the Sun. Write this distance in standard form. 44.96 x 10 8 km 4.496 x 10 8 km 4.496 x 10 9 km 4.496 x 10 10 km 0.4496 x 10-10 km 4 Solve the simultaneous

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

İnce kayma akısı yatay kayma gerilmesi ve kayma merkezi

İnce kayma akısı yatay kayma gerilmesi ve kayma merkezi Malzeme Mekaniğinde Özel Konular Dr. Nusret MEYDANLIK HAFTA 4. Malzeme Mekaniğinde inde Özel Konular MK MT4 İnce cıdarlı kirişlerde kayma akısı yatay kayma gerilmesi ve kayma merkezi Dr. Nusret MEYDANLIK

Detaylı

Ad Soyad: Öğrenci No:...

Ad Soyad: Öğrenci No:... FİZ 121 2015-2016 Güz Dönemi 2. Vize Sınavı Süre 90 dakikadır 1 2 3 4 5 Toplam Ad Soyad: Öğrenci No:... Sınav sırasında hesap makinası kullanılması serbest, ancak alışverişi yasaktır. Sorular eşit puanlıdır.

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../..

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../.. Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../../2015 KP Pompa akış sabiti 3.3 cm3/s/v DO1 Çıkış-1 in ağız çapı 0.635 cm DO2

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 2023 Dinamik Dersi 2016 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No: 320

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

Kafes Sistemler Turesses

Kafes Sistemler Turesses Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others

Detaylı

KESME KUVVETİ MUKAVEMET

KESME KUVVETİ MUKAVEMET 1 MUKAVEMET KESME KUVVETİ Perçin hesabı nda üç tahkik vardı r. 1- perçinde kesme tahkiki 2- en ince levhada ezilme tahkiki 3- levhada gerilme tahkiki N = perçin sayı sı d = perçin çapı A = perçin kesit

Detaylı

STATİK - MUKAVEMET 12. HAFTA BURULMA L uzunluğunda R yarıçapında burulma çubuğu,

STATİK - MUKAVEMET 12. HAFTA BURULMA L uzunluğunda R yarıçapında burulma çubuğu, 1 STATİK - MUKAVEMET 12. HAFTA BURULMA L uzunluğunda R yarıçapında burulma çubuğu, merkezden r kadar uzaklıktaki, diferansiyel eleman kesit alanı A, Kayma gerilmesi: = (r/r). 2 3 Diferansiyel Kuvvet. Diferansiyel

Detaylı

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 1 I S L 8 0 5 U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 2 0 1 2 CEVAPLAR 1. Tekelci bir firmanın sabit bir ortalama ve marjinal maliyet ( = =$5) ile ürettiğini ve =53 şeklinde

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

ATILIM UNIVERSITY Department of Computer Engineering

ATILIM UNIVERSITY Department of Computer Engineering ATILIM UNIVERSITY Department of Computer Engineering COMPE 350 Numerical Methods Fall, 2011 Instructor: Fügen Selbes Assistant: İsmail Onur Kaya Homework: 1 Due date: Nov 14, 2011 You are designing a spherical

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr 1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi DIVIDED DIFFERENCE INTERPOLATION Forward Divided Differences

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Maddesel Nokta Statiği 2.1. HAFTA. Đçindekiler S T A T İ K :

Maddesel Nokta Statiği 2.1. HAFTA. Đçindekiler S T A T İ K : --11-- Maddesel Nkta Statiği 2.1. HATA --22-- Đçindekiler Mekaniğe Giriş Đki kuvvetin bileşkesi Vektörler Vectörel işlemler Bir nktada kesişen kuvvetlerin bileşkesi Örnek Prblem 2.1 Örnek Prblem 2.2 Bir

Detaylı

Sıvı Depolarının Statik ve Dinamik Hesapları

Sıvı Depolarının Statik ve Dinamik Hesapları Sıvı Depolarının Statik ve Dinamik Hesapları Bu konuda yapmış olduğumuz yayınlardan derlenen ön bilgiler ve bunların listesi aşağıda sunulmaktadır. Bu başlık altında depoların pratik hesaplarına ilişkin

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Çoklu Kordinat Sistemi

Çoklu Kordinat Sistemi Çoklu Kordinat Sistemi Uçak pistte durduğu zaman burnunun kuleye göre kordinatı: (50, 5, 0), buna karşın uçağın kordinatlarına göre pozisyonu ise:(0,0,0). Benzer bir biçimde, kulenin tabanı kule kordinat

Detaylı

YAPILARDA BURULMA DÜZENSİZLİĞİ

YAPILARDA BURULMA DÜZENSİZLİĞİ YAPILARDA BURULMA DÜZENSİZLİĞİ M. Sami DÖNDÜREN a Adnan KARADUMAN a M. Tolga ÇÖĞÜRCÜ a Mustafa ALTIN b a Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Konya b Selçuk Üniversitesi

Detaylı

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER BÖLÜM 8 Gerilme MECHANICS MUKAVEMET OF II MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Present continous tense

Present continous tense Present continous tense This tense is mainly used for talking about what is happening now. In English, the verb would be changed by adding the suffix ing, and using it in conjunction with the correct form

Detaylı

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD TAŞIMA GÜCÜ PROBLEM 1: Diğer bilgilerin şekilde verildiği durumda, a) Genişliği 1.9 m, uzunluğu 15 m şerit temel; b) Bir kenarı 1.9 m olan kare tekil temel; c) Çapı 1.9 m olan dairesel tekil temel; d)

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEY FÖYÜ (TEK EKSENLİ EĞİLME DENEYİ) ÖĞRETİM ÜYESİ YRD.DOÇ.DR. AHMET TEMÜGAN DERS ASİSTANI ARŞ.GÖR. FATİH KAYA

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 1000 STATİK ÖDEV II Son teslim tarihi: 13 Mayıs Cuma 10:00 (I, II. Öğretim Grupları) Soru Çözümü: 13 Mayıs Cuma 14:00,

Detaylı

Pratik İskele Sistemi Practical Scaffolding System

Pratik İskele Sistemi Practical Scaffolding System Zamandan Tasarruf Kaliteli Malzeme Üst Düzey Güvenlik Müşteri Memnuniyeti 01 02 06 07 03 04 08 09 05 01-70cm H Dikme / 70cm H Frame 02 - Yürüme Platformu / Walking Platform 03-90cm H Dikme / 90cm H Frame

Detaylı

KARABUK UNIVERSITY, ENGINEERING FACULTY, AUTOMOTIVE ENGINEERING, FLUID MECHANICS, MAKE-UP EXAM, 27.01.2014

KARABUK UNIVERSITY, ENGINEERING FACULTY, AUTOMOTIVE ENGINEERING, FLUID MECHANICS, MAKE-UP EXAM, 27.01.2014 KARABUK UNIVERSITY, ENGINEERING FACULTY, AUTOMOTIVE ENGINEERING, FLUID MECHANICS, MAKE-UP EXAM, 27.01.2014 Attention: Forbidden to use extra paper. You can use the blank spaces and back of page as a draft.

Detaylı

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4)

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Şekil 1.1. İzostatik sistem EA GA 0, EI = 2.10 4 knm 2, E = 2.10 8, t =10-5 1/, h =60cm (taşıyıcı eleman yüksekliği, her yerde)

Detaylı

Ders Öğretim Planı. Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507002132003 DİNAMİK Zorunlu 2 3 4

Ders Öğretim Planı. Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507002132003 DİNAMİK Zorunlu 2 3 4 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507002132003 DİNAMİK Zorunlu 2 3 4 Dersin Seviyesi Lisans Dersin Amacı Dersin amacı, cisimlerin ve sistemlerin hareketlerini tahmin

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507004092007 MAKİNA PROJESİ II Zorunlu 4 7 4

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507004092007 MAKİNA PROJESİ II Zorunlu 4 7 4 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507004092007 MAKİNA PROJESİ II Zorunlu 4 7 4 Dersin Seviyesi Lisans Dersin Amacı Dersin amacı Makina Mühendisliği bölümü Lisans öğrencilerine

Detaylı

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI YÜZÜNCÜ YIL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Yrd. Doç. Dr. Barış Erdil YAPI MÜHENDİSLİĞİ NEDİR? STRUCTURAL ENGINEERING IS

Detaylı

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI GEZER KRE KÖPRÜSÜ KOSTRÜKSİYOU VE HESABI 1. GEZER KÖPRÜLÜ KRE Gezer köprülü krenler, yüksekte bulunan raylar üzerinde hareket eden arabalı köprülerdir. Araba yükleri kaldırır veya indirir ve köprü üzerindeki

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü 2015 Bahar Yarıyılı MM-1027 Statik (I. Öğretim) MM-108 Statik (II. Öğretim) Ders Tanıtımı Ders Tanıtımı MM 1027 (I. ÖĞRETİM)

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü 2016 Bahar Yarıyılı MM-1000 Statik C grubu (I. Öğretim) MM-1000 Statik C Grubu (II. Öğretim) Ders Tanıtımı Ders Tanıtımı MM

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AŞIRI PLASTİK DEFORMASYON METOTLARININ ALÜMİNYUM ALAŞIMLARININ MEKANİK ÖZELLİKLERİNE ETKİSİ

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AŞIRI PLASTİK DEFORMASYON METOTLARININ ALÜMİNYUM ALAŞIMLARININ MEKANİK ÖZELLİKLERİNE ETKİSİ T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AŞIRI PLASTİK DEFORMASYON METOTLARININ ALÜMİNYUM ALAŞIMLARININ MEKANİK ÖZELLİKLERİNE ETKİSİ Mak. Müh. Kaan ÖZEL YÜKSEK LİSANS TEZİ Makina Mühendisliği ANA

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI AKSLAR VE MİLLER P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Dönen parça veya elemanlar taşıyan

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

1 - CANTEK köşe parçasını şekilde gösterildiği gibi yerleştirin;

1 - CANTEK köşe parçasını şekilde gösterildiği gibi yerleştirin; 1 - CANTEK köşe parçasını şekilde gösterildiği gibi yerleştirin; Insert CANTEK Corner Piece as shown.. 2 - CANTEK Köşe parçalarını 4 köşeye yerleştirilerek şekildeki gibi çerçeve elde edin. Kanal kesitinin

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

Yrd. Doç. Dr. Tolga DEMİRCAN. Akışkanlar dinamiğinde deneysel yöntemler

Yrd. Doç. Dr. Tolga DEMİRCAN. Akışkanlar dinamiğinde deneysel yöntemler Yrd. Doç. Dr. Tolga DEMİRCAN e-posta 2: tolgademircan@gmail.com Uzmanlık Alanları: Akışkanlar Mekaniği Sayısal Akışkanlar Dinamiği Akışkanlar dinamiğinde deneysel yöntemler Isı ve Kütle Transferi Termodinamik

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

10.7442 g Na2HPO4.12H2O alınır, 500mL lik balonjojede hacim tamamlanır.

10.7442 g Na2HPO4.12H2O alınır, 500mL lik balonjojede hacim tamamlanır. 1-0,12 N 500 ml Na2HPO4 çözeltisi, Na2HPO4.12H2O kullanılarak nasıl hazırlanır? Bu çözeltiden alınan 1 ml lik bir kısım saf su ile 1000 ml ye seyreltiliyor. Son çözelti kaç Normaldir? Kaç ppm dir? % kaçlıktır?

Detaylı

Perspektif resimler. MAK112E Computer Aided Technical Drawing Dr C Erdem IMRAK @ 2004 1. Perspektif resimler

Perspektif resimler. MAK112E Computer Aided Technical Drawing Dr C Erdem IMRAK @ 2004 1. Perspektif resimler Perspektif resimler Bir parçanın, tek görünüşte üç yüzünün birden görünmesini parçanın daha kolay anlaşılmasını ve kavranmasını, sağlamak amacıyla çizilen teknik resimler Dr C Erdem IMRAK @ 2004 1 Perspektif

Detaylı

HAND I WALL FORM HAND I WALL FORMWORK

HAND I WALL FORM HAND I WALL FORMWORK WALL FORM WALL FORMWORK System Formwork is developed for foundations, beams and walls on lower parts of construction. The steel frame profiles are made with the latest high technology. Easy and simple

Detaylı

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University Eco 338 Economic Policy Week 4 Fiscal Policy- I Prof. Dr. Murat Yulek Istanbul Ticaret University Aggregate Demand Aggregate (domestic) demand (or domestic absorption) is the sum of consumption, investment

Detaylı

SOLIDWORKS SIMULATION EĞİTİMİ

SOLIDWORKS SIMULATION EĞİTİMİ SOLIDWORKS SIMULATION EĞİTİMİ Kurs süresince SolidWorks Simulation programının işleyişinin yanında FEA teorisi hakkında bilgi verilecektir. Eğitim süresince CAD modelden başlayarak, matematik modelin oluşturulması,

Detaylı

Tünel Açma işlerinde Paralel Delik Düzeni İle İlgili n

Tünel Açma işlerinde Paralel Delik Düzeni İle İlgili n MADENCİLİK Aralık December 1985 Cilt Volume XXIV Sayı No 4 Tünel Açma işlerinde Paralel Delik Düzeni İle İlgili n Parametreler Parameters Related Witli Parallel Hole Cut Arrangement in Tunneling Tayfun

Detaylı

AKT 305 Aktüeryal Yazılımlar Ödev 1 Yanıtları Soru 1. Create a vector x with the elements...

AKT 305 Aktüeryal Yazılımlar Ödev 1 Yanıtları Soru 1. Create a vector x with the elements... AKT 305 Aktüeryal Yazılımlar Ödev 1 Yanıtları Soru 1. Create a vector x with the elements... a. 2, 4, 6, 8,...,10 >> [2:2:10] 2 4 6 8 10 b. 10, 8, 6, 4, 2, 0, -2, -4 >> [10:-2:-4] 10 8 6 4 2 0-2 -4 c.

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Cisimlerin Mukavemeti MK-311 3/Güz (4+0+0) 4 7

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Cisimlerin Mukavemeti MK-311 3/Güz (4+0+0) 4 7 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Cisimlerin Mukavemeti MK-311 3/Güz (4+0+0) 4 7 Dersin Dili : Türkçe Dersin Seviyesi

Detaylı

Temel bilgiler-flipped Classroom Akslar ve Miller

Temel bilgiler-flipped Classroom Akslar ve Miller Makine Elemanları I Prof. Dr. İrfan KAYMAZ Temel bilgiler-flipped Classroom Akslar ve Miller İçerik Aks ve milin tanımı Akslar ve millerin mukavemet hesabı Millerde titreşim hesabı Mil tasarımı için tavsiyeler

Detaylı

MATERIALS. Gerilmeler. (Kitapta Bölüm 8.4) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Gerilmeler. (Kitapta Bölüm 8.4) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Third E CHAPTER BÖLÜM 7 Bileşik MECHANCS MUKAVEMET OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Düenleen: Era Arslan Yükleelerde

Detaylı

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001112001 MATEMATİK II Zorunlu 1 2 5 Dersin Seviyesi Lisans Dersin Amacı Matematik bilgisini mühendislik problemlerini çözmede

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

2 www.koyuncumetal.com

2 www.koyuncumetal.com 2 www.koyuncumetal.com KURUMSAL Şirketimizin temelleri konya da 1990 yılında Abdurrahman KOYUNCU tarafından küçük bir atölyede sac alım-satım ve kesim-büküm hizmeti ile başlamıştır. Müşteri ihtiyaçlarına

Detaylı

Bölüm 3: Basınç ve Akışkan Statiği

Bölüm 3: Basınç ve Akışkan Statiği Basınç Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvettir. Basıncın birimi pascal (Pa) olarak adlandırılan N/m 2 dir. Basınç birimi Pa,uygulamada çok küçük olduğundan daha çok kilopascal

Detaylı

İÇİNDEKİLER. Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX

İÇİNDEKİLER. Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX İÇİNDEKİLER Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX 1. GENEL BİLGİLER...1 1.1. Giriş...1 1.2. Geçmişte Yapılan Çalışmalar...2 1.3. Bu Çalışmanın

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

Konforun Üç Bilinmeyenli Denklemi 2016

Konforun Üç Bilinmeyenli Denklemi 2016 Mimari olmadan akustik, akustik olmadan da mimarlık olmaz! Mimari ve akustik el ele gider ve ben genellikle iyi akustik görülmek için orada değildir, mimarinin bir parçası olmalı derim. x: akustik There

Detaylı

Ürün Broşürü Product Brochure

Ürün Broşürü Product Brochure Ürün Broşürü Product Brochure 09 2015 Kabiliyetlerimiz Capabilities Ar-Ge - ÜRÜN GELIŞTIRME R&D - PRODUCT DEVELOPMENT Dişli, mil, rulman ömrü gibi tüm mühendislik hesaplamaları güvenilirliği dünyaca kabul

Detaylı

MECHANICS OF MATERIALS. Burulma. Fatih Alibeyoğlu. Third Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. John T.

MECHANICS OF MATERIALS. Burulma. Fatih Alibeyoğlu. Third Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. John T. T E CHAPTER MECHANICS OF 3 MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. Burulma John T. DeWolf Fatih Alibeyoğlu Burulma Döndürme momenti etkisi altında dairesel kesitli parçalar burulmaya zorlanır.

Detaylı

OFFSET ANTENNA OFSET ANTEN 65 cm. (60x66) ACCESSORIES - AKSESUARLAR

OFFSET ANTENNA OFSET ANTEN 65 cm. (60x66) ACCESSORIES - AKSESUARLAR OFFSET ANTENNA OFSET ANTEN 65 cm. (60x66) GES 65 OF GES 65-3 OF AE 621 AE 456 AE 6065 P AE 890 AE 668 GW 3250 S GW 3850 S KW 6080 65 0F SPECIFICATION - TEKNİK ÖZELLİKLER 65-3 0F 60 cm Reception Frequency

Detaylı

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM MAK4061 BİLGİSAYAR DESTEKLİ TASARIM (Shell Mesh, Bearing Load,, Elastic Support, Tasarım Senaryosunda Link Value Kullanımı, Remote Load, Restraint/Reference Geometry) Shell Mesh ve Analiz: Kalınlığı az

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

BBC English in Daily Life

BBC English in Daily Life İçindekiler Lesson one - Ders 1:... 2... 2 Lesson Two - Ders 2:... 2... 3 Lesson Three - Ders 3:... 3... 3 Lesson Four - Ders 4:... 4... 4 Lesson Five - Ders 5:... 4... 4 Lesson Six - Ders 6:... 5... 5

Detaylı