Yük Yoğunluğu ve Nokta Yük İçeren Elektrik Alan Problemlerinin Sınır Elemanları Yöntemiyle İncelenmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yük Yoğunluğu ve Nokta Yük İçeren Elektrik Alan Problemlerinin Sınır Elemanları Yöntemiyle İncelenmesi"

Transkript

1 Fırat Ünv. Fen ve Müh. Bl. Dergs cence and Eng. J of Fırat Unv. (), 99-, (), 99-, Yü Yoğunluğu ve Nota Yü İçeren Eletr Alan Problemlernn ınır Elemanları Yöntemyle İncelenmes Hüseyn ERİŞTİ ve elçu YILDIRIM Fırat Ünverstes Tuncel Mesle Yüseoulu, Tuncel Fırat Ünverstes Ten Eğtm Faültes Eletr Bölümü, Elazığ (Gelş/Receved: 7..7; Kabul/Accepted:7..7) Özet: Bu çalışmada, yü yoğunluğuna sahp eletr alan problemlern tanımlayan Posson denlemler sınır elemanları yöntemyle çözülmüştür. Problem bölgesnn sınırları, lneer sınır elemanlarıyla ayrıştırılmıştır. Yü yoğunluğunun uygulandığı problem bölges se üçgen elemanlarla bölmelendrlmştr. Bölge ntegral çeren sınır ntegral denlem çözülere, sınırda blnmeyen u ve q değerler bulunmuştur. Daha sonra ç notalarda potansyel değerler hesaplanmıştır. Ayrıca nota yü yoğunluğu olması durumunda çözümler yapılara potansyel dağılımları elde edlmştr. Posson denlemnn çözümü çn MATLAB da HBEM sml br program yazılmıştır. H-BEM le elde edlen sonuçlar, ELECTRO ve MATLAB PDE toolbox sonuçları le arşılaştırılmıştır. Anahtar Kelmeler: Posson Denlem, ınır Elemanları Yöntem, Eletr Alanı, Potansyel Dağılımı. Investgaton of Electrc Feld Problems Havng Charge Densty and Pont Charge wth the Boundary Element Method Abstract: In ths study, Posson Equatons defnng electrc feld problems havng charge densty was solved by BEM. Boundares of problem regons were dscreet by means of lnear boundary elements. Problem regon, whch was appled charge densty, was subdvded as trangular elements. Unnown boundary values (u and q) were obtaned after boundary ntegral equaton ncludng doman ntegral was solved. Then, potental values at nternal ponts were calculated. Furthermore, potental dstrbutons were obtaned from solutons made when pont charge was beng exsted. To solve Posson equatons, a program named HBEM was developed by usng MATLAB. Results obtaned from HBEM program was compared to ELECTRO and MATLAB toolbox results. Key Words: Posson s Equaton, Boundary Element Method, Electrc Feld, Potental Dstrbuton.. Grş ınır elemanları yöntem, sınır değer problemlernn çözümü çn sayısal br metottur. ınır elemanları yöntemyle, brço mühendsl problemnn analz sadece problem bölges sınırının bölmelendrlmesyle rahat, hızlı ve hassas br şelde yapılmatadır. Bu yöntemde, problem bölgesn tanımlayan ısm dferansyel denlemler, sınırların bölmelenmesyle elde edlen sınır elemanlarının brbrne etsnden oluşan et ntegraller yardımıyla çözülür. ınır elemanları yöntemyle yapılan analzlerde problem bölgesne at ntegral denlem sınır üzernde tanımlanmasından dolayı sonlu elemanlar yöntem ve sonlu farlar yöntemnden farlı olara problemn boyutsallığı br derece ndrgenr. Bu özellğnden dolayı lneer denlem sstemler, ver yapıları ve hesaplama şlemler daha ısadır. Bu yöntemle açı alan ve armaşı sınırlı problemlern çözümü rahatlıla yapılablr [-]. Problem bölgesnn sınırlarının ayrıştırılması çn çeştl sınır elemanları gelştrlmştr. Bu elemanlar genel olara sabt, lneer ve parabol elemanlardır. Buna göre, sabt elemanda br düğüm bulunur ve bu düğüm elemanın merezndedr. Lneer elemanda se düğüm bulunur ve bu düğümler elemanın uç notalarındadır. Parabol elemanda se üç düğüm bulunur. Bu düğümlern brs elemanın mereznde, dğer s de elemanın uç notalarındadır. Bu sınır elemanları, ayrı ayrı nterpolasyon fonsyonları le fade edlmetedr [5].

2 H. Erşt ve.yıldırım Yü yoğunluğu ve nota yü çeren eletr alan problemlernn potansyel dağılımı Posson denlemnn çözümüyle elde edlr. Problem bölgesnde herhang br yü ets bulunmayan eletr alan problemlernn çözümünde se Laplace denlem ullanılır. ınır üzernde potansyel ve aının hesaplanması çn gerel sınır ntegral denlem, Laplace veya Posson denlemne ez ısm ntegrasyon uygulanmasının sonucunda elde edlr. Problem bölges çersnde herhang br notanın potansyel ve aı değer, sınır ntegraller ullanılara sınır üzernde değerlerden elde edlr []. Posson denlemnden elde edlen sınır ntegral denlemnde Laplace denlemne e olara br bölge ntegral vardır. Posson denlemnden elde edlen sınır ntegral denlemn sınır elemanları yöntemyle çözme çn bazı yöntemler gelştrlmştr. Bunlar, hücre yalaşımı, DRM (Dual Recprocty Method), MRM (Multple Recprocty Method) gb yöntemlerdr [7]. ınır elemanları yöntemyle yoğunlaştırılmış br eletr yüü aynağına göre hesaplamalar yapılması olduça olaydır. Anca bu aynağa göre hesaplamaların yapılması sonlu elemanlar ve sonlu farlar yöntemnde olduça zordur []. Bu çalışmada, lneer sınır elemanları ve hücre yalaşımı yöntem ullanılara yü yoğunluğu ve nota yü çeren eletr alan problemlernn potansyel dağılımları ncelenmştr.. Formülasyon Gauss anununa göre, ρ v hacmsel yü yoğunluğu çeren, ε deletr atsayılı homojen br ortamda Posson denlem, ρ v V = () ε V = () olur ve bu denlem Laplace denlem olara adlandırılır. Posson denlemne at sınır ntegral denlem: c u + u q d+ b u db= B q u d (3) şelnde fade edlr. Bu denlem, yönteme at lneer nterpolasyon fonsyonları ullanılara, c u + N [ Hj Hj][ u j u j ] j= = N [ G G ][ q j q j ] j j j= T + d... T () şelnde fade edlr. Bu denlemde; N sınır eleman sayısı, H ve G et atsayıları, u potansyel, q aı ve d bölge ntegral termdr. c atsayısının se, sınır üzernde düğümü çn düğümden önce ve sonra elemanların yaptığı açıya bağlı olara hesaplanması gerer. İç notalarda hesaplamalarda, br ç notası çn c = alınır. Ayrıca H ve G atsayıları, tablo. de verlen formüllere göre hesaplanır. 3. Bölge İntegrallernn Hesaplanması Eletr alan problemlernn hesaplamalarında ncelenlen problem bölges matematsel olara Posson denlem tp le tanımlanıyorsa, problem bölgesne at sınır ntegral denlemlernde ayrıca br bölge ntegral bulunur. Bölge ntegral term Gauss alan hesabı yöntemyle çözüleblr. Buna göre, her sınır düğümü le bütün hücreler arasında lş şelnde gösterlr ve bu denlem br bölgede loal yü dağılımına bağlı potansyel dağılımını fade etmetedr. Eletrostatte letenlern yüzeynde yü dağılımlarını çeren bazı problemler vardır. Bu durumlarda, lgl bölgede çoğu notalarda hacm yü yoğunluğu sıfırdır. Böylece, ρ v nn olmadığı bölgede (),

3 Yü Yoğunluğu ve Nota Yü İçeren Eletr Alan Problemlernn ınır Elemanları Yöntemyle İncelenmes Tablo. H ve G et atsayılarının hesaplanması H et atsayısı ınır ve ç notaları çn j H = ( ) (Gauss alan hesabı ullanara) ± ξ j L π n = Tel ntegraller çn (Analt olara) H = -(Köşegen olmayan termlern toplanması) ınır ve ç notaları çn L n j G = ( ) (Gauss alan hesabı ullanara) ± ξ ln w j π = r G et atsayısı Tel ntegraller çn L j 3 (Analt olara) G = + ln π L j n: Gauss notası sayısı, ξ :Gauss loal oordnatları, w :Gauss ağırlıları, L j : Eleman uzunluğu, d j : d uzalı d r j w y ınır elemanı Hücre ınır Şel. Bölgenn hücrelere ayrıştırılması x sonucunda bölge ntegraller hesaplanır. Bu hesaplamalarda hücre üzernde Gauss notaları baz alınır. Den. de fade edlen d bölge ntegral term, analz yapılan düğümü le bütün ç hücreler arasında lşye göre hesaplanır. Bu durumda, sınır ntegral denlemlernde fade edlen ve her br sınırda düğümüne göre tanımlanan d bölge ntegral fades Gauss alan dönüşümü ullanılara, d M R b u db = B e= = ( bu ) Ω e = w (5) denlemyle sayısal olara hesaplanablr. Bu denlemde, M toplam hücre sayısı, w Gauss ntegrasyon ağırlığı ve b Posson sabt, Ω e her br e hücresnn alanıdır.[]. Yoğunlaştırılmış aynalarda se, ç ayna notasında b fonsyonu çn özel br durum ortaya çıar. Bu durum, b = () Q denlemyle tanımlanır. Bu denlemde Drac delta fonsyonu ve Q aynağın büyülüğüdür. Bu duruma at sınır ntegral fades, c u + P = + N [ Hj Hj][ u j u j ] Q j= u = N [ G G ][ q j q j ] j j j= T + d... T (7) şelnde tanımlanır. Bu denlemde P bölge çersnde yoğunlaştırılmış aynalarının sayısını

4 H. Erşt ve.yıldırım ve u notasında temel çözümü fade eder [9].. HBEM Programı HBEM programı, hacmsel yü yoğunluğu veya nota yü çeren eletr alan problemlernn çözümü çn MATLAB da yazılmıştır. Bu programda lneer sınır elemanları le hücre yalaşımı yöntem ullanılmatadır. Problem bölgesn otomat üçgen elemanlara bölmeleme çn MATLAB da Delaunay üçgenleme yöntem ullanılmıştır. HBEM yardımıyla, problem bölges üzernde hacmsel veya nota yü bulunması durumlarında potansyeller hesaplanara, sonuçlar eşpotansyel eğrler şelnde gösterlmetedr []. Bu çalışmada sonuçların arşılaştırması amacıyla ELECTRO ve PDE toolbox ullanılmıştır. ELECTRO, Integrated Engneerng oftware (IE) tarafından hazırlanan ve boyutlu eletrostat alan analz yapan br paet programdır. Hacmsel yü yoğunluğu çeren eletr alan problemler ELECTRO yardımıyla olaylıla çözüleblr []. PDE toolbox se, MATLAB da sonlu elemanlar yöntemn ullanara eletrostat alan analzler yapmatadır []. (,) U= V (,) 3 U= V y (,) ε = r U= V (,) U= V Şel 3. Yü yoğunluğuna sahp problem bölges.. x 5. Düzlemsel Eletrot stem Bu uygulamada Şel 3 de görüldüğü gb, Drchlet sınır şartlı ve her br enarı m olan düzlemsel eletrot sstem seçlmştr. Problem bölgesnn bağıl deletr atsayısı, ε r = dr. Problem bölges 3 adet üçgen eleman ve adet lneer sınır elemanıyla bölmelenmştr. y Şel. Düğüm-Hücre lşs Hücre Gauss notaları x Düğüm ınır.... Şel. Düzlemsel eletrot sstemnn 3 adet üçgen, adet sınır elemanıyla bölmelenmes Bu örnete, Şel 3 de sstemn sınırlarına U= Volt (Drchlet tp sınır şartı) uygulanmıştır. Aşağıda yüler çn analz yapılmıştır. a) Problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu, b) Problem bölgesnde x=. y=.5 de nc lu nota yü, c) Problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu, x=., y=.5 de nc ve x=., y=.5 de nc lu nota yüler,

5 Yü Yoğunluğu ve Nota Yü İçeren Eletr Alan Problemlernn ınır Elemanları Yöntemyle İncelenmes d) Problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu, x=., y=.5 de nc ve x=. y=.5 de - nc lu nota yüler. 5.. Analz onuçları a)problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu bulunması: Bu analzde, problem bölgesnde homojen olara nc/m 3 lü hacmsel yü yoğunluğu bulunması durumunda potansyel dağılımı hesaplanmıştır. Bu durumda Posson sabt, ρ = nc/m ρ ε 3 9. = 9. 3π = 7π =,9 olur. HBEM, ELECTRO ve PDE toolbox programları yardımıyla bulunan sonuçlar Tablo de arşılaştırılmıştır. Şel 5 de se HBEM programıyla elde edlen problem bölgesnn eşpotansyel dağılımı gösterlmştr. Tablo. Problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu bulunan düzlemsel eletrot sstemnn çözümü x y Potansyel (V) HBEM ELECTRO PDE ρ b = =,9 ε.. 3 U=. U= U= U= Şel 5. Problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu bulunan düzlemsel eletrot sstemnn eşpotansyel dağılımı 3

6 H. Erşt ve.yıldırım b)problem bölgesnde nc lu nota yü bulunması: 3 U= U= 7 3 U= U= Şel. x=., y=.5 notasında nc lu nota yü bulunan eletrot sstemnn eşpotansyel dağılımı

7 Yü Yoğunluğu ve Nota Yü İçeren Eletr Alan Problemlernn ınır Elemanları Yöntemyle İncelenmes c) Problem bölgesnde nc/m 3 lü hacmsel yü yoğunluğu, x=., y=.5 de nc ve x=., y=.5 de nc lu nota yülern bulunması: 3 U= Şel U= U= U= Problem bölgesnde nc/m 3 hacmsel yü yoğunluğu ve nota yü bulunan eletrot sstem d) Problem bölgesnde x=., y=.5 de nc ve x=., y=.5 de - nc lu nota yülern bulunması: 5

8 H. Erşt ve.yıldırım Şel. Problem bölgesnde zıt utuplu nota yü bulunan eletrot sstemnn eşpotansyel dağılımı Tablo 3. Uygulama (b), (c) ve (d) ye at düzlemsel eletrot sstemnn çözümü Potansyel (V) x y (b) (c) (d) Yapılan analzde, nota yüün tanımlandığı notalarda potansyel değer sonsuz olara elde edlmştr. Bu durum, br nota yüün meydana getrdğ potansyel denlemne göre V = πε q r nota yü üzernde (r=) hesaplanan potansyel değernn sonsuz değer olacağını açıça göstermetedr [].. onuçlar Gelştrlen HBEM programıyla, problem bölgesnde hacmsel yü yoğunluğu bulunması durumu le nota yü bulunması durumları analz edlmştr. Bölge ntegraller hücre yalaşımı le çözülmüştür. Düzlemsel eletrot sstem üzernde yapılan uygulamalarda, problem bölgesnde bulunan yülern etsyle meydana gelen potansyeller yüse br doğruluta elde edlmştr. Hacmsel yü yoğunluğu bulunması durumda çözümler, PDE toolbox ve ELECTRO programları le arşılaştırılmıştır. Problem bölgesnde nota yü bulunması durumunda PDE toolbox ve ELECTRO programlarıyla analzler yapılamadığı çn sadece HBEM programıyla çözüm yapılmıştır. ınır elemanları yöntemnde hücre yalaşımı ullanılara nota yü ve yü yoğunluğu çeren eletr alan problemler, olay ve hızlı br şelde analz edleblr.

9 H. Erşt ve.yıldırım 7. Kaynalar. Gaul L., Kögl M., Wagner M., Boundary Element Methods for Engneers and centsts, prnger, p., 3.. Zheng R., Coleman C.J., Phan-Then N., A Boundary Element Approach for Nonhomogeneous Potental Problems, Computatonal Mechancs Publcaton, prnger-verlag, 7:79-, Lobry J., Broche C., Trecat J., Use of Transmsson-lne Modelng n BEM for oluton of Pece-homogeneous tatc Feld Problems, IEEE Proceedngs, cence, Measurement and Technology, 3:3, 57-, 99.. Erşt H., Posson Denlem Tpnde Eletr Alan Problemler çn ınır Elemanları Yöntem, Yüse Lsans Tez, Fırat Ünverstes Fen Blmler Ensttüsü, 93s. 5. Yıldırım., Erşt B., Erşt H., oluton of Electrostatc Feld Problem wth Parabolc Boundary Elements, ELECO 3, Eletr- Eletron-Blgsayar Mühendslğ empozyumu, Bursa, 3-3, 3.. Bachtold M., Emmenegger M., Korvn J.G., Baltes H., An Error Indcator and Automatc Adaptve Meshng for Electrostatc Boundary Element mulatons, IEEE transactons on computer-aded desgn of ntegrated crcuts and systems, :, 39-, Brebba C.A., Telles J.C.F., Wrobel L.C., Boundary Element Technques (Theory and Applcatons n Eng.), prnger-verlag, p., 9.. Partrdge P.W., Brebba C.A., Wrobel L.C. The Dual Recprocty Boundary Element Method, Elsever cence Publ., Computatonal Mechancs Publcatons, 7 p., Kythe P.K., An ntroducton to boundary element method, CRC press, 3 p., Integrated Engneerng oftware Inc., ELECTRO: Two Dmensonal Electrc Feld olver, Verson., User and Techncal Manual, Wnnpeg, Mantoba, Canada, The Mathwors, MATLAB, Verson.5,.

SABİT-KUTUP YAKLAŞIMI KULLANILARAK TELEKONFERANSTA ODA AKUSTİK EKO YOK ETME

SABİT-KUTUP YAKLAŞIMI KULLANILARAK TELEKONFERANSTA ODA AKUSTİK EKO YOK ETME SABİ-KUUP YAKLAŞIMI KULLAILARAK ELEKOFERASA ODA AKUSİK EKO YOK EME uğba Özge ÖZDİÇ Rıfat HACIOĞLU Eletr-Eletron Mühendslğ Bölümü Mühendsl Faültes Zongulda Karaelmas Ünverstes, 671, Zongulda ozdnc_ozge@hotmal.com

Detaylı

PARABOLİK KISMİ DİFERANSİYEL DENKLEMLER İÇİN İKİ ZAMAN ADIMLI YAKLAŞIMLAR ÜZERİNE BİR ÇALIŞMA. Gamze YÜKSEL 1, Mustafa GÜLSU 1, *

PARABOLİK KISMİ DİFERANSİYEL DENKLEMLER İÇİN İKİ ZAMAN ADIMLI YAKLAŞIMLAR ÜZERİNE BİR ÇALIŞMA. Gamze YÜKSEL 1, Mustafa GÜLSU 1, * Ercyes Ünverses Fen Blmler Ensüsü Dergs 5 - - 45 9 p://fbe.ercyes.ed.r/ ISS -54 PARABOLİK KISMİ DİFERASİYEL DEKLEMLER İÇİ İKİ ZAMA ADIMLI YAKLAŞIMLAR ÜZERİE BİR ÇALIŞMA Gamze YÜKSEL Msafa GÜLS * Mğla Ünverses

Detaylı

SAYISAL YÜKSEKLİK MODELLERİNDE KLASİK VE ESNEK HESAPLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI

SAYISAL YÜKSEKLİK MODELLERİNDE KLASİK VE ESNEK HESAPLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI TMMOB Harta ve Kadastro Mühendsler Odası, 15. Türye Harta Blmsel ve Ten Kurultayı, 5 8 Mart 015, Anara. SAYISAL YÜKSEKLİK MODELLERİNDE KLASİK VE ESNEK HESAPLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Leyla ÇAKIR*

Detaylı

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü ECAS Uluslararası Yapı ve Deprem Mühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye Üç Boyutlu Yapı-Zemn Etkleşm Problemlernn Kuadratk Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

HİDROJEN-METAN KARIŞIM YANMASINDA YANMA MODEL SABİTİNİN DEĞERLENDİRİLMESİ

HİDROJEN-METAN KARIŞIM YANMASINDA YANMA MODEL SABİTİNİN DEĞERLENDİRİLMESİ Isı Blm ve Tenğ Dergs, 3, 1, 45-57, 21 J. of Thermal Scence and Technology 21 TIBTD Prnted n Turey ISSN 13-3615 HİDROJEN-METAN KARIŞIM YANMASINDA YANMA MODEL SABİTİNİN DEĞERLENDİRİLMESİ İler YILMAZ *,

Detaylı

Düşük Hacimli Üretimde İstatistiksel Proses Kontrolü: Kontrol Grafikleri

Düşük Hacimli Üretimde İstatistiksel Proses Kontrolü: Kontrol Grafikleri Düşü Hacml Üretmde İstatstsel Proses Kontrolü: Kontrol Grafler A. Sermet Anagün ÖZET İstatstsel Proses Kontrolu (İPK) apsamında, proses(ler)de çeştl nedenlerden aynalanan değşenlğn belrlenere ölçülmes,

Detaylı

matlab programlama dili ile hesaplanmas

matlab programlama dili ile hesaplanmas dergs ühendslkdergs Dcle Ünerstes Mühendslk Fakültes Clt: 4,, 3-9 asenkron otor analz e otor oentnn atlab progralaa dl le hesaplanas ecan AYTAÇ KORKMAZ 1*, Hasan KÜRÜM 1 Maden MYO, rstes, Elektrk- Özet

Detaylı

Yaklaşık İdeal Talep Analizi Yöntemi. ve Fiyat Esnekliklerinin Tahmini

Yaklaşık İdeal Talep Analizi Yöntemi. ve Fiyat Esnekliklerinin Tahmini Yalaşı İdeal Talep Analz Yöntem le Harcama ve Fyat Esnellernn Tahmn Mehmet Arf ŞAHİNLİ İstatstç, Türye İstatst Kurumu, Ulusal Hesaplar ve Eonom Göstergeler Dare Başanlığı arfsahnl@tu.gov.tr Yalaşı İdeal

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

ÜÇ BOYUTLU ÇAPRAZ TABLOLARDA LOGARİTMİK DOĞRUSAL ANALİZ: ÇOCUK İŞGÜCÜ DEĞİŞKENLERİ ARASINDAKİ ETKİLEŞİMLER

ÜÇ BOYUTLU ÇAPRAZ TABLOLARDA LOGARİTMİK DOĞRUSAL ANALİZ: ÇOCUK İŞGÜCÜ DEĞİŞKENLERİ ARASINDAKİ ETKİLEŞİMLER Uludağ Ünverstes İtsad ve İdar lmler Faültes Dergs lt XXV, ayı, 006, s. 41-70 ÜÇ OYUTLU ÇPRZ TLOLRD LOGRİTMİK DOĞRUL NLİZ: ÇOUK İŞGÜÜ DEĞİŞKENLERİ RINDKİ ETKİLEŞİMLER erpl ÜLÜL * Özet Kategor verlerde

Detaylı

ERS-2 Raw Datası için Dönüşüme Dayalı Sıkıştırma

ERS-2 Raw Datası için Dönüşüme Dayalı Sıkıştırma ERS- Raw Datası çn Dönüşüme Dayalı Sııştırma. Göhan. KASAPOĞLU, İrahm. PAPİLA, Bngül YAZGA, Sedef KET İstanul Ten Ünverstes, Eletr-Eletron Faültes, Eletron ve Haerleşme Mühendslğ, 066, Masla, İstanul Tel:

Detaylı

İki Serbestlik Dereceli KardanUygulamasının Kararlılaştırılması

İki Serbestlik Dereceli KardanUygulamasının Kararlılaştırılması İk Serbestlk Derecel KardanUygulamasının Kararlılaştırılması M.Şahn * M. T. Daş S.Çakıroğlu Z. Esen Roketsan A.Ş THK Unversty Roketsan A.Ş Roketsan A.Ş Ankara Ankara Ankara Ankara Özet Bu çalışmada, servo

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a İşret Aış Drmlrı: İşret Aış Drmlrı (İAD), blo drmlrın bstleştrlmş hl olr örüleblr. Ft, İAD fzsel örünüş ve mtemtsel urllr bğlılı ısındn zım urllrı dh serbest oln blo drmlrındn frlıdır. Blo drmlrı, rmşı

Detaylı

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİL İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : 5- TRİSTÖR VE TRİYAK

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

BÖLÜM 4 4. AÇI METODU

BÖLÜM 4 4. AÇI METODU Açı etodu Bölüm. AÇ ETODU BÖÜ Hperstat sstemlern çözümü sstem hperstat yapan blnmeyenlern uvvet ve şel değştrme olmasına göre değşr. Ço açılılı br mütemad rş hperstat yapan mesnet tep uvvetler en atlı

Detaylı

ENDÜSTRİYEL TAŞIYICI SİSTEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ

ENDÜSTRİYEL TAŞIYICI SİSTEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ ENDÜSTRİYEL TAŞIYICI SİSTEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ İlyas KACAR Mana Mühendslğ Bölümü Mühendsl-Mmarlı Faültes Nğde Ünverstes, 500, Nğde e-posta: acar@gmal.com Anahtar sözcüler: Endüstryel Taşıyıcı

Detaylı

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 7 : 3 : 3 : 369-378

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

İnce duvarlı yapılar, yüksek enerji sönümleme kabiliyetleri,

İnce duvarlı yapılar, yüksek enerji sönümleme kabiliyetleri, MAKALE KARE KESİTLİ İÇİ BOŞ TAILOR-WELDED TÜPLERİN ÇARPIŞMA PERFORMANSININ SONLU ELEMANLAR YÖNTEMİYLE BELİRLENMESİ * Durukan Dlek ** Arş. Gör., Karadenz Teknk Ünverstes, Makne Mühendslğ Bölümü, Trabzon

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

DÜŞÜK ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜLERDEN AYKIRI DEĞER AYIKLAMASI KULLANARAK GÜRBÜZ YÜKSEK ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜ ELDE ETME YÖNTEMİ

DÜŞÜK ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜLERDEN AYKIRI DEĞER AYIKLAMASI KULLANARAK GÜRBÜZ YÜKSEK ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜ ELDE ETME YÖNTEMİ DÜŞÜK ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜLERDEN AYKIRI DEĞER AYIKLAMASI KULLANARAK GÜRBÜZ YÜKSEK ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜ ELDE ETME YÖNTEMİ Kemal ÖZKAN Erol SEKE e-posta : ozan@ogu.edu.tr e-posta : esee@ogu.edu.tr, Esşehr

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

Kirişlerin Geometrik Doğrusal Olmayan Davranışlarının 3 Boyutlu Sürekli Ortam Modeli ile İncelenmesi

Kirişlerin Geometrik Doğrusal Olmayan Davranışlarının 3 Boyutlu Sürekli Ortam Modeli ile İncelenmesi BAÜ Fen Bl. nst. Dergs Clt 7(2) 28-37 (25) Krşlern Geometrk Doğrusal Olmayan Davranışlarının 3 Boyutlu Sürekl Ortam Model le İncelenmes Şeref Doğuşcan AKBAŞ * Bursa Teknk Ünverstes İnşaatMüh. Böl., Yıldırım,

Detaylı

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 997 : 3 : 3 :45-49

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

UÇAK ÇİZELGELEME PROBLEMİNİN KARINCA KOLONİLERİ OPTİMİZASYONU İLE ÇÖZÜMÜ

UÇAK ÇİZELGELEME PROBLEMİNİN KARINCA KOLONİLERİ OPTİMİZASYONU İLE ÇÖZÜMÜ Uça Çzelgeleme roblemnn Karınca Kolonler Optmzasyonu le Çözümü HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 2005 CİLT 2 SAYI 1 (87-95) UÇAK ÇİZELGELEME ROBLEMİNİN KARINCA KOLONİLERİ OTİMİZASYONU İLE ÇÖZÜMÜ

Detaylı

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL KONTROL SİSTEMLERİ

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL KONTROL SİSTEMLERİ DOĞRUSAL KONTROL SİSTEMLERİ 96 Anahtarlamalı Sstemler Kararlı Yapan PI Kontrolör Setnn Hesabı İbrahm Işık, Serdar Ethem Hamamcı Elektrk-Elektronk Mühendslğ Bölümü İnönü Ünverstes, Malatya {İbrahm.sk, serdar.hamamc}@nonu.edu.tr

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001)

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001) ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 413-417 (1) TEKNK NOTrrECHNICAL NOTE ELEKTRK ARK FıRıNıNDA TERMODNAMGN KNC YASASıNıN

Detaylı

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü Doç.Dr.Eran ÜLKER, Selç Ünverstes Mühendsl F, Blgsayar Mühendslğ Bölümü 7.05.204 Sayfa Doç.Dr.Eran ÜLKER, Selç Ünverstes Mühendsl F, Blgsayar Mühendslğ Bölümü NURBS Crve Fttng sng Artfcal Immne System

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt:13 Sayı:2 sh.75-87 Mayıs 2012 ÇELİK YAPI SİSTEMLERİNDE İKİNCİ MERTEBE ANALİZ YÖNTEMLERİNİN İNCELENMESİ (INVESTIGATION OF SECOND ORDER ANALYSIS

Detaylı

EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering

EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering KSÜ Mühendslk Blmler Dergs, (), 9 5 KSU Journal of Engneerng Scences, (), 9 EMG İşaretlernn K-Ortalama Algortması Kullanılarak Öbekleştrlmes Mücahd Günay, Ahmet ALKA, KSÜ Mühendslk-Mmarlık Fakültes Elektrk-Elektronk

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

MODELLING OF THE STRESSES AROUND A CRACK EXPOSED TO INDUCTION HEATING

MODELLING OF THE STRESSES AROUND A CRACK EXPOSED TO INDUCTION HEATING 5. Uluslararası İler Teknolojler Sempozyumu (IATS 9), 13-15 Mayıs 29, Karabük, Türkye İNDÜKSİYON ISIL YÜKLEME İLE BİR ÇATLAK ETRAFINDA OLUŞAN GERİLMELERİN MODELLENMESİ MODELLING OF THE STRESSES AROUND

Detaylı

Epilepside EEG Tabanlı Entropi Değişimleri

Epilepside EEG Tabanlı Entropi Değişimleri TURKMIA 9 Proceedngs 7 VI. Ulusal Tıp Blşm Kongres Bldrler ENMI Vol V No 1, 9 Eplepsde EEG Tabanlı Entrop Değşmler b c Serap 1 AYDINa,1, H.Melh SARAOĞLU, Sadık KARA a Elektrk-Elektronk Müh Böl, Ondokuz

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Uygulamalı Yerblmler Sayı: (Mayıs-Hazran ) -9 PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Estmaton of Sedmentary Basement Depths By Usng Parabolc Densty Functon

Detaylı

GWP Oranı Düşük Soğutucu Akışkan Karışımlarının Buhar Sıkıştırmalı Soğutma Çevriminde İncelenmesi

GWP Oranı Düşük Soğutucu Akışkan Karışımlarının Buhar Sıkıştırmalı Soğutma Çevriminde İncelenmesi TTMD Kasım Aralık 2014 25 GWP Oranı Düşük Soğutucu Akışkan Karışımlarının Buhar Sıkıştırmalı Soğutma Çevrmnde İncelenmes The nvestgaton of refrgerant mxtures wth lower GWP rate n vapour compresson refrgeraton

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL ŞAHİN

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI İler Teknoloj Blmler Dergs Clt 2, Sayı 3, 10-18, 2013 Journal of Advanced Technology Scences Vol 2, No 3, 10-18, 2013 MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI M. Fath ÖZLÜK 1*, H.

Detaylı

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi Fırat Ünv. Fen ve Müh. Bl. Der. Scence and Eng. J of Fırat Unv. 18 (1), 133-141, 2006 18 (1), 133-141, 2006 Tuğla Duvardak ve Tessattak Isı Kaybının Yapay Snr Ağları İle Belrlenmes Ömer KELEŞOĞLU ve Adem

Detaylı

İki boyutlu betonarme yapı elemanlarında doğrusal olmayan sonlu eleman yaklaşımı

İki boyutlu betonarme yapı elemanlarında doğrusal olmayan sonlu eleman yaklaşımı tüdergs/d mühendslk Clt:6, Sayı:2, 95-8 Nsan 27 İk boyutlu betonarme yapı elemanlarında doğrusal olmayan sonlu eleman yaklaşımı Yıldır AKKAYA *, Zeka CELEP İTÜ Fen Blmler Ensttüsü, Yapı Mühendslğ Programı,

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

İNTEGRAL DENKLEM METODU (IEM) KULLANILARAK MMIC DEVRELERİN ANALİZİ

İNTEGRAL DENKLEM METODU (IEM) KULLANILARAK MMIC DEVRELERİN ANALİZİ T.C. FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNTEGRAL DENKLEM METODU (IEM) KULLANILARAK MMIC DEVRELERİN ANALİZİ Zülfü GENÇ Tez Yönetcs Yrd. Doç. Dr. Hasan Hüseyn BALIK DOKTORA TEZİ ELEKTRİK-ELEKTRONİK

Detaylı

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN SAÜ Fen Edebyat Dergs (2010-I) F.GÖKPINAR v.d. DENGELİ TAMAMLANMAMIŞ BLOK TASARIMINDA, DUYUSAL ANALİZ İÇİN DÜZELTİLMİŞ DURBİN SIRA SAYILARI TESTİ Fkr GÖKPINAR*, Hülya BAYRAK, Dlşad YILDIZ ve Esra YİĞİT

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

ÇERÇEVE TİPİ YAPILARIN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ

ÇERÇEVE TİPİ YAPILARIN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ Eskşehr Osmangaz Ünverstes Müh.Mm.Fak.Dergs C.XIX, S.2, 2006 Eng&Arch.Fac. Eskşehr Osmangaz Unversty, Vol..XIX, No:2, 2006 Makalenn Gelş Tarh : 26.04.2005 Makalenn Kabul Tarh : 5.08.2005 ÇERÇEVE TİPİ YAPILARIN

Detaylı

ORTA GERİLİM ENERJİ DAĞITIM TALİ HATLARINDA ARIZA ANALİZİ

ORTA GERİLİM ENERJİ DAĞITIM TALİ HATLARINDA ARIZA ANALİZİ ORTA GERİLİM ENERJİ DAĞTM TALİ HATLARNDA ARZA ANALİZİ Yılmaz ASLAN Şebnem TÜRE 2,2 Dumlupınar Ünverstes Mühendslk Fak., Elektrk-Elektronk Müh. Bölümü, 4300, Kütahya e-posta: yaslan@dumlupnar.edu.tr 2 e-posta:

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 12 Sayı: 3 sh. 1-15 Ekim 2010

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 12 Sayı: 3 sh. 1-15 Ekim 2010 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cl: 12 Sayı: 3 sh. 1-15 Em 2010 ZAMAN-FREKANS DÜZLEMİNDE SİNYAL BİLEŞENİ ÇIKARIMI İÇİN YENİ BİR YÖNTEM (A NOVEL METHOD FOR SIGNAL COMPONENT INCISION

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı *

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı * İMO Teknk Derg, 2013 6211-6231, Yazı 392 Şehrç Karayolu Ağlarının Sezgsel Harmon Araştırması Optmzasyon Yöntem le Ayrık Tasarımı * Hüseyn CEYLAN* Halm CEYLAN** ÖZ Bu çalışmada, şehrç ulaştırma ağlarının

Detaylı

ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ

ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ T.C. KARA HARP OKULU SAVUNMA BİLİMLERİ ENSTİTÜSÜ HAREKÂT ARAŞTIRMASI ANA BİLİM DALI ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ DOKTORA TEZİ Hazırlayan Al Rıza BOZBULUT

Detaylı

Bulanık TOPSIS ve Bulanık VIKOR Yöntemleriyle Alışveriş Merkezi Kuruluş Yeri Seçimi ve Bir Uygulama

Bulanık TOPSIS ve Bulanık VIKOR Yöntemleriyle Alışveriş Merkezi Kuruluş Yeri Seçimi ve Bir Uygulama EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 14 Sayı: 3 Temmuz 2014 ss. 463-479 Bulanık TOPSIS ve Bulanık VIKOR Yöntemleryle Alışverş Merkez Kuruluş Yer Seçm ve Br Uygulama Selecton of Shoppng Center

Detaylı

Mamografide Şüpheli Kitle Adayı Bölgelerin Belirlenmesi

Mamografide Şüpheli Kitle Adayı Bölgelerin Belirlenmesi Mamografde Şüphel Kle Adayı Bölgelern Belrlenmes Burçn KURT a, Vasf V. NABİYEV b, Kemal TURHAN a a Byosas ve Tıp Blşm AD, Karadenz Ten Ünverses, Trabzon b Blgsayar Mühendslğ AD, Karadenz Ten Ünverses,

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

YARI-ELİPSOİD BİR ENGEL ETRAFINDAKİ AKIŞIN DENEYSEL VE TEORİK İNCELENMESİ

YARI-ELİPSOİD BİR ENGEL ETRAFINDAKİ AKIŞIN DENEYSEL VE TEORİK İNCELENMESİ Isı Blm ve Tenğ Dergs, 8,, 67-73, 008 J. of Thermal Scence and Technology 008 TIBTD Prned n Turey ISSN 1300-3615 YARI-ELİPSOİD BİR ENGEL ETRAFINDAKİ AKIŞIN DENEYSEL VE TEORİK İNCELENMESİ Yücel ÖZMEN* ve

Detaylı

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

Uzun Dönem Evrim Hücresel Sistemleri için Karma Trafik Durumunda Çeşitli İniş Yolu Çizelgeleme Yöntemlerinin Başarım Karşılaştırması

Uzun Dönem Evrim Hücresel Sistemleri için Karma Trafik Durumunda Çeşitli İniş Yolu Çizelgeleme Yöntemlerinin Başarım Karşılaştırması Fırat Ünv. Mühendslk Blmler Dergs Fırat Unv. Journal of Engneerng 27(1), 65-72, 215 27(1), 65-72, 215 Uzun Dönem Evrm Hücresel Sstemler çn Karma Trafk Durumunda Çeştl İnş Yolu Çzelgeleme Yöntemlernn Başarım

Detaylı

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON EVRİMEL ALGORİTMA İLE INIRLANDIRMALI DİNAMİK OPTİMİZAYON Ş. BALKU, R. BERBER Ankara Ünvetes Mühendslk Fakültes, Kmya Mühendslğ Bölümü Tandoğan, 06100 Ankara ÖZET Aktf çamur proses atıksu arıtımında kullanılan

Detaylı

Ticari Bankalarının Yerli ve Yabancı Bankalar Açısından Performansları ve Performans Sürekliliklerinin Analizi: Türkiye Ölçeği (2002-2012 ÖZET

Ticari Bankalarının Yerli ve Yabancı Bankalar Açısından Performansları ve Performans Sürekliliklerinin Analizi: Türkiye Ölçeği (2002-2012 ÖZET Tcar Banalarının Yerl ve Yabancı Banalar Açısından Performansları ve Performans Sürelllernn Analz: Türye Ölçeğ (2002-202) Selahattn KOÇ* Azz BAĞCI ** Al SÖZDEMİR *** ÖZET Son yıllarda yaşanan üreselleşme

Detaylı

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA Gaz Ünv. Müh. Mm. Fak. Der. J. Fac. Eng. Arch. Gaz Unv. Clt 22, No 4, 855-862, 2007 Vol 22, No 4, 855-862, 2007 BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA İzzettn TEMİZ ve

Detaylı

Bir Hava Emişli Hassas Ekim Makinası ile Karpuz Tohumlarının Ocağa Ekimi. Hill Drop Sowing of Watermelon Seeds using a Precision Vacuum Seeder

Bir Hava Emişli Hassas Ekim Makinası ile Karpuz Tohumlarının Ocağa Ekimi. Hill Drop Sowing of Watermelon Seeds using a Precision Vacuum Seeder Br Hava Emşl Hassas Ekm Maknası le Karpuz Tohumlarının Ocağa Ekm Davut KARAYEL Akdenz Ünverstes, Zraat Fakültes, Tarım Maknaları Bölümü, Antalya dkarayel@akdenz.edu.tr Özet: Ocakvar ekm, toprak çersnde,

Detaylı

TEDARİKÇİNİN SÜREÇLERİNİ İYİLEŞTİRME AMAÇLI TEDARİKÇİ SEÇİM PROBLEMİ

TEDARİKÇİNİN SÜREÇLERİNİ İYİLEŞTİRME AMAÇLI TEDARİKÇİ SEÇİM PROBLEMİ Endüstr Mühendslð Dergs Clt: 23 Sayý: Sayfa: (4-5) YA/EM 200 Özel Sayısı TEDARİKÇİNİN SÜREÇLERİNİ İYİLEŞTİRME AMAÇLI TEDARİKÇİ SEÇİM PROBLEMİ Burcu GÖKALP, Banu SOYLU 2 * Merez Çel AŞ 2 Ercyes Ünverstes,

Detaylı

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 109 125. TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ Yrd.Doç.Dr. Ahmet ERGÜLEN Nğde

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 2004/2 DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ M. Cüneyt FETVACI *, C. Erdem İMRAK İstanbul Teknk Ünverstes,

Detaylı

BÖLÜM 5 KISMİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ

BÖLÜM 5 KISMİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ BÖLÜM 5 KISMİ DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ 5.- Kısm dferansyel denlemlern türler 5.- Elpt denlemler 5.. Levha boynca sıcalı dağılımının hesaplanması 5.. İteratf yöntemler 5.. Lebmann yöntemnde

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

BORULARDA, BORU BAĞLANTI ELEMANLARINDA VE GEÇİŞ BORULARINDA ENERJİ KAYIPLARI

BORULARDA, BORU BAĞLANTI ELEMANLARINDA VE GEÇİŞ BORULARINDA ENERJİ KAYIPLARI 547 BORULARDA, BORU BAĞLANTI ELEMANLARINDA VE GEÇİŞ BORULARINDA ENERJİ KAYIPLARI Mehmet ATILGAN Harun Kemal ÖZTÜRK ÖZET Boru akış problemlernn çözümünde göz önünde bulundurulması gereken unsurlardan en

Detaylı

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ Burak KARAHAN Burak PEKEL Neşet BEDİR Cavt CAN Kırıkkale -2014-

Detaylı

Meteorolojik Verilerin Yapay Sinir Ağları Đle Modellenmesi

Meteorolojik Verilerin Yapay Sinir Ağları Đle Modellenmesi KSÜ Fen ve Mühendslk Dergs, 10(1), 2007 148 KSU Journal of Scence and Engneerng, 10(1), 2007 Meteorolojk Verlern Yapay Snr Ağları Đle Modellenmes Kemal ATĐK 1, Emrah DENĐZ 1, Enver YILDIZ 2 1 ZKÜ. Karabük

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

Bir Yerleşkede Enerji Yönetimi ve Enerji Tasarruf Potansiyelinin İncelenmesi

Bir Yerleşkede Enerji Yönetimi ve Enerji Tasarruf Potansiyelinin İncelenmesi 15 TTMD Mayıs Hazran 2013 Makale Artcle Br Yerleşkede Enerj Yönetm ve Enerj Tasarruf Potansyelnn İncelenmes Energy Management and Energy Savngs Potental Study n a Campus Zya SÖĞÜT / İnanç Caht GÜREMEN

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı Sera İklmlendrme Kontrolü İçn Etkn Br Gömülü Sstem Tasarımı Nurullah Öztürk, Selçuk Ökdem, Serkan Öztürk Ercyes Ünverstes, Blgsayar Mühendslğ Bölümü, Kayser ozturk.nurullah@yahoo.com.tr,okdem@ercyes.edu.tr,

Detaylı

ĐDEAL BĐR DC/DC BUCK DÖNÜŞTÜRÜCÜNÜN GENELLEŞTĐRĐLMĐŞ DURUM UZAY ORTALAMA METODU ĐLE MODELLENMESĐ

ĐDEAL BĐR DC/DC BUCK DÖNÜŞTÜRÜCÜNÜN GENELLEŞTĐRĐLMĐŞ DURUM UZAY ORTALAMA METODU ĐLE MODELLENMESĐ ĐDEA BĐR D/D BUK DÖNÜŞTÜRÜÜNÜN GENEEŞTĐRĐMĐŞ DURUM UZAY ORTAAMA METODU ĐE MODEENMESĐ Meral ATINAY Ayşe ERGÜN AMAÇ Ercüment KARAKAŞ 3,,3 Elektrk Eğtm Bölümü Teknk Eğtm Fakültes Kocael Ünerstes, 4, Anıtpark

Detaylı

ÖZET Anahtar Kelimeler: ABSTARCT Keywords: 1. GİRİŞ

ÖZET Anahtar Kelimeler: ABSTARCT Keywords: 1. GİRİŞ olteknk Dergs Journal of olytechnc Clt: Sayı: 3 s67-7, 009 Vol: o: 3 pp67-7, 009 Genetk Algortma Kullanarak Ekonomk Dağıtım Analz: Türkye Uygulaması M Kenan DÖŞOĞU, Serhat DUMA, Al ÖZTÜRK ÖZET Dünyada

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME (JOB SHOP SCHEDULING WITH KRILL HERD ALGORITHM) İlker GÖLCÜK

Detaylı

YÜKSEK FREKANSLI HABERLEÞME DEVRELERÝ ÝÇÝN, TOPLU - DAÐINIK, KARMA ELEMANLI ARABAÐLAÞIM MODELLERÝNÝN BÝLGÝSAYAR DESTEKLÝ TASARIMI

YÜKSEK FREKANSLI HABERLEÞME DEVRELERÝ ÝÇÝN, TOPLU - DAÐINIK, KARMA ELEMANLI ARABAÐLAÞIM MODELLERÝNÝN BÝLGÝSAYAR DESTEKLÝ TASARIMI ÝSTANBUL ÜNÝVERSÝTESÝ MÜENDÝSLÝK FAKÜLTESÝ ELEKTRÝK-ELEKTRONÝK DERGÝSÝ YIL CÝLT SAYI : 21-22 : 1 : 1 ( 32 4 ) YÜKSEK FREKANSLI ABERLEÞME DEVRELERÝ ÝÇÝN, TOPLU - DAÐINIK, KARMA ELEMANLI ARABAÐLAÞIM MODELLERÝNÝN

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı