Bu Cennet Vatan için Şehit Düşenlere İthafen

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bu Cennet Vatan için Şehit Düşenlere İthafen"

Transkript

1 ÖNSÖZ Optimizasyon Teorisinin mühendislik, üretim, işletme, ekonomi, haberleşme, ulaştırma, sanayi gibi pek çok alanda uygulanması, YA nı vazgeçilmez kılmıştır. Özellikle bilgisayarların yaygın bir kullanım alanına sahip olmasından sonra endüstri kesimi de karar vermede yararlı bir araç olduğunu gördüğü Lineer Programlama (LP) konusuna ilgi duymaya başlamıştır. Petrol endüstrisi, problemlerinin karmaşıklığı sebebiyle, LP ile ciddi bir şekilde ilgilenen ilk endüstri branşı olmuştur []. Günümüzde, YA aşağıda sadece bir kaçını verebileceğimiz yüzlerce farklı problemlerin çözümünde kullanılmaktadır.bunlar, Fabrika Organizasyonu, Atelye/Tezgah Optimizasyonu, Proje Yönetimi, kaynakların optimum kullanımı sayılabilir. Bu ders notunu hazırlama amacımız,lisans seviyesinde eğitim veren fakültelerde Meslek Matematiği,Optimizasyon Teknikleri vb.isimler altında verilen derslere uygun olan ve lisansüstü eğitime önemli derecede katkı sağlayacak bir çalışma yapmak ve bunu daha da geliştirerek Optimizasyon Teknikleri kitabını yazmaktır.bununla birlikte, güncel hayatın her alanında uygulamalarına rastladığımız optimizasyon kavramını öğrencilerimize uygulamaları ile aktararak bu konudaki bilincin oluşturulması ve en güncel yaklaşım olan yapay zeka tekniklerine zemin hazırlanması amaçlanmıştır. İçeriğinde temelde Doğrusal Programlama ile Doğrusal Olmayan Programlama tekniklerini barındıran bu çalışmada öğrencilerimize klasik optimizasyon teorisinden ulaştırma problemlerine,gezgin satıcı probleminden en kısa yol problemine ve simpleks yöntemden atama problemine kadar çok sayıda konu örnekler ile desteklenerek ele alınmıştır. Bu çalışmanın gerek dersimizi alan öğrencilere gerekse bu konularla ilgilenen herkese faydalı olması temennisiyle Öneri ve eleştirilerini adresine bekliyoruz. Bu Cennet Vatan için Şehit Düşenlere İthafen

2

3 Önsöz...I İçindekiler...II. Giriş.... Lineer Programlama ve Grafik Çözümü..... Lineer Programlamaya Giriş..... Lineer Programlama Hakkında Genel Bilgi....3 Lineer Programlama İşlem Basamakları Lineer Programlama Problem Örnekleri Lineer Programlama ve Simpleks Metodu Simpleks Metoda Giriş Aylak Değişkenler ve Simpleks Metodun Örneklerle İncelenmesi Simpleks Metot Maksimum Problemleri Simpleks Metot II (Minimum Problemleri) Lineer Prramlama Problemlerinin marjinal analizleri ve formülleri: Lineer Programlama Problemlerinin Matris Fonksiyonlar Duality Duality ve Simpleks Metot İlişkisi Duality nin temel teoremi Ulaştırma Problemleri Ulaştırma Problemlerine Giriş Örneklerle Ulaştırma Problemlerinin incelenmesi Kuzey-batı köşesi yöntemi En küçük maliyetli hücreler metodu VAM(vogel) metodu Atama Problemleri ve Gezgin Satıcı Problemi Atama Problemlerine Giriş Atama Problemlerinin Çözüm adımları Örneklerle Atama Problemlerinin İncelenmesi Gezgin Satıcı Problemi Gezgin Satıcı Problemine Giriş Gezgin Satıcı Problemi İşlem Adımları Gezgin Satıcı Problemlerinin Örneklerle İncelenmesi...68

4 7. Dinamik Programlama Dinamik Programlaya Giriş Dinamik Programlanın Örneklerle İnecelenmesi Uygulama Programları Simpleks Metot Atama Problemleri Uygulamalarda Kullanılan Teknolojiler Java Java Hakkında Genel Bilgi Java Program Geliştirme Ortamaları ve Applett Kullanımı Delphi Delphi Hakkında Genel Bilgi Atama Problemi Algoritma Yapısı Active X Html Html hakkında Genel Bilgi Html içerisinde Diğer Dillerin Kullanımı Html de Active X Kullanımı Sonuç ve Öneriler...8.Kaynaklar...83.Özgeçmiş...84

5 I.GİRİŞ.Optimizasyon.. Tanım:En basit anlamı ile optimizasyon eldeki kısıtlı kaynakları en optimum biçimde kullanmak olarak tanımlanabilir().matematiksel olarak ifade etmek gerekirse optimizasyon kısaca bir fonksiyonun minimize veya maksimize edilmesi olarak tanımlanabilir(). Diğer bir değişle optimizasyon en iyi amaç kriterinin en iyi değerini veren kısıtlardaki değişkenlerin değerini bulmaktır (3). Başka bir tanımlama ile belirli amaçları gerçekleştirmek için en iyi kararları verme sanatı veya belirli koşullar altında herhangi bir şeyi en iyi yapma (4) olarak da tanımlanan optimizasyon kısaca en iyi sonuçları içeren işlemler topluluğudur (5).Optimizasyonda bir amaç da maksimum kâr veya minimum maliyeti sağlayacak üretim miktarını kısıtlara bağlı olarak tespit etmektir. Günümüzün bilgisayar teknolojisi kadar güncel bir kavram olan optimizasyon kavramı çok çeşitli endüstri kesimlerinde uygulama olanağı bulmuştur. Değişen teknolojilerin, sınırlı kaynakların, artan rekabetin, karmaşık hale gelen sistemlerin doğurduğu problemlerin klasik yöntemlerle (matematiksel veya matematiksel olmayan, analitik veya sayısal) çözümünün güçleşmesi optimizasyon kavramını güncelleştiren en önemli sebeptir.bu yönüyle optimizasyonun kullanılmadığı bir bilim dalı hemen hemen yok gibidir (6)... Tarihçe:Gerçek hayatta karşılaşılan birçok problem için geliştirilen karar modellerinin kısıtları ve amaç fonksiyonlarında her zaman doğrusal bir ilişki kurulamadığından 95 li yıllardan sonra geliştirilmeye başlayan ve temelleri 8. ve 9. yüzyıllara dayanan yeni analitik ve sayısal yöntemler 96 lı yıllardan sonra sayısal bilgisayarlarında desteği ile hızla çoğalmıştır. Özellikle kimyasal işlemlerin süreklilik arz etmesi, planlamacıların, tasarımcıların, mühendislerin, jeologların, ekonomistlerin, iktisatçıların, işletmecilerin v.b. kendi alanlarındaki problemleri çözmek için yaptıkları çalışmalar optimizasyon ve buna bağlı teknikleri hızla ortaya çıkarmıştır. Benzer şekilde bu tekniklerin amaçlandığı alanlara, sistemin özelliklerine, kullanılan matematiksel yöntemlere ve kıstasların tasnifleri aşamalar geçirmiştir(3).

6 Klasik optimizasyon teorisi Cauchy, Lagrange ve Newton tarafından geliştirilmiştir. Newton ve Leibnitz in analiz çalışmaları optimizasyonun diferansiyel hesap metodlarının geliştirilmesine katkıda bulunmuştur. Kısıtlı problemler için optimizasyon metodunu adıyla anılan Lagrange geliştirmiştir. Kısıtsız optimizasyon problemlerini çözmek için Steepest Descent (en dik iniş,eğim) metodunun ilk uygulaması da Cauchy tarafından yapılmıştır. Optimizasyon konusundaki bu çalışmalar. yüzyılın ortalarına kadar çok yavaş ilerlemiştir. 95 lerden sonra sayısal bilgisayarların icadı optimizasyonda çok büyük çalışmaları beraberinde getirerek birçok yeni teori ve metodun ortaya çıkmasını sağlamıştır. Fakat 96 lı yıllarda kısıtsız optimizasyon konusundaki sayısal metodlar sadece İngiltere de geliştirilmiştir (5). Simpleks metodunu 947 de Dantzing, Dinamik Programlama Tekniğini 954 de Bellmann geliştirmiştir.bu çalışmamızın esasını teşkil eden Doğrusal Olmayan Programlama konusundaki ilk önemli çalışmalar 95 yılında Karush Kuhn ve Tucker tarafından optimal çözüm için gerek ve yeter şartlar teorisi başlığı adı altında sunulmuştur(7). 96 lı yıllarda Zoutendijk ve Rosen de Doğrusal Olmayan Programlama sahasında önemli çalışmalar yapmışlardır. Doğrusal Olmayan Programlama alanındaki en büyük gelişme kısıtsız optimizasyonun bilinen tekniklerini kullanarak çok zor problemlerin çözümünü kolaylaştıran ciddi çalışmaların Carroll, Fiacco ve Mc Cormick tarafından ortaya konmasıdır. Geometrik Programlama ise 96 lı yıllarda Peterson, Zener ve Duffin tarafından geliştirilmiştir(5).düzlemsel Kesme Algoritması ise 969 da Zangwill tarafından ortaya konmuştur. İndirgenmiş Gradient Metod ise Wolfe tarafından 963 de geliştirilmiştir(8)..3.optimizasyon Probleminin Özellikleri ve Çözüm Aşamaları Bir optimizasyon probleminin temel özelliği üç kategoriye ayrılmasıdır. Bunlar : En az bir amaç fonksiyonunun optimize edilmesi Eşitlik kısıtları Eşitsizlik kısıtlarıdır

7 Yani genel bir optimizasyon problemi: maksimum (minimum) f() veya gi (),( ) i =,,.., m h i () = i = m +, m +,, n şeklindedir.bu genel tanım altında amaç fonksiyonunun en iyi değerini veren X = (,,..., n )T n boyutlu çözüm vektörüne model vektörü de denir(3). () ile ifade edilen genel problemde f() amaç fonksiyonunu, g i () eşitsizlik kısıtları ve h i () eşitlik kısıtları temsil eder. n in sıfır olması problemin kısıtsız olması, sıfırdan farklı olması da problemin kısıtlı olması anlamına gelir. Genel bir optimizasyon probleminin çözümü altı adımda gerçekleştirilir. i. İşlem analiz edilerek işlem değişkenlerinin bütün bir listesi çıkarılır. ii. iii. iv. Optimizasyon için amaç fonksiyonunu tanımlayacak kriter belirlenir. Matematiksel ifadelerle kullanılabilir bir işlem gerçekleştirilir. Problem çok büyükse; a) Kontrol edilebilir ve modeli basitleştirilir. b) Amaç fonksiyonu tekniği matematiksel ifadeye uygulanır. v. Uygun optimizasyon tekniği matematiksel ifadeye uygulanır. vi. Cevaplar kontrol edilir(3). Bütün optimizasyon problemlerinin çözümü için etkili tek bir metot olmadığından optimizasyon metotları optimizasyon problemlerinin farklı tiplerinin çözümü için geliştirilmiştir(5)..4. Doğrusal Olmayan Programlama Gerçek hayatta karşılaşılan birçok problem için geliştirilen karar modellerinin kısıtlarından en az biri veya amaç fonksiyonunun doğrusal olmadığı durumlar için geliştirilen tüm kavram ve teknikler Doğrusal Olmayan Programlama adı altında incelenmektedir(6). 3

8 Doğrusal Olmayan Programlama: Z = f( i ) = f(,..., n ) (i =,,, n) şeklinde tanımlanan sürekli ve türevlenebilen bir amaç fonksiyonunun; g j ( i ) ( i ) (i =,,, n)(j =,,, m ) kısıtları altında optimum çözümünü araştırma yöntemidir(9). Doğrusal ve doğrusal olmayan denklemlerden oluşan g j ( i ) kısıtları eşitlikler veya eşitsizlikler şeklinde verilebilir. Şöyle ki; g j ( i ) ( ) (j =,,., l) ve g j ( i ) = (j = +,..., m) şeklinde tanımlanan kısıtlar m tane denklemden oluşan bir denklem sistemidir. Bu denklemlerin tanesi eşitsizlik, (m-) tanesi eşitlik denkleminden oluşur()..5. Amaç Fonksiyonunun Yorumlanması Amaç fonksiyonunun yorumlanması konusunda kısıtlarda ve (veya) kısıtsız problemde yer alan değişkenlerin (karar değişkenleri) en iyi seçmedeki kriter programlamada amaç fonksiyonu olarak adlandırılır.pratikte ise kısıtlarda ve amaç fonksiyonunda yer alacak değişkenlerin (kıt kaynakların) en iyi değerlerini bulmak olarak tanımlanabilir(3)..6. Optimizasyon ile İlgili Temel Kavram ve Tanımlar.6.. Fonksiyonlarda Süreklilik Kavramı A. Tek Değişkenli Fonksiyonlarda Süreklilik Tek değişkenli bir y = f() fonksiyonunun bir noktasında sürekli olması demek, verilen ε > sayısına karşılık öyle bir h < σ,σ > sayısının bulunmasıdır ki; f ( + h) f ( ) ε dır. 4

9 B. Çok Değişkenli Fonksiyonlarda Süreklilik Çok değişkenli bir z = f () = f (,,..., n ) fonksiyonunun bir noktasında sürekli olması demek, verilen ε > sayısına karşılık öyle bir h < σ,σ > sayısının bulunmasıdır ki; Burada; f ( + h) f ( ) ε dır. h = (h,h,...,h n ) ve σ = (σ,σ,...,σ n ) > dır()..6.. Unimodal (Tek değer) Fonksiyon Verilen bir aralıkta bir tek maksimum veya minimuma sahip fonksiyona Unimodal fonksiyon denir(5). Matematiksel olarak ifade etmek gerekirse: [a,b] aralığı üzerinde bir y=f() fonksiyonu tanımlanmış olsun. [ a, b] p sayısı için; i) f(), [a, p] aralığında azalan bir fonksiyon ii) f(), [p, b] aralığında artan bir fonksiyon ise y = f() fonksiyonuna bu aralıkta Unimodal (tek değerli) fonksiyon denir(). Eğer f() fonksiyonu [a, b] aralığında Unimodal fonksiyon ise f() minimum değerini a < c < d < b şeklindeki bir [c,d] aralığında alabilir. Bu minimum değer f(c) ve f(d) nin ma[f(a), f(b)] den daha küçük iken garanti edilir (Şekil.a - b). Eğer f(c) f(d) ise [a, d] aralığının sağından aralık daraltılır (Şekil.a). Eğer f(d) < f(c) ise [c, b] aralığının sağından itibaren aralık daraltılır (Şekil.b). y = f() y = f() [a c p d b] [a c p d b] Şekil.a Şekil.b 5

10 .7.Konvekslik ile İlgili Tanımlar.7..Konveks Bileşen S, E n, n boyutlu öklidyen uzayda boş olmayan bir küme olsun. i Sveα i, λ i = iken, = α + α α n n olsun. Eğer; n = α i i şeklinde elde edilen noktasına i = konveks (dışbükey) bileşeni denir(6)..7.. Konveks Küme,, 3,..., n noktalarının S, E n, n-boyutlu öklidyen uzayda boş olmayan bir küme olsun. S kümesinin farklı iki noktasının konveks (dışbükey) bileşeni ile bulunan nokta yine S kümesinin bir elemanı ise S kümesine konveks küme denir(8).(şekil.a-b) Konveks Küme Konveks değil Matematiksel olarak ifade etmek gerekirse; Şekil.a Şekil.b, S, i j, α i j iken = + ( S( i j) oluyorsa S kümesine konveks (dışbükey) küme denir..7.3.konveks Fonksiyon α i λ) j E n, n-boyutlu öklidyen uzayda verilen herhangi iki nokta (, ) olsun.eğer aşağıdaki eşitsizlik E n, n-boyutlu öklidyen uzayındaki her nokta çifti için geçerli ise f fonksiyonuna konvekstir denir(3). ( ) E ; α, için; f [( α) + α ] [( α) f ( ) + α f ( )] 6

11 .7.4.Konkav (İçbükey) (Konveks Olmayan) Fonksiyon Konveks fonksiyonunun tanımına benzer olarak; ( ) E ; α, için; f [( α) + α ] [( α) f ( ) + α f ( )] oluyorsa f fonksiyonuna konkav (içbükey) fonksiyondur denir.(.7.3) ve (.7.4) ile ifade edilen tanımları geometrik olarak açıklamak gerekirse; Fonksiyonun yüzeyi üzerinde alınan herhangi iki noktayı birleştiren doğru, fonksiyonun temsil ettiği eğrinin altında kalıyorsa fonksiyona konkav fonksiyon, aksi halde yani yüzey üzerindeki iki noktayı birleştiren doğru fonksiyonun temsil ettiği eğrinin üstünde kalıyorsa fonksiyona konvekstir denir(8) (Şekil 3.a-b-c). Konveks Fonksiyon Konkav Fonksiyon Ne Konveks Ne Konkav (Şekil 3.a). (Şekil 3.b). (Şekil 3.c). [(-α) + α ] [(-α) + α ] [(-α) + α ].8. Optimum Aramada Konveksliğin ve Konkavlığın Etkileri.8.. Kısıtsız Maksimum (Minimum) Eğer bir doğrusal olmayan programlama problemi bir f() amaç fonksiyonunu içerirse ve ayrıca f() konveks (konkav) ise uygun bölge içindeki bir noktada bir tek optimum çözüm vardır ve bu noktada. mertebeden türevlerin hepsi sıfırdır. Aynı zamanda bu nokta bir sınır noktada olabilir. Aynı özellik bu sınır nokta içinde geçerlidir(3). 7

12 .8..Kısıtlı Maksimum Eğer bir doğrusal olmayan programlama problemi aynı anda hem bir amaç fonksiyonu hem de kısıtların bir kümesinden oluşuyorsa optimum çözümün tekliği amaç fonksiyonu ve kısıtlara bağlıdır.eğer amaç fonksiyonu konkav ve kısıtların kümesi konveks ise problemin bir tek maksimum çözümü vardır. Bu nedenle herhangi bir sabit nokta mutlak maksimum çözüm olmak zorundadır..8.3.kısıtlı Minimum Eğer bir doğrusal olmayan programlama problemi aynı anda bir amaç fonksiyonu ve kısıtların bir kümesini içeriyorsa optimum çözümün tekliği amaç fonksiyonu ve kısıtlara bağlıdır. Eğer amaç fonksiyonu konveks ve keza kısıtların kümesi de konveks bölge formunda ise problemin bir tek minimum çözümü olacaktır. Bu nedenle herhangi bir sabit nokta mutlak minimum çözüm olmak zorundadır..8.4.konkav (Konveks) Fonksiyonun Minimizasyonu (Maksimizasyonu) Eğer bir konveks fonksiyon maksimize (konkav fonksiyon minimize) edilirse optimal çözüm kısıtlar kümesinin ekstremum noktalarının yalnız birisinde bulunacaktır..9. Bir Fonksiyonun Gradienti f() = f(,,..., n ) n-değişkenli fonksiyonunu göz önüne alalım. Burada, (,,..., n ) koordinatları n-boyutlu öklidyen uzayda X-sütun vektörü ile temsil edilirler(). f() = f(,,..., n ) fonksiyonunun gradienti ise f() veya grad f() sembolleri ile gösterilir ve; grad f() = f f f f () =,,..., n veya kısaca; f f () = dır. (k =,,, n) şeklinde tanımlanır. k 8

13 9.. Hessian Matrisi f() fonksiyonunun ikinci mertebeden sürekli türevlere sahip olması durumunda bütün i ve j ler için; j i j i. f. f = eşitliği geçerlidir(4). Bu nedenle f() = f( n,...,, ) n-değişkenli fonksiyonunun ikinci mertebeden kısmi türevleri; n n j i f. f H = şeklinde bir matris ile gösterilebilir. İşte bu n n lik f H () matrisine f() fonksiyonunun Hessian matrisi denir. Bu matris aynı zamanda simetriktir(5). Açıkça yazmak gerekirse; n n f n n n n f... f f f... f f () H = II. KLASİK OPTİMİZASYON TEORİSİ. Klasik Optimizasyon Teorisi Klasik Optimizasyon Teorisi kısıtlı ve kısıtsız fonksiyonlar için ekstremum noktaların belirlenmesinde diferansiyel hesabın kullanılmasını geliştirmiştir.geliştirilen bu metodlar sayısal hesaplamalar için uygun olmayabilir. Bu temel başlık altında kısıtsız ekstremumların belirlenmesi için gerek ve yeter şartları, eşitlik kısıtlara sahip problemler için Karush Kuhn Tucker gerek ve yeter şartlarını inceleyip örnekler vererek açıklayacağız().

14 . Kısıtsız Ekstremum Problemleri f() fonksiyonunun bir ekstremum noktası maksimum veya minimum nokta olarak tanımlanır. Matematiksel olarak tanımlamak gerekirse; h = (h, h,..., h j,..., h n ) öyleki h j bütün j ler için yeterince küçük olmak üzere; f ( + h) f ( ) ε şartı sağlanıyorsa noktası bir maksimum noktadır(3). Bir başka deyişle; ın komşuluğundaki her noktada f fonksiyonunun değeri f ( ) dan küçük ya da eşit kalırsa a f fonksiyonunun maksimum noktası denir. Benzer şekilde; h = (h, h,..., h j,..., h n ) öyleki h j bütün j ler için yeterince küçük olmak üzere; f ( + h) f ( ) şartı sağlanıyorsa noktası bir minimum noktadır. Yani ın komşuluğundaki her noktada f nin aldığı değer f ( ) değerinden büyük yada eşit kalırsa noktasına f fonksiyonunun minimum noktası denir. Aşağıdaki şekil [a, b] aralığında tek değişkenli bir f() fonksiyonunun maksimum ve minimumlarını tanımlar (Şekil 4). f () a Şekil.4. f() fonksiyonunun maksimum ve minimumları Şeklimize göre,, 3, 4, 6 noktaları f() fonksiyonunun ekstremum noktalarıdır. Bu noktalardan, 3 ve 6 noktaları maksimum noktalar iken ve 4 noktaları da minimum noktalarıdır. f ( 6 ) = ma { f ( ),f ( 3 ),f ( 6 )} olduğundan f ( 6 ) global maksimum veya mutlak maksimum olarak isimlendirilir. f ( 6 ) ya göre f ( ) ve f ( 3 ) noktaları da yerel maksimum olarak adlandırılır.

15 Benzer olarak; f ( ) = min { f ( ),f ( 4 )} olduğundan f ( ) noktası mutlak minimum nokta olarak isimlendirilirken, f ( ) ye göre f ( 4 ) noktası yerel minimum nokta olarak isimlendirilir. ile 3 noktaları karşılaştırıldığında zayıf maksimum iken 3 güçlü maksimumdur. ile 4 noktaları karşılaştırıldığında 4 noktası noktasına göre zayıf minimum noktadır(). Genelleştirecek olursak; f ( + h) f ( ) ise bir zayıf maksimum f ( + h) < f ( ) ise bir güçlü maksimum f ( + h) f ( ) ise bir zayıf minimum f ( + h) > f ( ) ise bir güçlü minimum noktadır. noktası güçlü minimum nokta iken Burada h daha önce tanımlandığı gibidir. Şekil 4 den de görüldüğü gibi bütün ekstremum noktalarda f() fonksiyonunun eğiminin (. türevi) sıfıra eşit olduğu sonucuna varabiliriz. Buna karşılık bu özellik tek değildir. Yani tersi doğru olmayabilir. f() fonksiyonunun eğimi herhangi bir noktada sıfır olduğu halde bu nokta ekstremum nokta olmayabilir. Şekil 4 deki 5 noktası böyle bir noktadır. Yani bu noktada f() fonksiyonunun eğimi sıfır olduğu halde 5 noktası bir ekstremum nokta değildir. İşte böyle noktalara, gradienti (eğim) sıfır oldugğu halde ekstremum olmayan noktalara büküm noktaları denir... Ekstremum İçin Gerek ve Yeter Şartlar n-değişkenli bir f() fonksiyonunu gözönüne alalım. f() fonksiyonunun her noktasında birinci ve ikinci mertebeden sürekli türevlere sahip olduğunu varsayalım. Teorem-: Herhangi bir noktasının f() fonksiyonunun ekstremum noktası olması için gerek şart; f ( ) = olmasıdır.

16 Ispat: < θ < için Taylor teoreminden; T f ( + h) f ( ) = f ( )h + h Hh + θh Yeterince küçük h j ler için kalan terim Bundan dolayı () deki açılım; h T Hh, h j nin mertebesindedir. f ( + h) f ( ) f ( )h + (h j ) f ( ). h Şimdi noktasının bir minimum nokta olduğunu varsayalım. Olmayana ergi yöntemiyle gösterilebilir ki f ( o ) sıfıra eşit olmak zorundadır. bir minimum nokta. değil iken özel bir j için; f ( j ) < f ( ) veya > j olabilir. f ( ) h j nin işareti uygun seçilerek h j. < j her zaman elde edilebilir. Diğer h j lerin kümesi sıfıra eşitlenerek Taylor açılımındaki kabulden ( + h) f ( ) f < veya ( + h) f ( ) bulunur. Bu ise noktasının bir minimum nokta olması ile çelişir. O f < halde f ( o ) = olmak zorundadır. Bu sonuç gerektir fakat yeter değildir. Yani f ( o ) = iken bir ekstremum nokta olmayabilir. Teorem-: Sabit bir noktasının bir ekstremum nokta olması için yeter şart Hessian Matrisinin ( Hf ) daki değeri ile belirlenir. H (f) > bir minimum noktadır. H (f) < bir maksimum noktadır. İspat: < θ < için Taylor teoreminden; T f ( + h) f ( ) = f ( )h + h Hh + θh idi. bir sabit nokta iken Teorem- gereğince f ( ) = dır.buna göre; T f ( + h) f ( ) = h Hh + θh olur.

17 noktasını minimum nokta olarak alalım. Tanımdan; f ( + h) > f ( ) dır. Bunun anlamı şudur; noktasının bir minimum nokta olması için; T h Hh +θh > olmalıdır. İkinci kısmi türevlerin sürekli olmasını kabulü ile h T H ve + θ h ın her ikisinde de değerlendirildiğinde aynı işarete sahip olmak zorundadır. h T Hh bir karesel form olarak tanımlanır ve noktasında değerlendirilirse ın minimum nokta olması için H pozitif tanımlı olmalıdır. Bu son ifadenin anlamı şudur:sabit bir noktasının minimum nokta olması için yeter şart Hessian Matrisinin bu noktada pozitif tanımlı olmasıdır. Aynı yeter şart ın maksimum nokta olması için yapıldığında Hessian matrisinin noktasında negatif tanımlı olması gerektiği söylenebilir. Sonuç : Eğer H tanımsız ise bir büküm noktası olmak zorundadır. Sonuç : Teorem- ve Teorem- ile sunulan ifadeler tek değişkenli y = f() fonksiyonu için şu şekilde özetlenebilir.herhangi bir noktasının y = f() fonksiyonunun bir ekstremum noktası olması için gerek şart f ( ) = olmasıdır. Yeter şart; f ( ) < ise bir maksimum noktadır. f ( ) > ise bir minimum noktadır(6). Eğer, f ( ) = ise ın ekstremum nokta olması için yüksek mertebeden türevler gözönüne alınmak zorundadır. Bunu aşağıdaki sonuç teorem ile sunabiliriz. Teorem-3: y=f() fonksiyonu verilsin. f() in sabit bir noktasında; ( n) ( f ) = ve ( n) ( f ) oluyorsa = noktasında f(); n tek ise bir büküm noktasına sahiptir.n çift ise; a) b) ( n) ( f ) < ise maksimuma sahiptir. ( n f ) ( ) > ise minimuma sahiptir(). 3

18 4.3. Çok değişkenli Fonksiyonlarının Optimizasyonu (Kısıtsız Optimizasyon) Daha önce tanımlandığı gibi,y=f(,,... n ) n- değişkenli fonksiyonu. mertebeden sürekli kısmi türevlere sahipken bu fonksiyonun hessian matrisi simetrik bir matris (simetrik matris: j i olmak üzere aij=aji olan matristir) olup aşağıdaki gibidir ; Hf()= n n n n n f f f f f f f f f = nn n n n n f f f f f f f f f nn nn y=f(,,... n ) fonksiyonların ekstremumlara sahip olması için; i) Gerek şart:,..., ),..,, ( ),..,, ( = = = n n n f f f gradf olmasıdır. Bu denklemin çözümü olan noktalara sabit noktalar denir, ii) Yeter şart: noktası ) ( = f şartını sağlayan nokta(sabit nokta) olsun.buna göre;.test : i. Hf( ) > (Pozitif tanımlı) ise minimum noktasıdır ii. Hf( ) < (Negatif tanımlı)ise maimum noktasıdır iii. Hf( ) tanımsız ise büküm noktasıdır.test: det(a- λ I)= n.dereceden bir polinom denklem olup buna f fonksiyonunun karakteristik polinomu,bu denklemin köklerine de karakteristikler veya özdeğerler denir.buna göre ; i. λ > i i için ise A pozitif tanımlıdır (A=(a ij ) nn ) ii. λ < i i için ise A negatif tanımlıdır (A=(a ij ) nn ) iii. Diğer durumlarda tanımsızdır.

19 .3.. A matrisinin tanımlılığı:nn lik bir A matrisinin tanımlılığını belirlemek için aşağıdaki test uygulanır. A= a a.. a n a a.. a n a a.. a n n nn olsun. A nın uzanan alt matrisleri ; nn a A =[a ] ; A = a a a a,..., Aj = a a j a a a j a a a j j jj a,... An a a n... a a a n n nn olarak tanımlanır. jj nn Bu matrislerin determinantlarının hepsi pozitif ise A matrisi pozitif tanımlıdır.yani; i. i için det A i > ise A pozitif tanımlıdır. ii. i için (-) i det A i > ise A negatif tanımlıdır. iii. Diğer durumlarda tanımsızdır.nokta büküm noktasıdır..3.. Konveks,Konkav Fonksiyonunun Hessian Matrisi ile Tayini (D escartes kuralı) det (A- λ I) = ifadesi P( λ ) = şeklinde λ ya bağlı bir polinom olup; p(λ ) daki işaret değişikliği sayısı δ (pozitif kök sayısı) p(-λ ) daki işaret değişikliği sayısı δ (negatif kök sayısı) ile tanımlanır ve sabit noktanın kimliği ilefonksiyonun konkav yada konveksliği kolayca belirlenir. Örnek : f(,, 3 )= fonksiyonun ekstremumlarını ve konveks yada konkavlığını inceleyiniz )Gerek şart: f()= olmalıdır f =- =, f =3 - =, f =+ - 3 = 3 Buradan; =/, =/3, 3 =4/3 olduğu görülür. =(/,/3,4/3) sabit noktadır. 5

20 6 )Yeter şart:bu fonksiyona ait Hessian matrisini oluşturalım Hf( )= f f f f f f f f f f ise Hf( )= H =[-] olduğundan det H =- H = olduğundan det H =4 H 3 olduğundan det H 3 =-6 H f () negatif tanımlıdır =(/,/3,4/3) maksimum noktadır Not:yeter şart için II. Metot şu şekildedir. Det (H-I λ )= - λ = λ λ λ = ve buradan; p( λ )=(-- λ )[(-- λ ) -]= ise p( 6 6 ) 3 = = λ λ λ λ olur. p(- 6 6 ) 3 = + = λ λ λ λ dır (3 tane negatif kök vardır, fonksiyon konkavdır yani noktasımaksimum noktasıdır) Örnek : f(,y)= -4y+y fonksiyonunun ekstremumlarını ve konveks yada konkavlığını inceleyin. Çözüm: )Gerek şart: ) ( = f olmalıdır f =-4y=, y f =-4+y= Buradan; =, y= olduğu görülür. =(,) sabit noktadır. )Yeter şart:hf( )= = 4 4 fyy fy fy f H =[] ise det H => H = 4 4 ise det H = -< H f tanımsız olduğundan f fonksiyonu ne konveks nede konkavdır, büküm noktasıdır.

21 7. yol : det (H- I) = λ λ = 4 4 = λ λ p( ) λ =(- λ ) -6= 4 = λ λ p(- 4 ) = + = λ λ λ λ ların bir kısmı pozitif bir kısmı negatif olduğundan büküm noktasıdır. Örnek: f(,y,z)=4-6y -y+3z-y-4yz+ fonksiyonunun ekstremumlarını bulunuz Çözüm: Gerek Şart: ) ( = f olmalıdır.buna göre; f =8-y+3z= f y =-y--4z-= f z =3-4y= olup buradan (-6/7,-9/4,3/7) bulunur. Yeter şart : f =-,f y =3,f yy =-,f yz =-4,f zz = olup Hessian matrisi; H = elde edilir..test : det [8] = 8 > ve det 8 = < (H f () tanımsız, büküm noktası, fonksiyon ne konveks ne de konkavdır).test : det (A- I) = λ = = λ λ λ λ ise buradan şu bulunur; ) ( 3 = + + = λ λ λ λ p ) ( 3 = + = λ λ λ λ p üç negatif kök varsa negatif tanımlı, 3 pozitif kök varsa pozitif tanımlı bunun dışında tanımsızdır.

22 .3. Kısıtlı Ekstremum Problemleri: Bu bölümde sınır şartları ve kısıtlarıyla sürekli fonksiyonların optimizasyonu ele alacağız. Bu sınır şartları veya kısıtlar denklem formunda olabillir veya olmayabilir()..3.. Eşitlik Kısıtlar Eşitlik kısıtlarına sahip amaç foksiyonunun optimizasyonu için iki metod geliştirilmiştir. Bunlardan ilki Jacobian (Kısıtlı Türevler) metodu, ikincisi ise Lagrange metodudur(). Jacobian metodu Doğrusal Programlama için simpleks metodunun bir genellemesi olarak ele alınabilir. Gerçekten de simpleks metodu şartları Jacobian metodundan türetilebilir. İkinci bir metod olan Lagrange metoduda yine benzer olarak Jacobian metoduna benzer bir mantıkla geliştirilmiştir. Bu ilişki Lagrange metodunun ilginç bir ekonomik yorumunu kabul eder. A) Lagrange Metodu f = J Y g duyarlılık katsayıları f nin optimum değeri üzerinde kısıtlardaki küçük değişikliklerin etkisini belirlemede kullanılır. Keza bu katsayılar sabittir. Bu özellikler eşitlik kısıtlarına sahip kısıtlı problemleri çözmek için kullanılır. λ = Y f J = g Buradan; f - λ g = bulunur. Bu denklem sabit noktalar için gerek şartlarda yeterlidir. Yani f, g C f ye benzer olarak hesaplanır. Bu denklemleri sunmak için daha elverişli bir ifade de bütün Böylece; j lerin kısmi türevleri alınmak suretiyle elde edilir. (f - λg) = j (j =,,, n) g = kısıt denklemleri ile bu son denklem ve λ nın uygun değerlerini kabul eder ki sabit noktalar için gerek şartlar kâfidir.eşitlik kısıtlarına sahip optimizasyon problemlerinin sabit noktalarının belirlenmesi işlemi Lagrange işlemi olarak adlandırılır. Bu metodu formulize eden ifade; L ( X, λ ) = f() λ g() ile verilir. 8

23 Burada L fonksiyonu Lagrange fonksiyonu ve λ parametreleri de Lagrange çarpanları olarak bilinirler. L L = ve = λ X denklemleri Lagrange fonksiyonu için gerek şartların oluşturulmasında direkt olarak kullanılır. Bir başka deyişle, g() = kısıtları ile f() fonksiyonunun optimizasyonu L ( X, λ ) Lagrange fonksiyonunun optimizasyonuna eşittir. Şimdide Lagrange metodu için yeter şartları ispatsız olarak tanımlayalım. Burada; H B = T P P Q (m+ n)(m+ n) P = g g g... () () () m (m n) ve Q = L (X, λ) i. j (n n) ( i,j için ) İşte bu şekilde tanımlanan B H matrisine sınırlandırılmış Hessian Matrisi denir(). B Verilen bir ( X, λ ) noktasında Hsınırlandırılmış Hessian Matrisi ve L (X, λ ) Lagrange fonksiyonu değerlendirilirse; ) Eğer B H, (m + ) inci mertebeden temel minör determinantı ile başlayan ve (n-m) inci mertebeden temel minör ile son bulan determinantların işareti ( ) m+ ile değişiyorsa ( X, λ ) bir maksimum noktadır. ) Eğer B H, (m + ) inci mertebeden temel minör determinantı ile başlayan ve (n-m) inci mertebeden temel minör ile son bulan determinantların işareti ( X, λ ) bir minimum noktayı belirtir(8). m ( ) ile aynı işarete sahipse 9

24 Bu şartlar bir ekstremum noktayı tanımlamak için yeterlidir fakat gerek değildir. Bir başka deyişle bir sabit nokta yukarıdaki şartları sağlamaksızın ekstremum nokta olabilir. Bu metodun dezavantajı işlem akışının hesaplama olarak pratik kararlar için uygun olmayışıdır. Bunun için; P Δ = T P Q μi matrisini bu şekilde tanımlayıp ( X, λ ) noktasında değerlendirelim. Burada P ve Q daha önce tanımladığımız gibi, μ ise bilinmeyen bir parametredir. Δ = determinantını gözönüne alırsak; Δ = polinom denkleminin (n -m) tane u i reel kökünün herbiri için; a) Δ < oluyorsa ( X, λ ) bir maksimum noktadır. b) Δ > oluyorsa ( X, λ ) bir minimum noktadır..3.. Eşitsizlik Kısıtlar Bu bölümde ilk olarak Lagrange metodunun genişlemesini ele alacağız. Yani sınırlı bir anlamda eşitsizlik kısıtlarını gözönüne alarak Lagrange metodunu genişleteceğiz. İkinci olarak ise eşitsizlik kısıtlarına sahip problemlerin analitik çözümü için Karush-Kuhn-Tucker gerek ve yeter şartları sunulmaktadır. A. Lagrange Metodunun Genişletilmesi Ma z = f() Kısıtlar g i () (i =,,.., m) i problemini gözönüne alalım.lagrange metodunun genişletilmesinin esası şudur: Eğer f() in kısıtsız optimimu bütün kısıtları sağlamazsa, kısıtlı optimum çözüm uzayının bir sınır noktasında olmak zorundadır. Yani denklem formunda m kısıtta yeterli olmak zorundadır.buna göre işlem adımları şu şekilde özetlenebilir. Adım : Maksimum z = f() kısıtlı probleminin çözümünde eğer sonuç optimum bütün kısıtlarda yeterli ise k = alınıp adım ye geçilir.

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

GRAFİK ÇİZİMİ VE UYGULAMALARI 2

GRAFİK ÇİZİMİ VE UYGULAMALARI 2 GRAFİK ÇİZİMİ VE UYGULAMALARI 2 1. Verinin Grafikle Gösterilmesi 2 1.1. İki Değişkenli Grafikler 3 1.1.1. Serpilme Diyagramı 4 1.1.2. Zaman Serisi Grafikleri 5 1.1.3. İktisadi Modellerde Kullanılan Grafikler

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar,

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Doğrusal olmayan programlama. Suat ATAN

Doğrusal olmayan programlama. Suat ATAN Doğrusal olmayan programlama Suat ATAN İçindekiler 1 Giriş 2 2 Optimizasyon 2 3 Doğrusal olmayan programlama 4 3.1 Tek değişkenli fonksiyonun optimumluk şartları.................. 6 3.2 Çok Değişkenli

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

Algoritmanın Hazırlanması

Algoritmanın Hazırlanması Algoritmanın Hazırlanması Algoritma, herhangi bir sorunun çözümü için izlenecek yol anlamına gelmektedir. Çözüm için yapılması gereken işlemler hiçbir alternatif yoruma izin vermeksizin sözel olarak ifade

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

15.433 YATIRIM. Ders 3: Portföy Teorisi. Bölüm 1: Problemi Oluşturmak

15.433 YATIRIM. Ders 3: Portföy Teorisi. Bölüm 1: Problemi Oluşturmak 15.433 YATIRIM Ders 3: Portföy Teorisi Bölüm 1: Problemi Oluşturmak Bahar 2003 Biraz Tarih Mart 1952 de, Şikago Üniversitesi nde yüksek lisans öğrencisi olan 25 yaşındaki Harry Markowitz, Journal of Finance

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA Hedef ara komutu bir fonksiyonun tersinin bulunmasında kullanılır. Hedef ara işlemi, y=f(x) gibi bir fonksiyonda y değeri verildiğinde x değerinin bulunmasıdır. Bu işlem,

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3 Soru Seti 3 1) Q D = 100 2P talep denklemi ve Q S = P 20 arz denklemi verilmiştir. Üretici ve tüketici rantlarını hesaplayınız. Cevap: Öncelikle arz ve talep denklemlerini eşitleyerek denge fiyat ve miktarı

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

FBEB-512 C++ ile Nesne Tabanlı Programlama Güz 2009 (1. Hafta) (Yrd. Doç. Dr. Deniz Dal)

FBEB-512 C++ ile Nesne Tabanlı Programlama Güz 2009 (1. Hafta) (Yrd. Doç. Dr. Deniz Dal) FBEB-512 C++ ile Nesne Tabanlı Programlama Güz 2009 (1. Hafta) (Yrd. Doç. Dr. Deniz Dal) Algoritma Geliştirme ve Akış Diyagramları BİLGİSAYARLA PROBLEM ÇÖZÜMÜ AŞAMALARI Analiz Algoritma Geliştirilmesi

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı