FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)"

Transkript

1 Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar, bazı özel fonksiyonlar ve bu fonksiyonların pratik çizimleri 3- Trigonometrik fonksiyonlar, ters trigonometrik fonksiyonlar, üstel ve logaritmik fonksiyonlar, hiperbolik fonksiyonlar ve tersleri 4- Limit, sağ ve sol taraflı limitler, limit kuralları ve bir fonksiyonun limiti 5- Süreklilik, sürekli fonksiyonlar, sürekli fonksiyonların özellikleri 6- Türev kavramı, türev alma kuralları, ters fonksiyonun türevi, ters trigonometrik fonksiyonların türevi 7- Logaritma fonksiyonun türevi, üstel fonksiyonun türevi, logaritmik türev alma 8- Hiperbolik fonksiyonların türevi, ters hiperbolik fonksiyonun türevi 9- Parametrik denklemleri verilen fonksiyonların türevi, kapalı fonksiyonların türevi, yüksek mertebeden türevler 10- Türevin geometrik yorumu, türevin fiziksel uygulamaları, Belirsiz şekiller 11- Bir fonksiyonun Maximum, Minumum noktaları, maximum-minumum problemleri 13- Türevle ilgili teoremler, L'Hospital kuralı, Rolle ve Ortalama Değer Teoremleri 14- Fonksiyonların değişimi incelenerek grafiklerinin çizimi

2 Bölümü Dersin Kodu ve Adı K MAT102 Genel II (Mühendislik Fakültesi Bütün Bölümleri, Fen Fakültesi Kimya ve Astronomi Bölümleri) Ders Saati 1- Belirsiz integraller, integral alma yöntemleri, değişken değiştirmer, kısmi integrasyon yöntemi 2- İndirgeme bağıntıları, basit kesirlere ayırma, trigonometrik integraller 3- Rasyonel fonksiyonların integrali 4- Belirli integraller, belirli integralin özellikleri 5- İntegralin uygulamaları, alan hesabı 6- Hacim hesabı, kesit yöntemi, disk yöntemi, Kabuk yöntemi 7- Eğri uzunluğun hesabı, dönel yüzeylerin alanı 8- Moment ve ağrlık merkezi, bazı limitlerin integral yardımıyla hesabı 9- Genelleştirilmiş integraller 10- Kutupsal koordinatlar, kutupsal koordinatlarda eğri çizimleri 11- Kutupsal koordinatlarda alan, yay uzunluğu, yüzey alan hesabı 12- Diziler, dizilerin yakınsaklığı, Seriler, pozitif terimli seriler ve bu seriler için yakınsaklık testleri, 13- kuvvet serileri, Taylor serileri

3 Bölümü Dersin Kodu ve Adı K MAT102 Analiz II (Fen Fakültesi Bölümü) Belirsiz ifadeler ve uygulamaları 2- Belirsiz integral 3- İntegral alma metodları ve uygulamaları 4- İntegral alma metodları ve uygulamaları 5- İntegral alma metodları ve uygulamaları 6- Belirli integraller 7- Sınırlı salınımlı fonksiyonlar 8- Riemann integrali 9- Riemann integrali ile ilgili teoremler 10- İntegrallenebilen fonksiyon sınıfları 11- Alan hesabı ve uygulamaları 12- Yay uzunluğu ve uygulamaları 13- Hacim hesabı ve uygulamaları

4 Bölümü Dersin Kodu ve Adı K MAT201 Mühendislik Matematiği III (Mühendislik Fakültesi Bütün Bölümleri için Yüksek I, III) 1- Üç boyutlu koordinat sistemleri, vektörler, scalar ve vektörel çarpım 2- Doğru ve düzlem denklemleri,silindirler ve kuadratik yüzeyler 3- Vektör fonksiyonları ve uzay eğriler, vektör fonksiyonlarının türev ve integralleri, yay uzunluğu ve eğrilik, uzayda hareket, hız ve ivme 4- Çok değişkenli fonksiyonlar, limit ve süreklilik, 5- Kısmi türevler, teğet düzlemler ve lineer yaklaşımlar, 6- Zicir kuralı, yönlü türevler ve gradient vektör, 7- Maksimumu ve minimum değerler, lagrange çarpanları 8- iki katlı integraller, genel bölgede iki katlı integraller 9- Polar koordinatlarla iki katlı integraller, iki katlı integrallerin uygulamaları 10- Üç katlı integraller, küresel ve silindirik koordinatlar 11- Eğrisel integraller,temel teoremler, 12- Green teoremi,curl ve divergence 13- Yüzey integraller

5 Bölümü Dersin Kodu ve Adı K MAT202 Mühendislik Matematiği IV (Mühendislik Fakültesi Bütün Bölümleri için Yüksek II, IV, Diferansiyel Denklemler) 1- Diferensiyel Denklemlere giriş,sınıflandırma, tanımlar ve Terminoloji 2- Başlangıç Değer problemleri, Yönlü alanlar, I. mertebeben Otonom Diferensiyel Denklemler 3- Değişkenlerine ayrılabilen Diferensiyel Denklemler, Lineer Diferensiyel Denklemler 4- Tam Diferensiyel Denklemler,İntegral çarpanları, Tam hale getirebilen Diferensiyel Denklemler 5- Değişken değiştirme(yerine koyma) ile çözümler, Homogen Diferensiyel Denklemler 6- Bernoulli ve Riccati Diferensiyel Denklemleri 7- Claurait ve Lagrange Diferensiyel Denklemleri 8- Yüksek Mertebeden Diferensiyel Denklemler,Homogen ve homogen olmayan Diferensiyel Denklemler 9- Mertebe indirgeme, Sabit katsayılı Homogen Diferensiyel Denklemler 10- Belirsiz katsayılar ve Parametrelerin Değişim yöntemleri 11- Cauchy-Euler Denklemi 12- Eliminasyon yöntemi ile lineer Diferensiyel Denklem sistemlerinin Çözümleri 13- Lineer modeller, başlangıç değer problemleri.

LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER

LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER ÖABT 2015 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri

Detaylı

ÖABT İLKÖĞRETİM MATEMATİK

ÖABT İLKÖĞRETİM MATEMATİK KPSS 2017 önce biz sorduk 50 Soruda 30 soru ÖABT İLKÖĞRETİM MATEMATİK ANALİZ - DİFERANSİYEL DENKLEMLER Eğitimde 30. yıl Fikret Hemek ÖABT İlköğretim Matematik Öğretmenliği Analiz-Diferansiyel Denklemler

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

BİRİNCİ BÖLÜM SAYILAR

BİRİNCİ BÖLÜM SAYILAR İÇİNDEKİLER BİRİNCİ BÖLÜM SAYILAR 1.1 Tamsayılarda İşlemler... 2 1.1.1 Tek, Çift ve Ardışık Tamsayılar... 5 1.2 Rasyonel Sayılar... 6 1.2.1 Kesirlerin Birbirine Çevrilmesi... 7 1.2.2 Kesirlerin Genişletilmesi

Detaylı

DERS ÖĞRETİM PROGRAMI FORMU

DERS ÖĞRETİM PROGRAMI FORMU DERS ÖĞRETİM PROGRAMI FORMU Dersin Adı Kodu Normal Kredisi ECTS Ders 4 Yarıyılı Kredisi uygulama 0 Diferansiyel Denklemler 0252311 3 4 6 Laboratuvar 0 (Saat/Hafta) Dersin Dili Türkçe Dersin Türü Zorunlu

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ANALİZ I Ders No : 0310250035 : 4 Pratik : 2 Kredi : 5 ECTS : 8 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi Zorunlu

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Mesleki Matematik-I Ders No : 090040019 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim

Detaylı

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ 2012 2013 Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları AÇILAN DERSLERİN İÇERİKLERİ MAT 1001 ANALİZ-I (4 2 5) DERSİN KODU VE ADI KREDİ Kontenjan

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203 DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203 ÖNSÖZ Fakültemizin ikinci yarıyılında okutulan Matematik II dersi için hazırlanan bu kitap, Analitik Geometri kitabının devamı niteliğinde

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Yrd. Doç. Dr. Erhan Pişkin 1 Yrd. Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ 1 ISBN 978-605-318-249-8 Kitap içeriğinin tüm sorumluluğu yazarına aittir.

Detaylı

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL ( Güz) II.YARIYIL (Bahar) DERSİN DERSİN ADI T P K AKTS DERSİN DERSİN ADI T P K AKTS MAT101 ANALİZ I 4 2 5 7 MAT102

Detaylı

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI ZORUNLU DERSLER Matematiğin Temelleri (3-0) 3: Sembolik Mantık; Kümeler Kuramı; Kartezyen Çarpım; Bağıntılar; Fonksiyonlar; Birebir ve Örten Fonksiyonlar;

Detaylı

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü ÇNDEKLER I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem

Detaylı

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ 0 0 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ SÜRE Ay Hafta D. Saati ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR Geometri Örüntü Süslemeler. Doğru, çokgen çember modellerinden örüntüler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK I Dersin Orjinal Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1009 Dersin Öğretim

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

Matematiksel Analiz III (MATH 235) Ders Detayları

Matematiksel Analiz III (MATH 235) Ders Detayları Matematiksel Analiz III (MATH 235) Ders Detayları Ders Adı Matematiksel Analiz III Ders Kodu MATH 235 Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Güz 4 2 0 5 8 Ön Koşul Ders(ler)i Math

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK I. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK I. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT 9 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

LİSANS DERS İÇERİKLERİ

LİSANS DERS İÇERİKLERİ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ LİSANS DERS İÇERİKLERİ I. YARIYIL FIZ-125 Fizik I (Zorunlu) T=2 P=1 U=0 Fiziksel Büyüklükler, Standartlar, Birimler. Vektörler. Bir ve

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS MATEMATİK-2 FM-121 1/ 2.YY 5 5+0+0 6 Dersin Dili : Türkçe Dersin Seviyesi : Lisans Dersin

Detaylı

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Kavramı Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramını anlayacak, türev alma kurallarını öğrenecek, türevin geometrik ve fiziksel anlamını kavrayacak,

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

Ceyhun Atuf Kansu Caddesi No:86/1 Çankaya / Ankara KURUCUNUN ADI: : RAMAZAN ACAR

Ceyhun Atuf Kansu Caddesi No:86/1 Çankaya / Ankara KURUCUNUN ADI: : RAMAZAN ACAR M KURUMUN ADI : Ceyhun Atuf Kansu Caddesi No:86/1 Çankaya / Ankara KURUCUNUN ADI: : RAMAZAN ACAR PROGRAMIN ADI : -V 1. 2. 3. 4. PROGRAMIN AMAÇLARI: Bu program ile kursiyerlerin, 1. 2. 3. 4. 5. k, 6. Merak,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Matematiksel Analiz II (MATH 136) Ders Detayları

Matematiksel Analiz II (MATH 136) Ders Detayları Matematiksel Analiz II (MATH 136) Ders Detayları Ders Adı Matematiksel Analiz II Ders Kodu MATH 136 Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Bahar 4 2 0 5 10 Ön Koşul Ders(ler)i Math

Detaylı

ÖSYM. T.C. Ölçme, Seçme ve Yerleştirme Merkezi

ÖSYM. T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ MATEMATİK (LİSE) ÖĞRETMENLİĞİ 20 AĞUSTOS 2016 Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun,

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI PROGRAMIN GENEL TANIMI MATEMATİK TEMEL ALANI MATEMATİK ALANI GENEL TANIMI MİSYON VE VİZYON Matematik, bireyin

Detaylı

Tek Değişkenli Kalkülüs (MATH 104) Ders Detayları

Tek Değişkenli Kalkülüs (MATH 104) Ders Detayları Tek Değişkenli Kalkülüs (MATH 104) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Tek Değişkenli Kalkülüs MATH 104 Bahar 3 2 0 4 6 Ön Koşul Ders(ler)i MATH

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

III İÇİNDEKİLER ÜNİTE 1 ÜNİTE 2 ÜNİTE 3 FRAKTALLAR 2 YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 10 ÜSLÜ SAYILAR 14 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 18

III İÇİNDEKİLER ÜNİTE 1 ÜNİTE 2 ÜNİTE 3 FRAKTALLAR 2 YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 10 ÜSLÜ SAYILAR 14 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 18 MATEMATİK III İÇİNDEKİLER ÜNİTE FRAKTALLAR YANSIYAN VE DÖNEN ŞEKİLLER 6 HİSTOGRAM 0 ÜSLÜ SAYILAR 4 ÜSLÜ SAYILARLA ÇARPMA İŞLEMİ 8 ÜSLÜ SAYILARLA BÖLME İŞLEMİ 8 BİLİMSEL GÖSTERİM 9 ÜNİTE OLASILIK, İSTATİSTİK

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. YARIYIL DERSLERİ MAT101 Analiz I Kredi(Teorik-Pratik-Lab.): 5 (4-0-2) AKTS: 6 Matematik Analizin temel kavramları,

Detaylı

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans FİZİKSEL MATEMATİK II 1 Ders Adi: FİZİKSEL MATEMATİK II 2 Ders Kodu: FZK2004 3 Ders Türü: Zorunlu 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 2 6 Dersin Verildiği Yarıyıl 4 7 Dersin AKTS Kredisi: 8.00

Detaylı

DERS TANITIM BİLGİLERİ

DERS TANITIM BİLGİLERİ DERS TANITIM BİLGİLERİ Dersin Kodu ve Adı Matematik (3+0) Bölüm / Program Dersin Dili Dersin Türü Dersi Verenler Sağlık Yönetimi Türkçe Zorunlu Yard. Doç. Dr. M. Tamer Koşan Dersle İlgili Görüşme Saatleri

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Matematik I BIL

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Matematik I BIL DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matematik I BIL131 1 4+0 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin Koordinatörü

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS KOMPLEKS ANALİZ FM-311 3 / 1.YY 2 2+0+0 3 Dersin Dili : TÜRKÇE Dersin Seviyesi : Lisans

Detaylı

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER Doç. Dr. Mustafa KANDEMİR Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER ISBN: 978-605-318-31-1 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 015, Pegem Akademi

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Temel Matematik 1 TEM

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Temel Matematik 1 TEM DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Temel Matematik 1 TEM425 7 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Yüz Yüze / Zorunlu Dersin

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Matematik Ders No : 0690230018 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

2013-2014 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI

2013-2014 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI 0-0 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK İ YILLIK PLANI Temel Kavramlar 9... Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler. 6 EYLÜL 0 EYLÜL Temel Kavramlar

Detaylı

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir:

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: 2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: a) Bu malın arz ve talep denklemlerinin grafiklerini çiziniz (5 puan) (DÖÇ.1-).

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464

ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464 Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 65482464 ISBN NUMARASI: 65482464! ISBN NUMARASI:

Detaylı

matematik sayısal akıl yürütme mantıksal akıl yürütme

matematik sayısal akıl yürütme mantıksal akıl yürütme kpss 2014 Yeni sorularla yeni sınav sistemine göre hazırlanmıştır. matematik sayısal akıl yürütme mantıksal akıl yürütme geometri soru bankası tamamı çözümlü Kenan Osmanoğlu, Kerem Köker KPSS Matematik-Geometri

Detaylı

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL: IST101 BİLGİSAYAR PROGRAMLAMA I (223) Bilgisayar Donanımı, İşletim Sistemleri, Windows Kullanımı, Microsoft Word,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK III Dersin Orjinal Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT Dersin Öğretim

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kompleks Matematik EEE203 3 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kompleks Matematik EEE203 3 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Kompleks Matematik EEE203 3 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

Sınav : MATEMATİK (TÜRKÇE) ÖĞRETMENİ (GOÖD) Yarışma Sınavı A ) B ) C ) D ) E ) A ) B ) C ) D ) E ) 5 A ) B ) C ) A ) B ) C ) D ) E ) D ) E )

Sınav : MATEMATİK (TÜRKÇE) ÖĞRETMENİ (GOÖD) Yarışma Sınavı A ) B ) C ) D ) E ) A ) B ) C ) D ) E ) 5 A ) B ) C ) A ) B ) C ) D ) E ) D ) E ) 1 4 5 2 3 6 Bir sınıfın öğrencilerinden her biri matematik, fizik ve kimya derslerinin yalnız birinden 5 almıştır. Bu sınıftaki öğrencilerin 1/8'i kimyadan 5 almıştır. 15 öğrenci fizikten 5 alamamıştır.

Detaylı

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6 KIRGIZİSTAN TÜRKİYE MANAS ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ UYGULAMALI MATEMATİK VE ENFORMATİK LİSANS PROGRAMI DERSLERİN YARIYILLARA GÖRE DAĞILIMI BİRİNCİ YIL 1. YARIYIL TAR - 153 Ata Meken Tarihi

Detaylı

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DERS UYGULAMA FORMU

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DERS UYGULAMA FORMU ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DERS UYGULAMA FORMU Ders Adı MM 207 - Mühendislik Matematiği-I Dili : Türkçe Öğretim Yılı ve Yarıyılı 2011-2012-Güz Teori : 3 Pratik

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu /

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04.

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ.04.006. Aşağıdaki gibi, M ve M merkezli br yarıçaplı iki dairenin kesişimi şeklinde bir park inşa edilmektedir. Bu iki dairenin

Detaylı

Regresyon ve İnterpolasyon. Rıdvan YAKUT

Regresyon ve İnterpolasyon. Rıdvan YAKUT Regresyon ve İnterpolasyon Rıdvan YAKUT Eğri Uydurma Yöntemleri Regresyon En Küçük Kareler Yöntemi Doğru Uydurma Polinom Uydurma Üstel Fonksiyonlara Eğri Uydurma İnterpolasyon Lagrange İnterpolasyonu (Polinomal

Detaylı

MAT 3 DERS NOTLARI. Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla MY MAT-3. Mustafa YAĞCI ALTIN NOKTA YAYINEVİ

MAT 3 DERS NOTLARI. Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla MY MAT-3. Mustafa YAĞCI ALTIN NOKTA YAYINEVİ MAT 3 DERS NOTLARI Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla MY MAT-3 Mustafa YAĞCI ALTIN NOKTA YAYINEVİ ADANA - 2012 Copyright Altın Nokta Basım Yayın Dağıtım ISBN: 978-975-6146-95-8

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

DİFERENSİYEL DENKLEMLER UYGULAMALI ÇÖZÜLMÜŞ PROBLEMLER

DİFERENSİYEL DENKLEMLER UYGULAMALI ÇÖZÜLMÜŞ PROBLEMLER DİFERENSİYEL DENKLEMLER UYGULAMALI ÇÖZÜLMÜŞ PROBLEMLER Soru: Yan şartlı ve şartsız ekstremum Z=f(x,y)= x 4 +y 4-4xy+1 fonksiyonunun aşağıdaki şartlara göre yan şartlı ve yan şartsız çözümünü bulunuz. g

Detaylı

LİSANS DERS İÇERİKLERİ

LİSANS DERS İÇERİKLERİ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ LİSANS DERS İÇERİKLERİ I. YARIYIL FIZ-125 Fizik I (Zorunlu) T=2 P=1 U=0 AKTS=3 Fiziksel Büyüklükler, Standartlar, Birimler. Vektörler.

Detaylı

DOKUZ EYLUL UNIVERSITY FACULTY OF ENGINEERING OFFICE OF THE DEAN COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER. Course Code: MAT 1001

DOKUZ EYLUL UNIVERSITY FACULTY OF ENGINEERING OFFICE OF THE DEAN COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER. Course Code: MAT 1001 Offered by: Mühendislik Fakültesi Course Title: CALCULUS I Course Org. Title: CALCULUS I Course Level: Lisans Course Code: MAT 1001 Language of Instruction: İngilizce Form Submitting/Renewal Date 3/07/01

Detaylı

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(015)-Ara Sınav S-1) Merkezi M(, 1) de olan ve 4y + 1 = 0 doğrusundan 4 birimlik bir kiriş ayıran çemberin S-) Merkezi M(,4) de olan ve + 5y 10 = 0 doğrusundan

Detaylı